
Distributed Operating System Project

Page 1 A. Burtsev, L. Ryzhyk. October2004

The E1 Distributed Operating
System Project

Anton Burtsev, Leonid Ryzhyk
<antonb,leonidr>@cse.unsw.edu.au

October 18, 2004

Distributed Operating System Project

Page 2 A. Burtsev, L. Ryzhyk. October2004

Goals

Page 3 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

E1 Goals

� Provide efficient access to the resources of
computer network.

� Implement a convenient programming model,
isolating software developers from the intrinsic
complexity of asynchronous distributed
environment.

Distributed Operating System Project

Page 4 A. Burtsev, L. Ryzhyk. October2004

Distributed
Objects

Page 5 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Distributed Object

Distributed Object =
 (Semantics Object + Replication Object)U

nodes

Page 6 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Interface 1

Semantics
Object

Node 1

Trivial Case

Distributed Object = Semantics Object

When distributed object is used
only in one node:

Page 7 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Interface 1

Semantics
Object

Node 1

Semantics Object

Semantics object is
much like a C++
object, it:
� Stores object state

� Implements local
object functionality

but ...

Page 8 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Interface 1

Semantics
Object

Node 1

Semantics Object

Semantics object is
much like a C++
object, it:
� Stores object data

� Implements local
object functionality

but it's accessible only
via object interfaces

Page 9 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Interface 1

Semantics
Object

Node 1 Node 2

Create the first non-local
reference on the object

First Reference

Creation of the first non-local reference
initiates creation of replication objects

Page 10 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Replication
Object

Interface 1

Semantics
Object

Replication
Object

Interface 1

Semantics
Object

Node 1 Node 2

Replication Objects

Reference

A pair of replication and semantics objects is
created in each node

Page 11 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Replication
Object

Interface 1

Semantics
Object

Replication
Object

Interface 1

Semantics
Object

Replication
Object

Interface 1

Semantics
Object

Node 1 Node 2

Node 3

More Nodes...

Page 12 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Replication
Object

Replication
Object

Interface 1

Semantics
Object

Replication
Object

Interface 1

Semantics
Object

Replication
Object

Interface 1

Semantics
Object

Node 1 Node 2

Node 3

Object Invocations

Semantics
Object

Page 13 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Replication
Object

Replication
Object

Replication
Object

Replication
Object

Replication
Object

Replication
Object

Interface 1

Semantics
Object

Interface 1

Semantics
Object

Interface 1

Semantics
Object

Node 1 Node 2

Node 3

Object Invocations

Semantics
Object

Semantics
Object

Page 14 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Advantages

� Effective separation of object semantics and
replication strategy

� No imposed restrictions on the replication
strategies.

Page 15 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

... Results

� Object functionality can be implemented
separately from its replication strategy

� It's possible to select most efficient replication
strategy for each object.

Distributed Operating System Project

Page 16 A. Burtsev, L. Ryzhyk. October2004

System
Architecture

Page 17 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Generalized Architecture

Microkernel
Address Spaces, Threads, IPC, Interrupts Dispatching

Execution model and memory management
Protection Domains, Threads, Memory Objects

Component model support
Object Registry, Global Naming, Garbage

Collection, Access Control

Application Objects

N
et

w
or

k

Node

G
ro

up
 C

om
m

un
ic

at
io

n

Page 18 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Generalized Architecture

Microkernel
Address Spaces, Threads, IPC, Interrupts Dispatching

Execution model and memory management
Protection Domains, Threads, Memory Objects

Component model support
Object Registry, Global Naming, Garbage

Collection, Access Control

Application Objects

N
et

w
or

k

Node

G
ro

up
 C

om
m

un
ic

at
io

n

Page 19 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Generalized Architecture

Microkernel
Address Spaces, Threads, IPC, Interrupts Dispatching

Execution model and memory management
Protection Domains, Threads, Memory Objects

Component model support
Object Registry, Global Naming, Garbage

Collection, Access Control

Application Objects

N
et

w
or

k

Node

G
ro

up
 C

om
m

un
ic

at
io

n

Page 20 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Generalized Architecture

Microkernel
Address Spaces, Threads, IPC, Interrupts Dispatching

Execution model and memory management
Protection Domains, Threads, Memory Objects

Component model support
Object Registry, Global Naming, Garbage

Collection, Access Control

Application Objects

N
et

w
or

k

Node

G
ro

up
 C

om
m

un
ic

at
io

n

Page 21 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Component Services

� Lifecycle control
� Object Registry

� Distributed Garbage Collection System

� Global Naming Service
� Access Control Server

Page 22 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Generalized Architecture

Microkernel
Address Spaces, Threads, IPC, Interrupts Dispatching

Execution model and memory management
Protection Domains, Threads, Memory Objects

Component model support
Object Registry, Global Naming, Garbage

Collection, Access Control

Application Objects

N
et

w
or

k

Node

G
ro

up
 C

om
m

un
ic

at
io

n

Page 23 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Generalized Architecture

Microkernel
Address Spaces, Threads, IPC, Interrupts Dispatching

Execution model and memory management
Protection Domains, Threads, Memory Objects

Component model support
Object Registry, Global Naming, Garbage

Collection, Access Control

Application Objects

G
ro

up
 C

om
m

un
ic

at
io

n

N
et

w
or

k

Node

Page 2 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Replication

Page 3 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Allow developers to define distributed behaviour
of applications without implementing distributed
algorithms.

The Goal

� This is in contrast to DSM and RMI -based operating systems,
which try to make distribution completely transparent by
sacrificing efficiency.

Page 4 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Defining Distributed Behaviour

In E1 distributed behaviour of an object is defined
by:

1. Selecting replication strategy for the object
(possibly, at run time)

2. Adjusting replication strategy parameters:
� consistency criteria;
� required level of redundancy;
� object topology (replica placement) ...

Page 5 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Other Replication Strategy Parameters

� timing properties;
� failure detection strategies;
� failure-handling policies;
� handling of network fragmentations;
� network protocol selection;
� etc.

Page 6 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Consistency Criteria

Strict consistency
� Sequential

Relaxed consistency
� Causal
� FIFO
� Weak

Timed consistency

Page 7 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Client/Server Replication

Pros:

+ universal

Cons:

 - inefficient

- unreliable

Page 8 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Passive Replication

Pros:

 + reliability

 + reads are local

Cons:

 - updates are not local

Page 9 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Active Replication

Pros:

 + reliability

 + both reads and updates are
local when allowed by
consistency criteria

Cons:

 - requires deterministic
behaviour

 - recursive invocations are
difficult

Page 10 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Example of a Real Strategy

A small set of active
primary replicas with many
stateless client replicas
connected to them.

Page 11 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

The Replication Strategies Framework

Network Protocol Stack

Virtually Synchronous Group Communication

Replication Strategies Library

Page 12 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Network Protocol stack

Network Protocol Stack

Virtually Synchronous GC

Replication Strategies Lib

� Network protocol layer
provides at least unreliable
unicast primitive.

� However, more advanced
primitives, e.g. unreliable
multicast or reliable unicast
can also be available.

Page 13 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Virtually Synchronous GC

Network Protocol Stack

Virtually Synchronous GC

Replication Strategies Lib

Implements two types of
services:
� Group membership service.
� Reliable unicast & multicast

message delivery services
with various ordering
guarantees.

Page 14 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Group Membership Service

Network Protocol Stack

Virtually Synchronous GC

Replication Strategies Lib
Detects crashed and
recovered object replicas
using unreliable failure
detector and delivers
consistent views of the group
of replicas to all its members.

Page 15 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Message Delivery Service

Network Protocol Stack

Virtually Synchronous GC

Replication Strategies Lib Message ordering properties:
� FIFO multicast
� Causal multicast
� Totally ordered multicast

Page 16 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Replication Strategies Library

Network Protocol Stack

Virtually Synchronous GC

Replication Strategies Lib

Page 17 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Requirements

� Completeness
For virtually any object a replication strategy providing
“good” performance can be found in the library.

� Customizability
The developer can further fine-tune application performance
by adjusting the replication strategy parameters.

� Extensibility
New replication strategies can be easily developed by
reusing existing components and design patterns.

Page 18 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Problem 1

A classical software engineering problem: given a
number of related algorithms, construct a
framework for unified development, evaluation,
utilization and modification of these and similar
algorithms.

For example, a similar problem has been
successfully solved in the domain of group
communication systems (Horus, Transis).

Page 19 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Problem 2

Under what conditions can two replicated objects
(with different replication strategies) interact
without breaking the consistency of each other?

� Completely ignored in previous research.

Page 20 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Serialization Interface

� Any non-trivial replication strategy involves
operations requiring serialization/deserialization
of object state:
� Creation of a new replica;
� Migration of existing replica to a new node;
� State synchronization (passive replication).

� Objects are required to provide a serialization
interface.

Page 21 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Serialization Interface

� Serialization can be cumbersome.
� Languages like Java and C# support automatic

serialization based on RTTI.

� Problem: Implement automatic serialization for
objects written in C/C++

Page 22 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Object State Components

� Dynamically allocated data;
� Static data (global variables);
� References to other objects;

Page 23 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Serializing References

References to other objects can be easily serialized
by the operating system

Page 24 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Object State Components

� Dynamically allocated data;
� Static data (global variables);
� References to other objects;

Page 25 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Serializing Dynamic Data

We allow each object to have a separate private
heap. Serialization of object dynamic data is then
reduced to serialization of the heap.

� Possible only in single address space.
� Memory overhead.

� Should be acceptable for medium-grained objects.
� For small objects manual serialization is not difficult.

Page 26 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Object State Components

� Dynamically allocated data;
� Static data (global variables);
� References to other objects;

Page 27 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Serializing Static Data

� We allow each object to have a separate copy of
writable data segment for each module it
depends on.

� It is allocated from the heap on object creation
and is serialized/deserialized together with the
heap.

� Problem: we have to switch data segment when
crossing module and object boundaries.

Page 28 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Serializing Static Data

We adopt Mungi approach with one modification.
� In Mungi all function pointers including C++ virtual method

pointers are extended with global pointer field.
� In E1 this would require storing copies of all virtual tables in

object heap.
� Instead, we store global pointer together with virtual table

pointer in the object header.

Page 29 A. Burtsev, L. Ryzhyk. October2004

Distributed Operating System Project

Thank you

