
Aggressive Server Consolidation through Pageable Virtual Machines
Anton Burtsev Mike Hibler Jay Lepreau

University of Utah, School of Computing

Historically, virtual machine monitors (VMMs) have
chosen isolation as a primary goal. This design choice
prohibits almost any form of resource sharing. The only
shared resource is a physical CPU. Memory and disk
space are statically preallocated upon creation of a virtual
machine (VM). As a result, 5-10 VMs can easily exhaust
memory and disk resources of a physical host.

There are many situations, however, in which it would
be desirable to keep hundreds of VMs around. In many
cases VMs are used only occasionally, but need to be
available on demand. Examples include long-running ex-
periments in network testbeds like Emulab, months-long
debugging and development sessions, experiments with
unlimited number of nodes (with VMs allocated on de-
mand), honeypot installations, and public machines in
data centers and organizations, where users are allowed
to keep a running copy of a VM.

We have started to extend the Xen VMM with the abil-
ity to host hundreds of VMs on a single physical node.
Similar to demand paging of virtual memory, we will
page-out idle VMs, making them available on demand.
Paging is transparent. An idle VM remains operational: it
is able to process timer events, maintain network connec-
tions, and respond to requests from remote machines and
local devices.

We will detect when a VM becomes idle and aggres-
sively reclaim its resources. We will identify and leave in
memory only a minimal working set of pages required to
maintain the illusion of running VM. To keep the number
of active pages small without harming performance dra-
matically, we intend to build a correspondence between
every event and its working set. Reducing the working set
further, we plan to implement copy-on-write page sharing
across VMs running on the same host.

If we predict a long period of inactivity, we release the
physical node entirely by migrating the VM along with its
local file system to a special node hosting idle VMs. If we
predict a period of active execution, we proactively start
process of swapping the VM in.

Several existing systems increase server consolidation
by using memory sharing across VMs. For example,
Potemkin implements a virtual honeypot capable of host-
ing hundreds of virtual machines on a single physical host
(Vrable et al., SOSP’05). However, it limits all VMs to
be started from the same memory image. The VMware
VMM implements copy-on-write memory sharing across
VMs running on the same node. However, it is unable

Students: Burtsev. Corresponding author: aburtsev@cs.utah.edu.
No demo is planned.

to achieve our desired degree of consolidation because it
does not attempt to page-out the memory of an idle VM.

Idleness detection: A good indication that a VM has
become idle is that it returns to the hypervisor before ex-
hausting its scheduling quantum. We can stress the VM
further by depriving it of CPU time. For that, we grad-
ually reduce the length and frequency of the VM’s CPU
quantum. We intend to combine these techniques with ex-
isting approaches for detecting and predicting periods of
idleness (Golding et al., USENIX Winter’95).

Timely response from a swapped VM: By keeping a
small working set in memory, we create the illusion of a
running VM. To optimize event processing in the swapped
state, we try to predict the next event and swap in the cor-
responding working set proactively. Our default heuristic
is to prepare for processing of the most frequent events,
which are incoming network packets and timer interrupts.
We keep in memory an active set corresponding to these
events. If we predict that the next event is a wake-up of
a guest task, we try to extract information about the task
from the guest OS and swap in its working set.

Memory management: Virtual installations run VMs
from a small set of preinstalled operating system images.
As a result, many identical memory pages can be found
and shared across VMs. Shared pages can be identified ei-
ther by comparing page table hashes, or, more efficiently,
by monitoring the VM’s disk I/O (Bugnion et al., ACM
TOCS’97).

File system sharing and migration: Similar to mem-
ory, the file systems of all VMs initialized from the same
system image are almost identical, and vary only with a
small set of write changes. To reflect this fact, we use a
“golden” file system image from which we start all VMs.
The golden image remains unchanged and thus can be
shared across any number of VMs. To provide the VM
with a write access, we have developed a fast versioning
block-level storage solution.

Network stack virtualization: To host hundreds of
VMs on a single node, we need adequate support from
a VMM’s network stack. The Linux protocol stack used
currently by Xen is not designed to provide this support
efficiently. Further, for migrating multiple idle VMs on a
single host, we will need to support emulation of a non-
trivial network topologies on a single network stack.

Status: We have implemented the copy-on-write
branching storage system mentioned above. Everything
else is at the earliest stage of research. Deriving sound
idleness and working set prediction functions is the most
challenging part of this work.


