Real Time-Sharing in Emulab through Preemption and Stateful Swapout

Anton Burtsev

Prashanth Radhakrishnan

Mike Hibler Jay Lepreau

School of Computing, University of Utah

Emulab is a highly successful space-shared network
testbed that includes more than 350 PC nodes. Some 1500
users run “experiments” of size 1-300 nodes, on a first-
come first-served basis. Demand far exceeds capacity, so
Emulab provides a weak form of time-sharing. An Emu-
lab experiment definition—its network topology and ini-
tial state—is analogous to a Unix program, a running ex-
periment analogous to a process, and the persistent store
(on an external file server) analogous to an on-disk filesys-
tem. Upon swapout, an experiment’s node local physical
resources—memory and disk—are freed and lost, but the
experiment definition and state persists.

When later “swapped in,” the network topology and
initial disk state are reinitialized, but experimenters must
manually recover the approximate state of their live ex-
periment. If true time-sharing were provided, the Emu-
lab scheduler and operators could have free rein to opti-
mize resource use according to any policy, at most causing
only delay to experimenters, not lost work. The sched-
uler could preempt low-priority or idle experiments, save
their full state, and replace with other experiments. The
goal is that swapout/swapin must be transparent to the ex-
periment, and except for scheduling delays, transparent to
users.

In this work we are extending Emulab with the ability
to swapout experiments without losing their node local
state. Moreover, by virtualizing the network and experi-
ment nodes, we ensure that the entire period of inactivity
is transparent to the experiment. Effectively, we extend
Emulab with a coarse grain scheduling mechanism simi-
lar in nature to the operating system process scheduling.

To achieve this goal we place experiment nodes under
control of the Xen virtual machine monitor. This allows
us to take a consistent snapshot of the entire network upon
a swapout and resume upon a subsequent swapin.

There are several major issues and challenges:

Consistent checkpointing: To ensure that the experi-
ment is checkpointed in a consistent state, we employ the
well-known technique of tagging outgoing network pack-
ets with the checkpoint “epoch-id.” To eliminate packet
loss, we log packets that are in flight during a swapout
and replay them upon a swapin.

Time virtualization: To conceal the fact that the ex-
periment was swapped-out, we resume it in virtual time
upon a swapin. By virtualizing time, synchronizing nodes
and replaying network packets, we are able to eliminate
retransmissions in TCP sessions between the nodes after

Students: Burtsev, Radhakrishnan. Corresponding author: aburt-
sev(@cs.utah.edu.

swapin. Communication with the world outside the ex-
periment, in particular on the “control network” through
which the user and Emulab manage the experiment, may
pose challenges with timestamps embedded in packets.

Network virtualization: Currently, Emulab relies on
virtual network provided by Cisco switches to build ex-
periment topologies. Unfortunately, setting up a hundred-
node topology requires several minutes. Virtualization al-
lows us to switch to software 802.11q VLANS and setup
only one Cisco VLAN to isolate traffic between experi-
ments. Software VLANS can be setup in several seconds.

Pipelined swapout: Node local state is saved to the
Emulab repository upon a swapout and restored to po-
tentially different experiment nodes at the time of a sub-
sequent swapin. The time spent on this possibly time-
consuming operation is pure experiment scheduling over-
head. In order to improve node utilization, we plan to
pipeline the swapout of an experiment with the swapin of
the next experiment.

Redundancy elimination: The key insights behind re-
ducing swapout time are the observations that most of the
node local disk state does not get mutated and that a lot
of identical changes are made across nodes. We exploit
the local redundancy with copy-on-write (CoW) storage.
For remote redundancy elimination, we employ content
addressable storage (CAS). Upon a swapout, the content
hashes of the memory state and CoW disk delta of all
nodes in the experiment are sent to the server. The server
requests for only those blocks that are not already in the
CAS store (similar to LBFS and rsync).

Decoupling metadata and data: We believe that de-
coupling metadata and data is a key design point for scal-
ability. Thus, the Emulab storage server decouples the
CAS metadata—mappings of disk image deltas to content
hashes—from the actual CAS store. During a swapout (or
swapin) operation, the metadata server issues tokens to the
experiment nodes for saving (or retrieving) data blocks in
the CAS store.

Status: We have completed several of the components,
have pieces of the others done, and are starting to knit
things together. We have extended Xen with consistent
checkpointing and time virtualization. We built a full-
featured copy-on-write branching storage system by ex-
tending the Linux LVM snapshot mechanism. We have
implemented a delta mechanism for disk “image” state
storage and provisioning, and gathered statistics on disk
state differences. We have implemented the virtual net-
working support. We are currently designing the metadata
and full CAS services.



