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ABSTRACT 

Finding the closest points between two modeled objects is a fundamental 

operation in robotics, computer graphics, and computational geometry. This dissertation 

is motivated by the use of distance functions in haptic interfaces for virtual prototyping, 

where distance measures provide the basis for forces that are applied to a human user. 

The requirements for haptic interfaces mean that these distances must be computed both 

quickly and robustly. 

This dissertation begins by exploring the robustness of simple numerical methods 

for finding the minimum distance between a point and a curve. A geometric analysis of 

the convergence conditions yields an algorithm for precomputing a set of starting values 

with robustness guarantees. Embedding this simple local method within a geometric 

convergence test then provides some guarantees of global convergence. 

 The requirements of haptic interfaces motivate another approach, based on 

normal cones, for global search of local minima. This technique extends to surfaces and 

mixed with numerical methods allows a haptic rendering system for NURBS models. 

Finally, the normal cone approach is applied to polygonal models, which provides 

the basis for a general 6DOF haptic interface for virtual prototyping. These methods 

provide significant performance and reliability benefits over existing haptic rendering 

techniques. 
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CHAPTER 1 

INTRODUCTION 

The practical pursuit of a computer environment for virtual prototyping guides 

this research into the more abstract realm of geometric computations. In particular, 

adding force-feedback human-computer interfaces to virtual prototyping environments, 

so that a person’s sense of touch can guide placement of virtual objects, has motivated the 

development of efficient algorithms to compute the distance and interactions between 

these objects. The resulting distance algorithms are basic computational building blocks 

that are useful not only in force-feedback interfaces, but also for a broad class of 

geometric computations. 

There are three main areas to this dissertation. The first area examines distance 

algorithms for distance queries between a point and a curve and produces algorithms for 

local and global distance solutions. The insights from this investigation guide the 

development of distance algorithms for surfaces in the second area and culminate in a 

practical implementation of a distance algorithm for NURBS models suitable for haptic 

rendering of NURBS surfaces. The third area applies the ideas of the local minima 

method algorithms to purely geometric algorithms and shows how these concepts can be 

applied to polyhedral models. These polyhedral algorithms are adapted for use in a virtual 

prototyping system with force-feedback.
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The next few sections provide more detail for why virtual prototyping is an 

interesting problem, and how virtual prototyping requirements are connected to the 

computation of distance minima. 

Virtual Prototyping 

Mechanical designers have employed computer-aided design (CAD), computer-

aided engineering (CAE) and computer-aided manufacture (CAM) in their design 

processes. This integration allows products to be designed and analyzed on computers 

before manufacture takes place. However, physical prototypes are typically used at some 

point in the process to validate the proposed design. In industries such as the car industry, 

designers may cycle between computer models and physical prototypes multiple times. 

These cycles may take considerable time and expense due to the difficulty in translating 

the model between the virtual and physical worlds. 

Virtual prototyping replaces physical prototypes with virtual objects in a 

computer. Ideally, the virtual prototyping environment can use the same computer 

models that are used in the design processes, else a cumbersome translation from one 

computer model format to another is needed. The virtual prototyping environment must 

provide the same design evaluation functionality as the physical prototype it replaces. 

Typically, designers use physical prototypes to evaluate model aesthetics, ergonomics, 

and assembility. 

Virtual prototyping systems often depend heavily on advanced displays, such as 

head mounted displays (HMD) or wall displays like the CAVE, to give a proper sense of 

scale to the virtual objects. These systems have focused primarily on evaluation of the 

visual aesthetic qualities of the design. However, for many objects other senses play an 
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important role in the aesthetic quality of a design. In car design, the way a door feels and 

sounds as it closes imparts sensations of solidity and reliability. The feel of the seats 

similarly influences perceptions of luxury. In these examples, the sense of touch plays a 

major component in the aesthetic evaluation of a prototype. 

For other prototyping tasks, the sense of touch is similarly important. Sensations 

of contact guide the assembly process when checking how various parts of a model fit 

together. Without a way to reflect those sensations to the user of the virtual prototyping 

environment, they must be mapped into new sensory channels, such as alarm sounds or 

changes of color for the colliding objects. This remapping, as well as the lack of expected 

touch cues, can be disconcerting for the users of the system, creating a less effective user 

experience.  

Similarly, the controls of many objects are designed to be manipulated by hand 

with adjustments guided by the sense of touch. To properly evaluate the ergonomic 

quality of these controls, the virtual prototype must engage this additional sensory 

channel. The predominance of visual feedback in current virtual prototyping systems 

makes testing the ergonomic quality of a design difficult. 

Haptic Interfaces 

Haptic interfaces provide a means of engaging the sense of touch in a human-

computer interface, and thus provide a means of addressing the lack of touch cues in 

virtual prototyping environments. Haptic means “relating to or based on the sense of 

touch” and haptic interfaces may engage a person’s tactile or kinesthetic sense of touch. 

A haptic interface is a robotic mechanism controlled by computer and attached to a 

person. This mechanism can reflect forces simulated in a virtual prototyping 
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environment, such as those computed from collisions of virtual objects, back to the 

person attached to the device. Thus, a person’s hand or arm may be prevented from 

moving in a certain direction when doing so would require that objects in the virtual 

world would interpenetrate. 

This reflection of simulated forces is known as haptic rendering. Just as rendering 

in computer graphics simulates the interaction of light with virtual objects and presents 

that simulation through a visual display, haptic rendering simulates the forces of contact 

and presents that simulation through a haptic device. A key computational component of 

the force simulation is the ability to measure the distance between two virtual objects.  

Distance Measures 

Computing the distance between virtual objects, variously referred to as the 

minimum distance problem or the closest point problem, is a generalization of collision 

detection, a long-studied problem in robotics and computer graphics that determines if 

two objects are in contact. When objects are interpenetrated, measuring the penetration 

depth is a related computation to the minimum distance problem. 

Our interest in computing the distance between objects rather than just their 

collision status derives from two main reasons. First, distance measures are predictive. 

They can report not only when two objects are in contact, but also when two objects are 

close and likely to collide, or even when two objects are distant and are unlikely to have 

any influence on each other. Second, when objects are in contact, distance measures can 

give a sense of how badly things have gone awry and even how to rectify the situation by 

providing a direction to collision response methods. This second reason is a key 

component of the haptic rendering computation. 
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Summary 

This introduction has provided a chain of dependency from the utility of virtual 

prototyping, to the need for haptic interfaces in these environments, and finally to the 

dependency of haptic rendering on fast and robust minimum distance computation 

between virtual objects. The remainder of the document will focus primarily on distance 

computations, but many of the decisions made in algorithm design will be motivated by 

their eventual use in a virtual prototyping system. 



 

 

CHAPTER 2  

BACKGROUND 

Prior art in the area of distance computation draws from a number of fields, 

including computer graphics[1][2], robotics[3][2][4], computational geometry[5][6], and 

haptics[7][8][10][11]. This chapter provides an overview of distance computations, then 

devotes more detail to distance computations in support of haptic rendering. 

Distance 

In the Euclidian space nR  the Euclidian distance between two points x and y of 

nR  is the L2 distance 

n
n

i
ii yxyxyxD R∈






 −= ∑

=
,:),(

2/1

1

2 , (1) 

or more compactly, 

yxyxD −=),( . (2) 

The Euclidian distance between two subsets S and T of a Euclidian space is the infimum 

of the vector lengths between all points in the two sets, or 

},:),(inf{),( TtSstsDTSD ∈∈= . (3) 
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The closest points between the subsets S and T are the points s in S and t in T whose 

distance is D(S,T), if there are any. There may be multiple pairs of closest points, or none 

at all in the case of open sets. For the remainder of this thesis assume S and T are closed, 

a valid assumption for the points, triangular models, and NURBS curves and surfaces 

used as models in this dissertation.  

Modeling   

In geometric modeling, these subsets of Euclidian space are often represented as a 

boundary representation model. The minimum distance problem then becomes finding 

the closest points on the surfaces representing the model boundaries.  

Prior minimum distance algorithms have used different approaches depending on 

the types of models being queried. Distance algorithms for polygonal models have 

favored geometric pruning methods[12][13][14], while algorithms for parametric 

surfaces have concentrated on numerical techniques[15][1][16]. 

Distance Queries for Polygonal Models 

Polygonal models are typically composed of collections of triangles, and most 

distance algorithms for polygonal models deal with triangle primitives. The model may 

contain topological connectivity information. Models without connectivity are known as 

a triangle cloud, and ones with are properly described as a triangle mesh. 

Lin[17] and Gilbert, Johnson, and Keerthi[18] developed fast minimum distance 

methods for convex polygonal models. Since local gradient search produces a global 

minimum for convex objects, their algorithms can converge quickly.  
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Quinlan[14] developed a spherical bounding hierarchy for general triangle clouds. 

The bounding hierarchy was used to determine an upper bound on minimum distance 

between the two models, and then to prune away portions of each model with lower 

bounds on distance larger than the upper bound. The PQP package, by Larsen et al.[19], 

followed the successful application of oriented bounding boxes to collision detection[20] 

by using swept sphere volumes as a bounding hierarchy for triangle clouds. These 

volumes can control their aspect ratio to more tightly bound contained geometry than 

sphere bounds, which provided faster distance queries.  

More recently, the distance methods for convex model distance queries have been 

applied to convex decompositions of triangular models[12]. Essentially, this method 

reduces the number of leaf nodes by replacing triangles with convex sets.   

For these general polygonal models, the predominant techniques create bounding 

volume hierarchies, and the advancements have come mostly from improving the 

tightness of the bounding volumes. This approach differs markedly from techniques used 

for parametric models. 

Parametric Models 

Parametric models are composed of smooth surface patches, and typical models 

have fewer primitives than polygonal models. The emphasis in research, then, has not 

been on efficient means of pruning large numbers of primitives. Instead, methods have 

explored various numerical techniques for quickly and reliably solving systems of 

equations derived from setting up minimum distance conditions between two parametric 

models[15][21].  
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The distance between two parametric models ),( vuF  and ),( tsG  can be 

computed by finding the shortest length vector of the difference function. 

G(s,t)F(u,v)(u,v,s,t)D −=
v

. (4) 

In [16], a bound and subdivide scheme explicitly searched this four-dimensional space 

for a minimum length difference vector. More commonly, distance minima are expressed 

as minima of the scalar valued distance squared function, and computed by finding 

coincident zeros from the set of its partial derivatives, as in  

( )
( )
( )
( ) 0

0

0

0

=⋅−

=⋅−

=⋅−

=⋅−

t

s

v

u

GGF

GGF

FGF

FGF

 . (5) 

The system of equations for distance extrema has also been variously defined as sets of 

cross-products[15] or augmented with explicit normal collinearity conditions[22]. These 

extrema conditions have been solved by employing symbolic computation[21], interval 

methods[23], and Newton-Rapheson iteration[24]. Having the advantage of high speed 

and rapid convergence, the latter has been a practical choice for many implementers. 

Other Representations 

Other model representations that provide unique capabilities have also been used. 

Implicit models provide easy intersections and Boolean operations. Since implicit models 

are the zero set of a scalar function, evaluating that function at a point in space is itself a 

type of distance function, even though it need not be an exact match to Euclidian 

distance.   
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CSG models are typically combinations of primitives, such as spheres, cones, 

cubes, and tori. Each primitive needs a custom distance function. Most CSG models are 

not made up of large numbers of primitives, so efficient pruning methods are not needed. 

Haptic Rendering 

Each proposed model representation has different trade-offs in terms of control of 

shape, surface smoothness, complexity of data structures, and memory requirements. 

These various trade-offs have been carefully studied for visual rendering of models. 

However, haptic rendering has a different set of requirements, namely, the update rate for 

haptic systems must be much higher than for visual systems. Typically, force 

computations must be updated at 1,000 times per second[25] for stable haptic rendering, 

whereas visual updates at 60Hz are generally considered adequate. However, since a user 

cannot touch the whole environment at once, haptic interaction is much more local than 

for visual rendering. These different requirements mean these representational trade-offs 

may have different impacts on a haptic rendering system than on a visual one. Thus, 

haptic rendering must develop its own distinct set of techniques to take best advantage of 

a model representation.  

Haptic rendering computes the restoring forces needed to generate a sense of 

contact with a model. These restoring forces typically depend on the depth of penetration 

of the virtual hand into the model and the direction to apply the restoring force. Because 

of the difficulty of computing contact between complex models, the virtual hand in the 

environment is often represented as a point or collection of points called the end effector 

points[25]. In this thesis, the term query points will be most often used instead of that 

robotics specific term.  
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Computing the depth of penetration now reduces to finding the closest point on 

the model to the query points. As the virtual hand moves, this closest point changes and 

must be updated at haptic rates. Various techniques have been developed that compute 

and track the closest point on the model for different model representations. Below, we 

outline the development of haptic rendering methods from early stateless volume 

approaches to more current surface boundary techniques.  

An early approach for determining the restoring force filled the modeled object 

with a vector field corresponding to the desired restoration force[26]. Typically, the 

interior of the model was subdivided into regions with a common direction and 

containing force vectors with lengths proportional to the distance to the surface. Yet this 

approach poses several difficulties as noted in [27]: creating the vector field is non-trivial 

for complex shapes, force discontinuities may occur when crossing internal field 

boundaries, and thin objects do not have enough depth to allow for an adequate force 

vector field. In the worst case, where the virtual hand penetrates too deeply, the volume 

method may accelerate the user from one side of the object to the other. Because of these 

difficulties, other techniques like boundary methods have largely supplanted volume 

approaches.  

The intermediate plane[25] is an early type of boundary representation for haptic 

rendering. The intermediate plane approximates the local, underlying geometry of the 

model with a single plane. This plane updates as the virtual hand moves, usually much 

slower than the haptic update rate. This method maintains high update rates for the force 

computation by decoupling the cost of the depth computation from the complexity of the 
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underlying geometry and is also suitable for distributed computations, an especially 

attractive feature when the haptic controller runs on specialized hardware.  

This time-varying approximation of the surface works best for low curvature 

surfaces; otherwise, noticeable force discontinuities may occur. An approach for 

alleviating these discontinuities “fades-in” the computed force[8]. The intermediate plane 

approach was most recently applied to NURBS surfaces[28]. Importantly, using an 

intermediate plane does not eliminate the need to track the closest point on the surface; 

rather, it simply alleviates the high haptic rate demands. As such, recent efforts have 

focused on speeding the more fundamental closest point tracking algorithms so that they 

may apply directly[11], rather than continuing efforts to mask some of the deficiencies of 

the intermediate plane approach.  

Haptic Rendering of Polygonal Models 

Polygonal models are the first of the true boundary surface representations we 

consider. Much work in computer graphics and robotics has focused on polygonal 

models; the haptics community has leveraged this research to good effect. Polygonal 

models are attractive because they readily lend themselves to fast computations[20]. In 

addition, current graphics displays essentially force surfaces to be converted to polygons, 

so polygonal haptic approaches share a common representation with the visual display. 

Zilles and Salisbury[27] developed an approach for haptic rendering of simple 

polygonal models. Some history of the haptic interaction, they argue, avoids the problems 

related to the volume rendering methods mentioned earlier. Their haptic rendering 

method tracked the closest point on the surface with a simple method of determining 

collision with the facets of the model, an approach that limited model size to a few 
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hundred polygons. Ruspini[10] employs a more advanced collision detection method[14] 

to increase model size to tens of thousands of polygons and allowed a spherical end 

effector, instead of merely a point. He adopts the term proxy to refer to the constrained 

surface point that maintains the closest point. A competing method [29] combines spatial 

decomposition and oriented-bounding boxes to efficiently test intersection of a model 

with the end effector motion vector. 

Complex interactions are difficult to model with a simple point end effector. As 

computing power has increased and haptic devices have improved, more general model-

model interactions have become possible. 

An extension to a general collision detection and response system[30] to haptic 

environments allowed the moving model and the virtual environment to be composed of 

the union of convex polygonal models. The computational burden of the collision method 

limits the scene to tens of polygons, but interactions using this extension are richer then 

with single query point methods.  

More recently, research has looked at collections of convex bodies[31], as well as 

incremental methods for computing the penetration depth[32].  Most recently, the convex 

decomposition approach has been extended with perceptual level of detailing to 

accelerate haptic rendering for larger models[33]. 

Although limited as a surface representation due to compactness and smoothness 

concerns, these polygonal methods currently dominate haptic rendering. Their simple 

structure facilitates the development of fast algorithms for contact and depth computation 

as needed for haptic systems.   
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Sculptured Surfaces Methods 

Sculpted surfaces represent smoothly curved surfaces in a natural way, thus 

avoiding some of the difficulties associated with polygonal representations. In addition, 

they are often more compact than a high-resolution polygonal model, so more complex 

environments can be accommodated in comparable computer storage space.   

The success and ubiquity of NURBS in CAD and graphics indicates NURBS as 

the surface representation of choice for precise shape control (along with the more 

general subdivision surfaces representation). Advantages of NURBS include compact 

representation, higher order continuity, and exact computation of surface normals. For 

haptics, a further advantage is being able to directly manipulate CAD models without 

first having to create a polygonal representation.  

Some review of NURBS terminology is appropriate for our discussion. NURBS 

surfaces are piecewise-polynomial vector-valued functions of two parametric variables 

that form the domain of the surface. The control mesh influences the shape of the surface 

and each control point of the control mesh provides a vector coefficient for the basis 

functions of the surface. Each polynomial piece of the surface is influenced by a local set 

of control points and the convex hull of that set completely contains that piece. The  

“parametric nodes” of the surface are readily computable first-order approximations to 

the parametric value of the closest points on the surface to each control point. Through a 

process known as refinement, which embeds the surface into a new, higher-dimensional 

parameter space, more degrees of freedom can be added to the control mesh of the 

surface. One can add trimming curves to NURBS to represent holes and other sharp 

surface boundaries that do not fall along the parametric directions[34].  
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As seen from this synopsis, the mathematics for NURBS is considerably more 

complex in comparison to the underlying mathematics for polygonal models. Real-time 

computations using NURBS can seem formidable. Indeed, in the past, simpler 

representations such as polygons or intermediate planes derived from a NURBS surface 

seemed necessary for haptic rendering[35]. However, algorithmic advances, together with 

inexorable improvements in computing power, have made direct computation on NURBS 

models possible[11].  

Some of the lessons from polygonal haptic rendering methods apply to techniques 

for NURBS surfaces. At a high level, the proxy point transforms a global minimum 

distance solution to a local, continuous solution so that the restoring force direction 

remains continuous. On a NURBS surface an analogous situation exists. Haptic rendering 

needs a solution that is in the local neighborhood of the previous time step's solution. 

Local root finding methods, given an initial starting point, should converge to the nearest 

root, and these local root methods encapsulate many of the qualities of the proxy point. 

Thus, assuming the necessary components can be computed quickly enough, they are 

appropriate for tracing along a NURBS surface. This dichotomy between global and local 

closest points also suggests an approach for haptic rendering of NURBS surfaces – one 

could use global closest point methods to provide initial starting points and local closet 

point methods for tracking the surface point when the query point moves inside the 

model.  

Discussion 

Haptic rendering has progressed quickly from rather simple models such as cubes 

and spheres to quite general models made from tens of thousands of polygons or full-
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featured, trimmed, NURBS models. This dissertation presents a number of new distance 

computations for both polygonal and parametric models that increase the complexity and 

robustness of haptic interaction with complex environments.



 

 

CHAPTER 3  

DISTANCE TO PARAMETRIC MODELS 

As discussed in the background section, the geometric approaches for computing 

the minimum distance between polyhedral objects differ markedly from the numerical 

approaches used for sculptured models. The material in this chapter bridges the 

background chapter and upcoming research chapters by delving more deeply into 

distance to parametric models, with the goal of developing intuition and definitions that 

will be used in later chapters. The following sections deal with models defined by 

parametric NURBS curves and surfaces. In all our discussion of sculptured models, we 

assume the model is a regular curve or surface with at least C2 continuity, although the 

approaches can be adapted to piece-wise lower continuity models by subdivision.  

Distance from a Point to a Curve 

The vector difference between a point in space P and a point γ(t) on a planar 

space curve (Figure 1.A), is 

PγD −= )()( tt
v

. (6)  

For a fixed P and varying t, the vector difference can be thought of as a sequence of  

vectors from P to each point on the curve γ(t) (Figure 1.B). 
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A.   B.  

Figure 1:  The difference between a point and curve is a vector valued 
function. (A) The point P and a curve.  (B) The sequence of vectors 
between the origin and the curve translated by –P.  

The distance between P and the curve can now be expressed as a parametric 

function, 

( )Pγ −= )()( ttD , (7) 

and minimizing D(t) finds the minimum distance. Since D(t) can be rewritten as 

( ) ( )( )2
1

)()()( PγPγ −⋅−= tttD , (8) 

the distance squared, 

( ) ( )PγPγ −⋅−= )()()(2 tttD , (9) 

shares common extrema parameters with D(t) and avoids the square root. The distance-

squared function for the example given in Figure 1 is shown in Figure 2. 

The minimum of )(2 tD  can be found by computing all its extrema and choosing 

the smallest. Extrema of )(2 tD  occur when the derivative is zero, as in 

( ) 0)(2)(2

=⋅−=
dt
dt

dt
tdD γPγ . (10)  

P 

γ(t) 
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Figure 2: The function )(2 tD , with heights shown at the same t values 
used for the sample vectors in Figure 1. 

 
 
 

 
Figure 3: The derivative of D2(t) overlaid on D2(t) . Zero crossings 
correspond to extrema in distance. 

In the general case, extrema also occur at endpoints of the curve or at non-differentiable 

points. A curve with tangent discontinuities can be split into multiple curves, each of 

which is considered independently. The endpoints of the curve can also be checked as a 

special case. For now, we concern our analysis to the interior of a model.  

Figure 3 shows the Eq. 10 superimposed on the squared distance function of 

Figure 2. The parameter values along the x-axis where the derivative curve crosses zero 

correspond to minima or maxima of the squared distance function. 

t

)(2 tD  

)(2 tD  

dt
tdD )(2
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The factor of two on the right-hand side of Eq. 10 is irrelevant to the finding of 

zeros. Thus, distance extrema are found at zeros of the simplified extrema equation 

( )
dt
dttE γPγ ⋅−= )()( . (11)  

This formulation shows that distance extrema occur at orthogonal projections of P onto 

the curve, which is where the projection vector is at right angles to the tangent at the 

projected point. Another way to think of this is that the extremal point normal must be 

collinear with the vector between the extremal point and the query point. This collinearity 

condition will be the basis for many of the techniques developed in this thesis.  

Extremal Distance 

The collinearity condition of Eq. 6 makes no distinction between a local minimum 

and a local maximum of the squared distance function. The maximum is also known as 

the extremal distance[1]. There is a geometric relationship between the curvature of the 

curve, )(tκ , at the extremum, the distance to the extremum, and the side of the curve on 

which the query is made that determines whether the distance is a minimum or a 

maximum (Figure 4). 

When the curve at the extremum is convex relative to the query point, then the 

extremum is always a local minimum, since the curve in this region bends away from the 

query point. When the curve at the extremum is concave relative to the query point, then 

it bends towards the query point. If the radius of curvature,
)(

1
tκ

, at the extremum is 

larger than D(t), then none of the local region of curve is nearer than the extremum, so it 

is a minimum. If the radius of curvature is smaller than the distance, then the curve bends  
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Figure 4: As the query point moves away from the curve (left 
column), the squared distance function (right column) changes from a 
minimum to an extremal distance at the same zero crossing of the 
derivative function. 

inside the distance bound, and the extremum is a local maximum. These conditions are 

illustrated in Figure 4. Notice how a circle centered at the query point of radius equal to 

the extremal distance just touches the curve at the extremal point (top row of Figure 4), 

with the rest of the local curve further away, making a local minimum.  As the query 

point moves away from the curve, the circle expands. When the query point is further 

away then the radius of curvature, then the circle expands past the local curve (bottom 

row of Figure 4), implying that the curve on either side of the solution is closer and the 

solution is a local maximum. 

)(2 tD

)(2 tD

dt
tdD )(2

dt
tdD )(2
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Distance from a Point to a Surface 

The minimum distance between a point in space, P , and a bivariate parametric 

surface ),( vuS  (Figure 5) is the minimum of the distance function 

PS −= ),(),( vuvuD . (12)  

Following the approach for computing the minimum distance between a point and a 

curve, the distance squared to a surface 

( ) ( )PSPS −⋅−= ),(),(),(2 vuvuvuD  (13) 

shares the same parameters at extrema as the distance and has a less complex 

formulation. In Figure 5, local distance minima between the query point and the surface 

are visible in the visualization of the distance squared function as two bumps, each 

corresponding to a local closest point on the original surface to P.     

 

Figure 5: The squared distance between the point and surface at left is 
visualized on the right as a function mapping parameter value vs. 
squared distance. 
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The distance-squared function generates a system of equations that are satisfied at 

an extremum. 

( )
( ) 0),(

0),(
=⋅−
=⋅−

v

u

SPS
SPS

vu
vu

 (14)  

This system is an analogue to the extrema equation for minimum distance to a curve, as it 

shows that the closest point on the surface is also an orthogonal projection of the query 

point onto the surface. 

These partial derivatives are complex three-dimensional surfaces and difficult to 

visually understand. However, mapped as )),(,,(
2

u
vuDvu

∂
∂ and )),(,,(

2

v
vuDvu

∂
∂ , their 

zero crossings generically form curves in the uv plane (Figure 6), and the intersections of 

each zero set are solutions to Equation 8. 

 
Figure 6: The zero crossings of each partial of the distance-squared 
function generically form curves in the uv plane. The intersections 
between the two curves are local extrema of the distance-squared 
function. 
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Distance Between Two Surfaces 

Distance queries between surfaces extend naturally from the query for a point to a 

surface. The distance function for two surfaces ),( vuF  and ),( tsG  is 

),(),(),,,( tsvutsvuD GF −= . (15) 

As before, distance extrema occur at zeros of the set of partial differentials of the 

squared distance  

( )
( )

( )
( ) 0

0
0
0

=⋅−
=⋅−
=⋅−
=⋅−

t

s

v

u

GGF
GGF
FGF
FGF

 (16)  

However, Equation 16 does not naturally express the possible configurations two 

surfaces can have relative to each other. Two surfaces can interpenetrate each other, and 

an extremum of distance is at the maximum penetration. While this extremum is a valid 

root for Equation 16, another set of roots occurs along the curve of intersection between 

the two surfaces during interpenetration, where ( )GF −  is zero. Numerical methods will 

tend to find a solution in the set of roots associated with this intersection curve rather than 

the extremum in distance. Defining the distance as an extremal distance, rather than the 

minimum distance, helps to avoid these problems. 

Extremal Distance Formulation 

Following [1], the extremal distance can be defined as the minimum distance 

between the two models when they are disjoint, zero during tangential contact, and the 
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locally maximum penetration depth when they interpenetrate. This measure reflects the 

possible configurations of two surfaces more accurately than the minimum distance. 

The extremal distance between parametric surfaces ),( vuF  and ),( tsG  is the 

following scalar valued equation: 

( ) ),(),(),(),,,( vutsvutsvuE NGF
r

⋅−= . (17) 

Extrema of Equation 17 are at simultaneous roots of its partials, which are 

( )
( )

0

0

0

0

=⋅−

=⋅−

=⋅−+⋅

=⋅−+⋅

NG

NG

NGFNF

NGFNF

r

r

rr

rr

t

s

vv

uu

 (18) 

This can be simplified by noting that the normal N
r

 is always orthogonal to the tangent 

plane formed by the partials uF  and vF , so the NF
r

⋅u  and NF
r

⋅v  terms are always zero 

and may be removed. Additionally, the partials of N
r

 lie in the tangent plane of ),( vuF , 

so replacing the partials of N
r

 with the partials of ),( vuF  forms an equivalent constraint. 

These substitutions form this simplified set of equations 

( )
( )

0

0

0
0

=⋅

=⋅

=⋅−
=⋅−

t

s

v

u

GN

GN

FGF
FGF

r

r  (19) 

The first two partials constrain the solution line to lie along the normal of ),( vuF , 

and the second two maintain collinearity of the two surface normals. An intersection of 
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the two surfaces, where ( )GF −  is zero, no longer fully satisfies the set of partials, and is 

not a solution to the extremal distance formulation. 

Discussion 

This chapter develops sets of equations for the minimum distance between points 

and curves, points and surfaces, and two surfaces, as well as a special set of constraints 

for the extremal distance between two surfaces. The next chapters delve into techniques 

for solving these equations using numerical and geometric methods, eventually applying 

them to haptic rendering. 



 

 

CHAPTER 4 

THE SCALED EVOLUTE BOUND FOR RELIABLE  

CONVERGENCE OF POINT-CURVE MINIMUM  

DISTANCE QUERIES  

Minimum distance queries between a point and a curve can be computed 

symbolically for curves of low degree[21]. For higher degree curves, a mixture of 

symbolic and numerical computation can be used. In many cases, a local solution is 

desired, and purely numerical approaches are feasible. This last approach also lends itself 

to rapid computation.  

This chapter analyzes a convergence condition of Newton’s method, a standard 

numerical approach, for minimum distance queries between a point and a curve. Based 

on that analysis, we develop an algorithm for computing a set of starting parametric 

values and an associated geometric bound on query point location that ensures 

convergence of Newton’s method during minimum distance queries. We restrict our 

analysis to planar, twice-differentiable, regular curves. An example of this type of curve 

is a planar, B-spline curve, commonly used in CAD, modeling, and animation, so this 

restriction is not onerous. 

Because this chapter requires significant background and mathematical analysis 

before developing the main argument, we summarize the approach here: 
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1. Convergence of Newton’s method depends on its initial parameter and the 

query point. 

2. A geometric interpretation of a convergence condition for Newton’s method 

yields safe spatial regions for point queries relative to the current estimated 

closest point. 

3. These regions are largely dependent on the radius of curvature at that point on 

the curve. By properly computing sets of starting parameters, the convergence 

condition will hold for all query points to one side of a scaled evolute curve 

and Newton’s method will converge. 

This result is different from the typical analysis of the convergence properties of 

Newton’s method. In point estimation theory[36], convergence conditions are derived for 

a particular query point relative to a curve, based on the initial parameter value. Our 

approach determines for which families of curves (corresponding to different query 

points) will a set of initial parameter values provide adequate assurance of convergence. 

This approach allows the initial computational cost of analysis to be amortized over many 

queries, and to know a priori whether a minimum distance query will, in fact, converge. 

Newton’s Method for Minimum Distance Queries  

Newton’s method is a standard approach for local root finding, especially when 

derivative information is readily available[37]. For a univariate parametric function F(t), 

Newton’s method solves for a change in t, such that iterations of Newton’s method 

should converge to a root. The new parameter value depends on the previous iteration, 

the function value, and its derivative at the prior parameter value, specifically 

...2,1,0,
)(
)(1 =

′
−=+ j

tF
tFtt

j

j
jj  (20)  
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First, it should be noted that there is no guarantee that Newton’s method will find 

a root. It may diverge due to poor starting conditions; cycle, rather than converge; or just 

fail when 0)( =′ tF . Additionally, Newton’s method may find a root, but not one near the 

starting parameter. In this case, the method essentially diverges for a step or more, and 

then happens to land in the basis of attraction for another root. 

Careful choice of parameter value to initialize the Newton iteration helps avoid 

these problems. For minimum distance queries, starting parameters can be generated as 

needed[24], or precomputed. In neither case do these methods provide any assurances 

that Newton’s method will converge as desired. For precomputed starting parameters, a 

standard algorithm[34] evaluates the curve at multiple evenly spaced potential starting 

parameters, or seed points. A seed parameter, t, is a parameter value used to initialize 

Newton’s method. A particular seed parameter out of an ordered set of seed parameters is 

indicated by it . A seed parameter also defines a seed point, )( itγ . 

The standard distance algorithm  

1. computes a set of evenly spaced seed parameters on the curve, 

2. finds the closest seed point to the query point, 

3. solves for a root of the extrema equation (Eq. 11) using Newton’s method 

initialized with the seed parameter corresponding to the nearest seed point, 

4. returns the distance between the query and )(tγ , where t is the root of the 

extrema equation from step 3. 

However, there are no guarantees that Newton’s method will actually converge given a 

particular starting seed parameter. This shortcoming motivates this chapter’s 
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development of an algorithm for generating seed parameters with known convergence 

properties for an associated spatial region of possible query points. 

Visualizing the Convergence of Newton’s Method 

A distance map is an image that represents the distance from the center of a pixel 

to an object of intekrest by pixel intensity. The top of Figure 7 shows a distance map for a 

sample curve. Another useful mapping is to associate a gradient of color with the curve 

parameter, so that the start of the curve is associated with black, the end with white, and 

the portion in the middle a linear interpolation between the two. With this mapping the 

intensity of the pixel in the image is proportional to the parametric value of the closest 

point on the curve (Figure 7 bottom), thus we refer to it as a closest point map. 

An analogous idea provides visual evidence for when the standard algorithm 

succeeds or fails. Calling the standard algorithm at every pixel and using its distance 

result, rather than the correct distance used in Figure 7, provides a visual representation 

of its success. Furthermore, since Newton’s method can detect when it fails to converge, 

that result can be shown in a warning color. Figure 8 shows distance maps using the 

standard algorithm with varying numbers of seed points. Figure 9 shows the equivalent 

closest point maps.  

These images clearly show that an inadequate number of seed points on the curve 

can result in unreliable convergence of Newton’s method. However, they also show that 

even when there are large numbers of seed points, troublesome, albeit small, regions of 

divergence remain. 
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Figure 7: Two different distance visualizations. (top) A distance map 
for a sample curve. (bottom) A closest point map for the same curve. 
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Figure 8: Distance maps show distance to the curve by mapping pixel 
intensity to distance. The number of seed points is increased in each 
successive image, and places where Newton’s method fails to converge 
map to a warning color.  
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Figure 9: Closest point maps set pixel intensity to the parametric 
value of the closest point on the curve. This mapping provides more 
information about where the standard algorithm converged to than 
the distance map. 
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Convergence of Distance Queries Between a Point and Curve 

The convergence of numerical methods in general and Newton’s method in 

particular has been thoroughly analyzed. In this section, a convergence condition from 

the literature[37] is studied in detail. A geometric interpretation of those conditions 

provides a basis for an algorithmic means of generating a set of seed points on a specified 

curve with known convergence properties for regions of query points. 

Eq. 20 can be rewritten as 

)(
)()(
tF
tFttG

′
−= . (21)  

Newton’s method will converge when for each iteration[37],  

.1)( <′ tG  (22)  

Using the quotient rule for differentiation on Eq. 21 and then simplifying,  

2)(
F
FFtG
′

′′
=′  (23)  

When looking at the specific problem of minimum distance, where the function to be 

minimized is )(tE  (from Eq. 6), the convergence condition becomes 

.)( 2E
EEtG
′

′′
=′  (24)  

Derivatives of the Distance Extrema Equation 

The functions for distance extrema and its derivatives are needed to expand the 

convergence condition. E(t) in dot product bracket notation (and without explicit 

parameters) is 
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γPγ ′−= ,E , (25)  

and, by the chain rule, its first and second derivatives are 

γ,γγP,γ ′′+′′−=′E , (26)  

γγγPγ ′′′+′′′−=′′ ,3,E . (27)  

Using these derivatives, each step of Newton’s method (Equation 21) expands to 

γ,γγP,γ
γPγ

′′+′′−
′−

−=∆
,

t  (28) 

and the value of 'G  (Eq. 24) used in the convergence condition for Newton’s method 

when used for the extrema distance equation is then 

[ ]
[ ] 2,,

,3,,

γγγPγ

γγγPγγPγ

′′+′′−

′′′+′′′−′−
=′G . (29)  

Visualizing the Convergence Conditions for Newton’s Method 

A technique similar to a distance map can be used to visualize the value of 

'G during application of the standard algorithm. Rather than mapping distance to pixel 

intensity, the visualization technique maps the value of 'G  at the initial seed, based on the 

seed parameter and the query point. Magnitudes of 'G  between zero and one map to 

image intensity between black and white. Magnitudes greater than or equal to one, where 

Newton’s method is not expected to reliably converge, map to a warning color (Figure 

10).  This visualization helps us understand convergence properties during the initial step 

of Newton’s method. During later steps, new 'G  values would be associated with the 

current parameter value of the estimated closest point. 
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Figure 10: Regions of 1≥′G are easily visualized by finding the 
closest seed point on the curve to each pixel and computing the value 
of 'G  based on the intrinsic properties of the curve. Magnitudes larger 
or equal to one are colored. The images above show visualizations of 

'G  based on varying numbers of seed points. 
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Analysis of Degenerate Conditions 

These magnitude images of 'G  reveal several features that are worth exploring 

mathematically. An analysis of these conditions will eventually yield a more tractable 

form of Equation 29. 

The worst case for 'G  is when it is degenerate, and our analysis starts there. The 

degeneracy condition for 'G  is when its denominator is zero. Thus when 

γγγPγ ′′−=′′− ,, , (30)  

'G  is degenerate. Note that this is also the same condition where Newton’s method 

(Equation 28) becomes degenerate. For a fixed value of t, Equation 30 determines a line, 

defined by the vector from P to )(tγ projecting onto the normalized )(tγ ′′ with the same 

magnitude as the length of )(tγ ′ squared. A query point on this line produces a 

degeneracy in 'G , for the parameter used in that iteration of Newton’s method. 

This line of degeneracy forms the region’s center backbone (Figure 11). The area 

where this line crosses the normal to the seed point warrants additional attention.  

 

 
Figure 11: The area of 1≥′G  for one seed point along the curve is 
shown. Some portions for other seed points are visible outside the 
Voronoi region of the seed point. 
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Restricting P to lie along the normal, N, at the current )(tγ , as in 

ΝPγ y=− , (31)  

and substituting in Eq. 29, 

[ ]
[ ] 2,,

,3,,

γγγΝ

γγγΝγΝ

′′+′′

′′′+′′′′
=′

y

yy
G , (32)  

immediately shows that the numerator of 'G is always zero for this restricted placement 

of P along the normal, since the dot product of the normal and tangent in the first factor is 

always zero. This is also demonstrated in Figure 11, which shows a line of black (with 0 

value) extending along the normal from the seed point. However, the degeneracy in the 

denominator still exists. By using a relation for curvature, κ , and the normal of a 

curve[38], 

42
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 (33)  

the denominator, d, of 'G ,  

4

2

2 1, γ
γ
γΝ ′














+

′

′′
= yd ,  (34)  

can be rewritten in terms of the curvature, 

4

2

4 1
,

, γ
γ

γγγ
ΝΝ ′


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







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′′′′
+= κyd . (35)  
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Again, since the first derivative and normal at a point on the curve are orthogonal, then 

[ ] 421, γΝΝ ′+= κyd . (36)  

Since we are discussing regular curves, γ ′  is never zero, and only the first factor can go 

to zero, which occurs when 

.1
κ

−=y  (37)  

This implies 'G  is degenerate and Newton’s method fails when   

ΝγP
κ
1+= , (38) 

or when P lies at the center of the osculating circle at )(tγ . This result, along with the 

line of degeneracy from Equation 30, is shown in Figure 12.  

A Geometric Interpretation of the Unsafe Convergence Region  

For reliable use of Newton’s method, determining degenerate locations is not 

enough – all query point locations where the magnitude of 'G  is greater than or equal to 

one for all parameter values used by Newton’s method need to be avoided. However, the 

style of analysis used to determine the degeneracy condition is applicable in this more 

general case as well. 

The vector from P to )(tγ can be represented in terms of a reference frame at )(tγ , 

formed by the tangent direction and normal at )(tγ , as in 

ΝγPγ yx +′=− . (39)  
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Figure 12: Placements of P that cause degeneracies in 'G for a given 
parameter value lie along the line orthogonal to the second derivative.  

Using this representation, 'G  becomes 

[ ]
[ ] 2,,

,3,,

γγγΝγ

γγγΝγγΝγ

′′+′′+′

′′′+′′′+′′+′
=′

yx

yxyx
G  (40)  

and expanding, yields 

4222222

2222

,2,2,,2,,

,,3,

γγγΝγγγγΝγγγΝγγ

γNγγγγγγγ

′+′′′+′′′′+′′′′′+′′+′′′

′′′′+′′′′+′′′′′
=′

yxxyyx

xyxx
G

. (41)  

We call a P that yields a 'G  magnitude less than one for a given parameter a safe position 

of P. Then the curve representing the boundary between unsafe and safe positions of P is 

where 

1)( =′ tG , (42)  

which forms two implicit curves defined by  

1)(

1)(

−=′

=′

tG
or

tG
 (43)  
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Choosing the positive condition forms a quadratic equation in x and y in the local 

tangent-normal reference frame 

[ ] [ ]
[ ] .0,2,3,2

,,,2,,,
4222

222222

=′+′′′Ν+′′′′−′′′′

+′′′′−′′Ν′′′+′′Ν+′′′′′−′′′

γγγγγγγγγ

γγγγγγγγγγγ

yx

Nxyyx

 (44)  

The implicit equation describing the negative boundary is similarly formed. Together, 

these two boundaries (Figure 13) form the outline of the regions of poor convergence 

from a single step of Newton’s method, matching those from the 'G visualization (Figure 

11). 

This form of the convergence condition is more amenable to computation than 

Eq. 29 and will be used in support of this chapter’s motivating problem – how should 

seed points be distributed on the curve to support regions of safe positions of P for all 

steps of Newton’s method during convergence? 

 
Figure 13: The implicit form of 1=′G  may be easily graphed and 
used in computations, as opposed to the purely visual representation 
in Figure 11. 
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Computing Seed Points 

Tools are now in place to obtain the goal in this chapter – namely, to compute a 

set of seed points that provides guaranteed convergence of Newton’s method for query 

points inside a spatial bound. Constrained by the previously discussed degeneracy 

conditions, convergence for Newton’s method is impossible to guarantee for all query 

points, independent of the number of initial seed points used. Instead, given the derived 

geometric interpretation of the convergence conditions, we develop techniques to 

compute seed points such that Newton’s method will converge for all query points within 

a spatial bound that we call the scaled evolute bound.   

Scaled Evolute Bound 

As shown by Eq. 38, Newton’s method becomes degenerate when the query point 

is at the center of the osculating circle at )(tγ . The locus of points fulfilling this condition 

forms a possibly discontinuous curve called the curve evolute (Figure 14 left), defined as 

)(
)(

1)()( t
t

tt ΝγR
κ

+= . (45) 

Any spatial region bounding query points that includes any of this curve cannot guarantee 

avoiding degeneracy in Newton’s method. Therefore, we use a scaled evolute (SE) curve 

that lies between the curve and its evolute (Figure 14 bottom), defined as 

)(
)(

)(),( t
t

tt ΝγS
κ
αα += . (46) 

The parameter α , restricted to values between zero and one, determines the interpolation 

between the original curve and its evolute. 
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Figure 14: The curve and the three discontinuous parts of the evolute 
(left) and a scaled evolute in-between the curve and its evolute (right). 
The curve, entire evolute, and scaled evolute are shown at bottom. 
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Given the SE-curve, we bound query point locations to the disjoint regions 

bounded on one side by the SE-curve, and extending infinitely in the direction from the 

SE-curve to the original curve, or the bivariate (for a fixedα ) planar regions defined by 

0),()(
)(

)(),( ≥−+= utut
t

tut ΝΝγB
κ
α . (47) 

These scaled evolute regions are shown in Figure 15.  

One further subdivision of the scaled evolute regions will be useful. A seed point 

interval (SPI) region is a piece of the scaled evolute region bounded on each side by lines 

through neighboring seed points of the curve and parallel to the seed point normals 

(Figure 16), or just ),( utΒ  evaluated over the defining seed point interval 1+≤≤ ii ttt . 

Now, given these regions, we want to compute a set of seed points on the curve 

guaranteeing convergence of Newton’s method for minimum distance queries between 

query points in the regions and the curve. A summary of the approach is 

1. Compute the seed points such that there is no overlap between a SPI region and 

the 1)(' ≥tG  unsafe convergence regions over the defining seed point intervals, 

as in 

1,),(1)(' +≤≤≡∩≥ ii tttutBtG φ . (48) 

2. Show that a query point inside a SPI region will converge to a closest point on the 

curve on its defining interval and that during convergence, the estimated closest 

point will not leave the interval. 
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Figure 15: The three disjoint scaled evolute regions that bound query 
point location. (left) The scaled evolute regions with an alpha of 0.25. 
(right) The regions with an alpha of 0.1, which simplifies the structure 
of the regions for visualization. 
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Figure 16: A seed point interval region is an interval of the scaled 

evolute region between two seed parameters. 

Together, these steps show that during convergence, a curve parameter never yields an 

unsafe 'G  value for query points inside the SPI region, so Newton’s method is guaranteed 

to converge. 

Computing the Seed Points 

The seed point computation is constructive in nature. The algorithm takes in a 

planar, twice-differentiable, regular curve and generates a set of seed points for the curve. 

As a preprocess, the algorithm breaks the curve at inflection points, so that the evolute of 

each subcurve, and its associated SPI-regions, is a continuous region. 

The basic idea of the algorithm is to extend out a potential new seed point until it 

fails to create a safe SPI region for query points, at which point it stores the last 

parameter that created a safe SPI region as a new seed. A parameter, delta, determines 

how fast the new seed point extends, and there is an assumption that two seed parameters 
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separated by delta will pass the safe bounds test as described below. Because the 

algorithm is computationally efficient and a pre-process, a reasonable choice for delta is 

just a small floating point value, such as 0.00001, as long as it is a small fraction of the 

smallest difference between knot values. The algorithm, repeated on each subcurve, in 

pseudo-code is as follows: 

 

0t  = the minimum parametric value for the subcurve 
save_seed( 0t ) 

0ttt newlast ==   

while ( newt  <= maximum parametric value) 

 bounds = seed_point_region( lastt , ttnew ∆+ ) 

 if (!safe( bounds )) 
  save_seed( newt ) # newt  is still safe 

  newlast tt =  

ttt newnew ∆+=  

end while 
save_seed( maximum parameter for subcurve ) 

 

For the safe test, recall that the convergence condition requires that 1)( <′ tG  for 

all iterations of Newton’s method. Since knowing the specific steps taken during 

convergence is equivalent to already knowing the solution, the test for a safe region uses 

the more conservative condition of Eq. 48, that 1)( <′ tG  for all query points in the SPI 

region and for all parameter values in its defining interval. 

 The validity of this condition depends on Newton’s method generating a series of 

t  root estimates that stay within the interval. If the t∆  generated by a step of Newton’s 

method moves t  outside the interval from it  to 1+it , then the 1)( ≥′ tG  area associated 

with that t  will not have been tested against the current SPI region. 
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To guard against this, we need to show that there is an extremum, and thus a place 

to which to converge, on a SPI region’s defining interval for a query point in that region.  

Furthermore, Newton’s method must move into the interval containing P, rather than the 

neighboring interval associated with the chosen seed point, and t  must stay within that 

interval during the convergence process.   

Lemma 1: If the query point P is within a seed point region associated with an 

interval of the curve, then that interval also contains a local distance minimum to the 

query point. 

Proof: When P is within the SPI region, then 

0)(,)( and 0)(,)( 11 ≥′−≤′− ++ iiii tttt γPγγPγ  (49) 

A local extremal point is defined by a tangent orthogonal to the vector from the 

query point to the extremal point (Equation 6). Since the tangent is continuously 

varying within an interval, then the value of Equation 6 must cross zero as t  

goes from it  to 1+it , and the dot product with the tangent goes from negative to 

positive. When the dot product is zero, there is an extremal point on the curve. 

Because the query point is either on the convex side of the curve or closer to the 

curve than the evolute, that extremal point must be a minimum rather than a 

maximum. 

By Lemma 1, if Newton’s method converges, then the converged solution must 

lie on the defining interval of the SPI region that contains the query point. Additionally, 

Newton’s method must start within the interval as it is initialized with a seed parameter 

that is one of the ends of the interval. Therefore, the only opportunity for the estimated 

closest point to escape the interval is during one of the intermediate steps. 
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Lemma 2: The first parametric step of Newton’s method is in the parametric 

direction from the initial seed parameter towards the other end of the interval. 

Proof: Recalling Eq. 28 

γ,γγ,
t

′′+′′−
′−

−=∆
Pγ

γPγ ,
, 

suppose the seed parameter it  represents the parametric start of the interval. 

Then the seed point tangent points in the direction of the interval and the dot 

product of the tangent and the vector from P to )( itγ  will be negative. The 

denominator of Eq.28 is positive because a point P on the curve yields a positive 

denominator and the denominator does not cross zero until P is at the radius of 

curvature, which is outside the SPI region. Therefore, t∆  is positive. If the 

initial seed parameter is at the parametric end of the interval, then the numerator 

of Eq. 28 is positive, and t∆  is negative. 

Taken together, Lemmas 1 and 2 show that there must be a solution to converge 

to within the interval and that the first step moves the estimated root parameter from the 

seed parameter into the interval. Additional iterations must stay within the interval as the 

endpoints of the interval have already been tested to determine the starting parameter 

value and since the SPI regions are built such that 1)( <′ tG  for all 1+≤≤ ii ttt , 

divergence cannot occur. 

 Having shown that 1)( <′ tG  for all 1+≤≤ ii ttt  is a reasonable condition for 

testing the safety of a SPI region, we now need an implementation of that test. The safe 

test algorithm approximates the safety condition by sweeping a dense sampling of 
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parameter values from it  to 1+it . A sampling density of 0.00001 was used in our later 

examples; in general, the ends of the domain usually contain the problems so this is a 

robust test. At each sample t , a check is made to see if the 1)( ≥′ tG  region lies 

completely outside a conservative approximation of the SPI region for that interval. 

First, the 1)( =′ tG  boundary curves are computed in the local reference frame of 

)(tγ  (as in Equation 44). Then, a line segment (the approximate scaled evolute curve) 

connecting the endpoints of the scaled evolute curve for the defining interval is 

transformed into that local reference frame and intersected with the 1)( =′ tG  boundary 

curves. An intersection with the line segment results in the safe test failing. Finally, the 

point of degeneracy along the normal is checked to make sure it lies outside the 

approximate scaled evolute curve. Passing these tests for all the sample t  values shows 

that the condition 1)( <′ tG  for all 1+≤≤ ii ttt  is satisfied to the level of approximation, 

and the spatial region is safe. 

This check is adequate because of the nature of the 1)( ≥′ tG  regions. Each is 

composed of two implicit quadratics with their point of maximum curvature placed along 

the normal to the estimated root, further away than the scaled evolute curve. The 

1)( ≥′ tG  region cannot completely contain the SPI region, because we know there is a 

line of 0)( =′ tG  along the normal except at the point of degeneracy. The 1)( ≥′ tG  

region cannot bend back to intersect the sides of the SPI region because of the number of 

undulations in a quadratic. Finally, it is possible that the approximate scaled evolute 

curve diverges from the actual scaled evolute curve enough that the point of degeneracy 

along the normal lies inside the SPI region, and that case is explicitly tested. Therefore, 
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the only remaining possibilities are that the 1)( ≥′ tG  region is completely outside the 

SPI region, or that the 1)( =′ tG  boundary intersects the line segment approximating the 

scaled evolute curve. These possibilities are the ones that are checked by the safe region 

tests.  

Results   

This algorithm is straightforward to implement and runs quickly even though the 

repeated sweeps through each interval during testing may appear inefficient. Once a set 

of seed points is generated, repeated queries can use it, thereby amortizing the cost of 

generation. 

Figure 17 shows the result of running the seed point generation algorithm on an 

example curve, with an 5.0=α . The results set of seed points are densely placed in order 

to create safe regions, especially in areas of high curvature. The scaled evolute bound can 

be difficult to visualize, especially as it crosses inflection points. Figure 18 shows the 

same curve, but this time with 1.0=α  instead. This keeps the bound closer to the curve. 

Note how the tighter bound requires fewer seed points to maintain safety.  

To make the bounds even easier to visualize, we can clip the maximum distance 

of the scaled evolute bound from the curve. This keeps the safe region a consistent 

distance from the curve in regions of low curvature. These bounds are shown in Figure 

19, along with a new visualization that computes the maximum magnitude of 'G  for all 

values of t  in the interval nearest the query point. This visualization reassures that the 

computed seed points provide 1)( ≤′ tG  for all t  within that interval, and thus, that all t  

used by Newton’s method will converge for query points within the safe spatial region. 
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Figure 17: A sample curve with its approximate scaled evolute bound 
and generated seed points. 

 

 
 

Figure 18: A tighter bound requires fewer seed points than for the 
bound in Figure 17. 
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Figure 19: The generated seed points for two example curves, with the 
scaled evolute region clipped to a maximum distance. The left column 
shows the curve, seed points, and bounds. The corresponding 
maximum G ′  values, visualized on the right, are computed by 

densely sampling the interval for each pixel, with G ′  magnitudes 
greater or equal to one shown in a warning color. The maximal values 
approach but do not cross into the safe bounds, implying that 
repeated iterations of Newton’s method will yield the closest point on 
the interval.  



54 

 

Discussion 

This chapter has developed two main results – a geometric understanding of the 

convergence conditions for Newton’s method for local minimum distance queries and an 

algorithm for generating seed points such that Newton’s method is guaranteed to 

converge when the query point is within a safe spatial region associated with the seed 

points. 

While the generated seed parameters provide assurance of local convergence, they 

do not provide any guarantees about global convergence. In the next chapter, methods are 

developed for global convergence of minimum distance queries of a point to a curve.



 

 

CHAPTER 5 

LOWER BOUND PRUNING FOR GLOBAL MINIMUM  

DISTANCE QUERIES BETWEEN A  

POINT AND A CURVE 

The last chapter derives a way to compute a set of initial seed points for Newton 

method, such that if the query point P lay within a spatial region based on a scaled 

evolute curve, then Newton’s method would converge to a local minimum distance 

solution. However, the choice of initial seed point may lock the convergence process into 

the wrong region of the curve for a global minimum. This is most apparent along the 

medial axis of the curve as a zigzag pattern in the visualization of the closest point 

(Figure 20).  

 
Figure 20: Choosing a seed point that converges only to a local 
minimum produces the zigzag pattern along the medial axis of the 
curve.  
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The solution is to not just use the nearest seed point to initialize Newton’s 

method. Instead, Newton’s method should test all seed points that might produce the 

nearest point on the curve. From the resulting set of local minima, the closest is chosen as 

the global solution. The basic steps of this process are: 

1. Choose the closest untested seed point. 

2. Find a local minimum using the chosen seed point, which establishes an upper 

bound on the minimum distance to the curve. 

3. Compute a lower bound on distance to each interval of the curve associated 

with a seed point. 

4. Remove from consideration seed points from intervals with a lower bound 

greater than the upper bound.  

5. Repeat until all valid seed points have been tested. 

The first two steps of this process are just the components of the minimum 

distance algorithm as developed in the previous chapter. The following section develops 

an efficient lower bound test for spline curves as needed for step 3. 

Lower Bounds 

 Spline curves have the convex hull property, which states that the convex hull of 

the control polygon completely contains the curve. Furthermore, each polynomial piece 

(or rational piece in the positive weight NURBS case) of the curve is contained within the 

convex hull of the control vertices that influence its shape. This second property provides 

a tighter bound to the curve than the overall convex hull (Figure 21), but each polynomial 

piece may still contain several seed points, thus preventing a lower bound computation 

using the convex hull from distinguishing between them.  
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Figure 21: This quadratic curve has three polynomial pieces. The 
convex hull for each piece is shown as a different filled region. Each 
convex hull can enclose multiple seed points. 

In order to provide tighter bounds, and thereby improve the algorithm’s selectivity 

in pruning away seed points, a preprocess step to the algorithm refines the curve into 

intervals centered on each seed point (Figure 22). Note that these intervals are different 

from the safe region intervals used in the last chapter – those intervals spanned between 

two seed points. These new, refined intervals have control polygons that more tightly 

bound the intervals, and each convex hull bounds only one seed point.  

The lower bound pruning algorithm may now efficiently determine which seed 

points will potentially yield a new global minimum and which ones may be removed 

from further consideration. In Figure 23, an upper bound has been found by using 

Newton’s method on the nearest seed point. All other convex hulls that are within that 
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Figure 22: A refined curve provides a separate convex hull for each 
seed point. (A) The interval associated with each seed point colors 
each portion of the curve. (B) The refined control polygon produces 
tighter convex hulls that more closely bound the seed points. 

A. 

B. 
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Figure 23: The circle shows the current upper bound on distance. The 
convex hull at the bottom of the curve overlaps that circle, showing 
that its seed point may produce a new global minimum. 

upper bound distance may potentially contain portions of the curve that are closer than 

the existing upper bound point. This is visualized by drawing a circle around the query 

point with a radius equal to the upper bound distance. All convex hulls that overlap that 

circle contain seed points that are candidates for producing a new global minimum. 

Fortunately, an explicit computation of the convex hull of each interval’s control 

polygon is not needed, just the convex hull distance. The gjk package 

(web.comlab.ox.ac.uk/oucl/work/stephen.cameron/distances/) computes the minimum 

distance to the convex hull of a set of points by creating an implicit local portion of the 

hull while doing a simplex search of the point set for a minimum distance.  

As new and better upper bounds are found, the circle shrinks, and more intervals 

of the curve (and associated seed points) can be pruned away. Eventually, all seed points 

are either tested or pruned away, and the final upper bound on distance can be used as the 

global minimum distance. 



60 

 

Results 

Figure 24 demonstrates how lower bound pruning can yield global minima by 

testing several candidate seed points. The closest point visualization using lower bound 

pruning shows a smooth medial axis, while the visualization using a single seed point 

shows the effect of locking in convergence. In addition, the results using lower bound 

pruning show fewer regions of divergence, as the multiple seed points provide some 

redundancy in difficult regions.  

In order to compare the computation costs, repeated queries like those in Figure 

24 were used, but without actually creating the image. A 1000x1000 query grid was 

timed for Newton’s method and for Newton’s method augmented with lower bound 

pruning. Computation time was measured on a 1.1GHz PIII-M laptop. As Table 1 shows, 

using lower bound pruning adds only about 10% to the computation time.  

Discussion 

The lower bound pruning technique is independent of the proper computation of 

seed points as developed in the last chapter and provides useful redundancy in multiple 

calls to Newton’s method when seed points are less carefully chosen. In practice, only a 

few seed points are needed to find a global minimum and the remaining points are pruned 

with only the additional cost of a minimum distance to convex hull call. However, when 

used with the safe seed point technique, and when the query point P is within the safe 

regions of all the used intervals, then the convex hull pruning creates a guarantee of 

global convergence for minimum distance queries. 
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Figure 24: Distance fields computed using a single seed point and 
using lower bound pruning. (top) Only using the closest seed point 
yields incorrect global minima. (bottom) The lower bound pruning 
technique developed in this chapter produces global minima as well as 
improved convergence. 
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Table 1: Lower bound pruning is not much more expensive to use 
than standard Newton’s method but provides much better reliability 

Method # seed points precision time (s) 

Newton 15 10-6 59.5 

Lower bound pruning 15 10-6 67.4 



 

 

CHAPTER 6 

GLOBAL SEARCH FOR POINT-CURVE DISTANCE  

MINIMA USING NORMAL CONES 

The last chapter introduced a set of tests for reliable global distance queries 

between a point and a curve. This chapter develops a global method for reliably finding 

all the local extrema in distance between a point and a curve. 

Prior global methods pruned curve intervals using lower and upper distance 

bounds and subdivision[39], or robust root finding using interval testing and 

subdivision[40]. However, from Equation 6 

( )
dt
dttE γPγ ⋅−= )()( , 

we see that collinearity between the solution point normal and the vector between the 

query and solution point is the key to a distance extrema. Pruning based on distance may 

find a global minimum, but does not use any of the curve normal information in that 

search. This chapter develops an approach based on bounded normals to prune the curve 

based on collinearity, rather than distance bounds. 

Normal Cone Approach 

Just as it did for the global minimum approach, curve subdivision plays an 

important role in this approach. Since the search is for all local extrema of the curve, 
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rather than comparing a distance measure of each subdivided interval to a global 

standard, each interval is judged independently. The outline of the normal cone approach 

is 

1. Bound the range of normals and spatial extent of each interval. 

2. See if the collinearity condition might be satisfied for the interval for a given 

query point. 

3. Subdivide intervals that might meet the collinearity condition. 

4. Repeat until the remaining curve intervals contain small normal ranges, then 

compute exact local extrema using local methods.  

Bounding the Range of Normals with Normal Cones 

The derivative of a NURBS curve is a vector-valued NURBS curve. Thus, the 

properties of NURBS curves, such as the convex hull property, also apply to the 

derivative curve. This can be used to bound the range of normals for that curve. 

The curve subdivision process turns pieces of NURBS curves into rational Bézier 

curves, which are a subset of NURBS curves. For a Bézier curve )(tB  of degree d, with 

control points iP , and basis functions )(, tdiβ  

∑=
i

dii tPtB )()( ,β  (50) 

and its derivative is 

∑ −+ +=′
i

diii tPPdtB )()()( 1,1 β . (51) 

The derivative curve is also known as the hodograph, and is readily computed as scaled 

differences of adjacent control points of the original curve. Since the convex hull 
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property holds for the derivative curve, the range of tangent directions is bounded by the 

convex hull of the derivative curve control points. 

These tangent directions are encapsulated as a cone that contains the range of 

tangent directions. The normalized tangent control points are averaged, and the spread of 

the cone is computed by finding the maximum angle between the average tangent and the 

tangent curve control points. The normal cone is just the tangent cone rotated by 90 

degrees. 

Since the collinearity condition depends not only on the curve normal, but also on 

the vector between the query point and the solution point, the normal cone alone is 

insufficient to compute bounds on the collinearity condition. The range of vectors 

between the query and possible solution points must also be taken into consideration. 

Those vectors are bounded by first bounding the spatial extent of the curve interval with a 

circle. This circle bounds the possible locations of the solution point on the curve. The 

range of vectors between the query point and solution point then forms a cone, called the 

solution line cone, between the query point and bounding circle (Figure 25). 

(a)             (b)          (c)  

Figure 25: Building the bounds on normal and solution vectors.  
(a) The query point and curve interval, with its control polygon. 
(b) The tangent cone computed from differences of control points. 
(c) The solution line cone encompasses the circle around the interval. 
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Checking the Collinearity Condition 

Given the normal cone and the solution line cone, the collinearity check looks for 

overlap between the normal cone and the solution line cone. An overlap indicates a 

possible solution within that curve interval. Checking for a perpendicularity condition 

between the tangent and solution line cone rather than collinearity with the normal cone 

avoids the need for an additional cone in the negative normal direction to handle query 

points on both sides of the curve. 

Intervals passing the collinearity test are subdivided. These subdivided curves 

have tighter bounds on their spatial extent, which produces tighter solution line cones and 

tighter bounds on their normal cone. These tighter bounds are better able to prune 

intervals during the next iteration (Figure 26). 

Computing an Exact Solution 

The subdivision terminates when the normal cone spread angle falls below a user 

specified epsilon. Exact local minima are computed from these intervals using local 

numerical methods. An interval accepted for exact tests performs nodal mapping between 

the query point and interval, followed by Newton’s method. Our tests used an epsilon of 

0.01, which implies that Newton’s method is fed with an initial estimate at least that close 

to the exact solution. 

Not all intervals will contain a valid local minimum because of the conservative 

nature of the bounding cone and bounding circle tests. Solutions that leave the interval 

during Newton’s method can be removed, or converged solutions can be checked for 

redundancies. The latter approach is preferred since it potentially provides multiple initial 

guesses to Newton’s method for each local minimum, improving robustness. 
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Figure 26: Two consecutive levels of subdivision during the normal 
cone approach and the final result are shown. The cones are the 
tangent cones computed from the derivative curve and the circles 
provide the basis for solution line cones. Intervals in that pass are 
subdivided and ones that fail are removed from further computation. 
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Results 

The normal cone approach reliably finds all the local extrema. The speed of the 

method is roughly linearly dependent on the number of local minima. If the minima are 

closely spaced, then they may share common subdivided intervals, improving 

performance. In tests using the same curve as in the last chapter, the normal cone 

approach ran three times slower than the globally convergent approach; however, it is 

computing and returning more information about distance to the curve.  



 

 

CHAPTER 7 

MINIMUM DISTANCE QUERIES BETWEEN  

A POINT AND A SURFACE  

Until this chapter, only points and curves have been the primitives under 

consideration for distance queries. The next chapters extend the approaches developed for 

curves to apply to surfaces and further to haptic applications. This chapter provides an 

analysis of the degeneracy conditions for Newton’s method when solving for minimum 

distances between a point and a parametric surface, which will help motivate later 

development of robust geometric techniques. 

Multidimensional Newton’s Method   

Multidimensional Newton’s method solves for simultaneous zeros in a system of 

functions, F ,  

F∆pJ −=⋅ , (52)  

where J  is the Jacobian of F , and ∆p  is the change in parameter needed to 

simultaneously move each function in F closer to zero[41]. The actual change in 

parameter is found by inverting the Jacobian and multiplying the inverse through the 

system of functions,  
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FJ∆p 1−−= . (53)  

Recall from Chapter 3 that the squared distance between a point in space, P , and a 

regular parametric surface ),( vuS  is  

( ) ( )PSPS −⋅−= ),(),(),(2 vuvuvuD . (54)  

Minima are found by solving for simultaneous zeros of the two partials of ),(2 vuD , 
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, (55)  

as well as checking the edges of the domain.  

For the particular case of finding the roots of Equation 55, multidimensional 

Newton’s method expands to 
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or 
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The rest of this section analyzes degeneracy conditions while using Newton’s method to 

find roots of  Eq. 55, in particular, by providing a geometric interpretation of allowable 

placements of P. 
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Degeneracy Conditions 

As in the curve case, recasting the vector between the point and the surface to 

local coordinates on the surface helps create a geometric interpretation of degeneracy 

conditions. So, by using the tangent plane and normal at ),( vuS as a local frame 

NSSPS vu zyx ++=− , (58)  

the Jacobian in Eq. 57 becomes 
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zyxzyx
zyxzyx . (59)  

An iteration of multidimensional Newton’s method becomes degenerate when J when  

0)det( =J , (60) 

which for our two-dimensional case is just 

0)det( 10011100 =−= JJJJJ . (61)  

Computing the determinant of J = 0 when it is in the form of Eq. 59 forms a quadric 

implicit surface, the degeneracy quadric, where positions of P, defined in the local 

coordinate frame, cause J to be singular. Looking at Eq. 59, each element in the Jacobian 

is a plane with a normal defined by the second partial in that element, so that the plane in 

00J  is orthogonal to uuS , the plane in 11J  is orthogonal to vvS , and the planes for both 

01J  and 10J  are orthogonal to uvS . These planes are the dominant visual cues in some 

forms of the quadric surfaces.  

For example,  Figure 27 shows a surface with an estimated closest point near the 

center of the patch. The degeneracy quadric is shown as a point sampled implicit. The  
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Figure 27: The shape of the degeneracy quadric derives from the 
direction and magnitude of the surface partial derivatives.  
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second part of Figure 27 shows the same situation, but with the model rotated to show 

how the shape of the quadric is largely determined by uuS  and vvS , which are much 

larger in magnitude than uvS . The implicit hyperboloid has portions perpendicular to uuS  

and vvS . When uvS  grows in magnitude, these cues are no longer so easily discernable. 

More special forms of the quadric will be discussed later in this chapter. 

Degeneracy Along the Normal 

While the shape of the degeneracy quadric can be quite complex, we are most 

interested in finding minimum distance solution given a reasonable starting point, such as 

tracking the closest point on a surface while moving a haptic interface. This situation is 

when x and y in Eq. 58 are small. 

So, setting x = 0 and y = 0, the determinant of J equals zero when 
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The first and second fundamental forms of a surface[38] are 
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Thus, in terms of the first and second fundamental forms, Eq. 62 is 
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and the determinant equals zero at the roots of 
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These roots are more easily interpreted by rewriting the quadratic in terms of the 

principal curvatures at ),( vuS . The principal curvatures of a surface, 1κ  and 2κ , define 

the maximum and minimum curvatures of curves through a point on a surface. They are 

defined in terms of the fundamental forms of a surface[42] such that 
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These definitions offer a simple substitution for rewriting Eq. 62 as  

01)( 2121
2 =+++ κκκκ zz , (67)  

and the roots are just 

21

11
κκ

−=−= zandz  (68)  

which shows that Jacobian becomes singular and Newton’s method fails to converge 

when the query point P  is a distance along the normal equal to one of the principal radii 

of curvature of the estimated closest point on the surface. Figure 28 shows a circle for 

each principal curvature, oriented in the corresponding principal direction. The 

exaggerated dots are the centers of the circles, and the centers lie on the degeneracy 

quadric, as predicted in Eq. 68.  
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Figure 28: The surface normal intersects the degeneracy quadric at 
the radius of curvature for each the principal curvatures. 

Additional Examples of the Degeneracy Quadric 

There are forms of ),( vuS  that produce simpler forms of the degeneracy quadric. 

Figure 29 shows a surface patch with uuS  and vvS  in the same direction, and uvS  with 

zero magnitude. The quadric collapses to two parallel lines, each a principal radius of 

curvature along the normal from the point on the surface. This particular patch was 

defined using a warp operator, which displaces control points along a common normal 

direction weighted by distance from the warp center. Surfaces of revolution also have 

second partials that lead to simplified forms of the degeneracy quadric such as the 

cylindrical ellipsoid in Figure 30. 
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Figure 29: The degeneracy quadric forms two parallel planes 
perpendicular with the second partials. 

 
Figure 30: A cylindrical ellipsoid degeneracy quadric forms from a 
point on a surface of revolution. 
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Discussion 

This chapter shows how to use multidimensional Newton’s method to find local 

minima in distance between a point and a surface. As in the curve case, regions of 

degeneracy can cause Newton’s method to fail, but the degeneracy conditions are even 

more complex in the surface case. In addition, simply avoiding a degeneracy does not 

mean that Newton’s method will converge. Therefore, while Newton’s method plays a 

role where fast local methods are essential, this result motivates the development of 

robust geometric approaches to solve point to surface minimum distance queries. 



 

 

CHAPTER 8 

GLOBAL SEARCH FOR POINT-SURFACE DISTANCE  

EXTREMA USING NORMAL CONES 

The normal cone approach for point-curve distance extrema extends naturally to 

point-surface distance queries. In the curve case, a cone bounded the range of normals for 

a curve interval. In the surface case, the same approach applies, except to surface patches 

instead of curve intervals.  

While it is possible to compute surface normal cones using symbolic 

pseudonormals, with non-unit length vectors, we use simpler tests based on both tangent 

directions. The subdivision test computes bounding cones for each of the tangent 

directions (Figure 31) and a solution line cone from the query point to a bounding sphere 

around the patch. Patches are pruned by checking each tangent cone for perpendicularity 

with the solution line cone. A failure to find potential orthogonality between a vector in 

the solution line cone and vectors in either of the tangent cones means that surface patch 

cannot contain a local solution. 

Tangent cones are computed by finding differences of control points over all the 

rows or columns of the control mesh, depending on the tangent direction. Similarly, the 

patch bounding sphere is computed from the average and extent of the patch control  
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Figure 31: Two surface patches with their sample tangent cones. The 
spheres bound he spatial extent of the patch and help to form the 
solution line cone from the query point. 

points. For low order Bézier surfaces, the number of rows or column is equal to the 

parametric order, so the computation is not too costly. 

Surface patches that may contain a solution are split into four smaller patches 

(Figure 32), while patches that fail the normal cone test are removed. Exact closest points 

are found on patches with both tangent cone spread angles smaller than an epsilon. A 

combination of nodal mapping[11] followed by Newton’s method computes these exact 

local closest points (Figure 33). Because leaf nodes may not contain a local solution, 

solutions that leave the leaf node domain need to be discarded, or checked against 

existing solutions to see if they are redundant. The second approach also provides some 

additional robustness to Newton’s method by providing multiple starting locations for 

each local minimum distance solution.  

When the local solutions form a curve on the surface, this curve is approximated 

to the level of the convergence epsilon. However, heuristics can detect the large number 

of child patches being created in this degenerate situation and choose a smaller sample if 

speed is needed over a full solution.    
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Figure 32: Refining a patch splits it into four independent surfaces. 
The new control meshes more tightly bound the surface. 

 
Figure 33: All local minimum distance solutions are found using the 
normal cone approach. Nodal mapping and Newton’s method 
improve the final solution. 
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Experiments indicate that the subdivision hierarchy manages to stay fairly sparse 

during typical distance queries, which shows the subdivision and pruning test is effective. 

Figure 34 shows the number of patches checked at each iteration of the algorithm for two 

different query points, one yielding five solutions and the other three. The chart does 

show that for the tested queries, little pruning occurs during the first few levels of 

subdivision, and that further on, the algorithm creates and destroys a lot of patches that 

do not yield a solution. Fortunately, since the subdivision process always splits patches in 

half, a tested child patch is identical from one query to the next, so surface patches and 

their associated cones could be stored for use in following queries. However, retaining all 

surface patches can be costly in terms of computer memory. 

Number of Patches vs. Iteration Number
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Figure 34: The number of active surface patches during each iteration 
varies with search complexity. The query that returned five local 
minima had to create and search many more patches than the query 
that returned three. 
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Coherency with the Dynamic Subdivision Tree 

Instead, we adopt the approach of retaining portions of the subdivision tree over 

multiple queries, but removing portions that are no longer currently used. Patches are 

stored as computed in a tree data structure, a dynamic subdivision tree, with each node 

having four children. Patches (and their children) are deleted only when a query tests a 

patch’s tangent cones and determines there is no local solution in that patch. This has the 

effect of retaining patches during sets of temporally and spatially coherent queries. The 

patch may need to be recomputed later, but this approach balances memory usage with 

computational efficiency. 

The dynamic subdivision tree approach dramatically improves computational 

speed when query points are closely spaced. The dynamic subdivision tree was tested by 

creating a sample path above a surface, moving along the path in small increments, and 

performing a distance query at each step (Figure 35). Without coherence, 1000 distance 

queries took 24 seconds; with coherence, the same test took 4 seconds, 6 times faster. 

Discussion 

 Normal cones, in conjunction with dynamic subdivision trees, provide robust and 

efficient computation of all local distance minima between a point and a surface. In the 

next chapter, we show how the developed distance techniques can be applied to haptic 

rendering of NURBS surfaces. 
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Figure 35: The query point moves along the test path (thin line). The 
local closest points on the surface are shown as densely placed points, 
and include regions where three local minima were found. This type 

of test is sped using a dynamic subdivision tree. 

  



 

 

CHAPTER 9 

HAPTIC RENDERING OF NURBS SURFACES 

Haptic rendering requires update rates around 1000 Hertz to maintain stability and 

sensations of contact between a point and a surface. These rates cannot be met without 

careful design of the overall system so that virtual environment complexity can be 

handled gracefully. We use a three-phase approach to focus computational resources 

where they are needed during each time step of the haptic rendering: 

1. Remove surfaces too distant to be interacted with using spherical bounds. 

2. Use normal cones to find local minima on the remaining surfaces. 

3. Update these local minima using Newton’s method as the haptic query point 

moves, using these local updates to determine penetration into the surface. 

Finding Local Minima 

Local distance minima are needed, rather than a global distance to the surface, 

because the local minima provide more information about possible future contacts. 

Imagine the haptic query point is above the surface, but in a valley between two hills. The 

haptic query point could enter the surface at the floor of the valley, or along either of the 

two hills. If these features are small, there might not be enough time for a global distance 

computation to reinitialize Newton’s method after a discontinuous jump in closest point 
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location. A normal cone search for all local minima tracks all these potential future 

contacts (Figure 36). 

Local Update 

Newton’s method updates the local minima found with the normal cone 

computation. Only those normal cone minima that start above the surface are tracked, 

else additional extrema from the far side of the model could be included. Newton’s 

method updates these local closest points at haptic rates. The normal cone computation 

continually feeds the local update so that discontinuous jumps are correctly updated.  

 

 

Figure 36: All local minima are needed to initialize local tracking. 
(top) A global minimum is not updated in time to jump the local 
tracking to the new side. (bottom) Normal cone computation finds all 
local minima, all of which are tracked, so the penetration is detected. 
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However, if the haptic query point enters the surface, as determined with a test with the 

surface normal, then only that local minimum updates and the normal cone computations 

are ignored until the haptic query point leaves the surface. 

Newton’s method is fairly stable in this situation because the normal cone 

computation provides an accurate initial point when outside the surface, and inside the 

surface, the haptic interaction forces prevent the haptic query point from penetrating far 

into the model, where degeneracies are more likely. If Newton’s method fails to 

converge, then the local closest point is updated using a linear approximation from [11]. 

Results 

Figure 37 shows the results of a simulated haptic path entering a surface. When 

the patch first starts, there are multiple local distance minima, and the normal cone 

algorithm identifies these regions. Newton’s method provides fast updates to these 

minima. As the path nears the surface, only one local minimum remains, and again, the 

normal cone computation updates the set of minima for the local tracking to update. 

When the path enters the surface, the local closest point is maintained only by Newton’s 

method. Upon exit, the normal cone algorithm again periodically updates the local 

update. 

For this test case, the combined normal cone and Newton method algorithm was 

able to maintain a 2000Hz update rate, well in the realm for haptic rendering. This 

technique provides a robust means of quickly tracking local distance minima on a 

surface. 
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Figure 37: A simulated haptic path enters a surface. Above the 
surface, multiple minima are tracked, whereas only one is tracked 
while below. Forces are generated only while inside. The normal cone 
computation updates the set of local minima for the local update to 
maintain at haptic rates. 



 

 

CHAPTER 10 

GLOBAL SEARCH FOR LOCAL DISTANCE MINIMA  

BETWEEN POLYGONAL MODELS 

Distance queries to and between polygonal models have most frequently relied 

upon upper and lower bound distance algorithms to hierarchically prune away model 

regions[20][43][14][44]. In Chapters 7-8, bounds on normal direction allowed a global 

search for local minima to parametric surfaces. This chapter applies that paradigm to 

polygonal models, extending the computation of local solutions from sculptured models 

to faceted ones. In support of this computation, we develop a data structure, the 

spatialized normal cone hierarchy (SNCH) that hierarchically encapsulates the range of 

normals and the position in space for portions of a triangulated surface. 

Many computer graphics applications depend upon the surface normal. Data 

structures to encapsulate sets of these surface normals have accelerated backface 

culling[45], lighting[46], model simplification[47], and silhouette extraction[48]. These 

problems can be defined in terms of a point, such as a viewpoint or point light source, 

and a single model. The SNCH data structure applies to problems involving two models, 

and is thus suitable for general minimum distance computations. 
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The Spatialized Normal Cone Hierarchy 

For polygonal models, with their fixed resolution, it is feasible to precompute a 

hierarchy of normal cone bounds, rather than the dynamic computation used in the earlier 

chapters. This hierarchy is based on a simple data structure consisting of a normal cone, 

represented by a cone axis vector and a cone semiangle; and a Euclidean bounding 

volume, in this case a sphere, represented by a center and a radius (Figure 38). The 

bounding volume associates the normals with a particular region of model space, or 

spatializes the normal cone. Each node of the data structure also contains pointers to two 

child nodes and a pointer to an underlying triangle if it is a leaf node. 

Constructing the Hierarchy 

This data structure encapsulates a triangular mesh structure of vertices, edges, and 

triangles. The connectivity of the triangles is not important for the operation of the 

minimum distance algorithm, except for the construction of appropriate normals for each 

of the primitives. 

 
Figure 38: The spatialized normal cone encompasses the range of 
normals and bounds the geometry.  
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The first step in the construction process constructs a spatial bounding volume 

hierarchy. The publicly available PQP code (http://www.cs.unc.edu/~geom/SSV/) 

recursively subdivides the model into a Euclidean bounding volume hierarchy. A 

bounding sphere fits the geometry at each node for use in the normal cone. 

The second step computes a normal cone for each node of the Euclidean bounding 

volume. We compute the cone axis by averaging the triangle, edge and vertex normals 

contained in that node. The cone semiangle is the maximum angle between the cone axis 

and the node geometry normals. These steps are repeated down the hierarchy until the 

normal cone data structure is complete. 

Minimum Distance Computations with a SNCH 

Although this data structure was developed for model-model distance 

computations, we start by describing the solution to the minimum distance between a 

query point P and a polygonal model. All the surface features, such as faces, edges, or 

vertices, on the model containing a local minimum distance solution have an associated 

vector collinear with the vector from P to the closest point on the feature (Figure 39). 

 
Figure 39: The line between the query point and the feature is in line 
with the normal at the feature. 
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The global minimum distance is the length of the shortest such vector to a feature 

on the model. However, it is not necessary to select only the shortest line as the solution. 

Instead, all the vectors that satisfy the criteria can be used. These are the local minimum 

distance solutions between P and the model (Figure 40). 

While a linear algorithm could test each triangle for a potential solution, this 

would be slow for large models. Instead, the SNCH is used to hierarchically test portions 

of the model, quickly excluding most of it from consideration. 

The range of possible vectors from the query point P to the geometry primitives 

contained within a node of the SNCH forms a potentially complicated shape. Instead of 

computing this form, the range of vectors from P to the bounding sphere at a node 

conservatively bounds the range of vectors to the contained geometry. This set of vectors 

forms a solution line cone between P and the bounding sphere (see Figure 41).  

 
Figure 40: All the solutions satisfying the collinearity approach. The 
local minimum distance lines extend to each leg, the udder, and tail. 
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Figure 41: A node of the SNCH contains geometry bounded by a 
sphere. The range of vectors from a query point to that sphere forms 
the solution line cone, which bounds the range of vectors to the 
contained geometry. 

If the solution line cone contains a vector that is collinear with a vector in the 

node’s normal cone, then there may be a local minimum distance solution from the query 

point to the contained geometry. This possibility is simply tested by expanding the 

normal cone by the solution line cone semiangle, and then seeing if P is contained within 

the expanded normal cone. Nodes that pass this test are subdivided and recursively tested 

until the leaf level, where an exact test is applied. Nodes that fail are pruned, as neither 

they nor their children can contain a local minimum distance solution. 

Leaf Tests for Local Minimum Distance 

In a global minimum leaf test, the minimum distance between the query point and 

the leaf triangle is computed and compared to previous leaf distances. To test for a local 

minimum distance, the leaf test also computes the closest point on the leaf triangle to the  
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query point. Rather then comparing to a global minimum, the geometric feature 

associated with this closest point must have a normal that is collinear with the minimum 

distance vector. The closest point may lie on a triangle face, edge, or vertex, each with a 

characteristic range of normals. If the closest point lies on the triangle face, the leaf test 

must only compare the triangle normal with the minimum distance vector. If the closest 

point lies on a triangle edge, the minimum distance vector must be compared against the 

span of normals from the triangle face to the edge normal.  

When the closest point matches up with a triangle vertex, the minimum distance 

vector must be compared against the span of normals for the vertex. Each vertex normal 

covers an area on the Gauss sphere defined by the surrounding triangle face normals 

(Figure 42). This area is divided into disjoint regions to associate with each surrounding 

triangle for computational efficiency.  

We divide the normal range for a vertex among each surrounding triangle to 

prevent redundant solutions. A possible region would be to take the span from the 

triangle normal to the vertex normal and then half of each edge span. However, that  

 

Figure 42: A. The vertex normal is surrounded by triangles. B. Each 
triangle normal maps to a point on the Gauss sphere and each edge 
maps to an arc. 
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produces a quadrilateral on the sphere that may cross itself in complex ways. Instead, the 

triangular span from the triangle normal to the vertex normal to the left neighbor’s face 

normal (Figure 42.B.) is associated with each triangle vertex. Given this association, it is 

easy to determine if the minimum distance vector falls within the triangular range of 

normals.  

Local Minimum Distance for Two Models 

This approach for local minimum distance between a query point and model 

extends to problems involving two models. Essentially, when there are two models, we 

must account for the range of possible solution lines between two nodes, one on each 

model. The range of solution lines now spans between the two bounding spheres, one 

from each node, and forms a solution line cone for two models (Figure 43).  

 

 
Figure 43: The solution line cone now spans between the two 
bounding spheres – encompassing all possible solution lines between 
the models. 

normal cones

solution line cone 
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The pruning test for a pair of nodes checks if the normal cones face each other, 

contain at least one pair of collinear normals, and that this pair is also collinear with a line 

in the solution line cone. This extension allows pruning of each model’s normal cone tree 

down to leaf nodes that may meet the local minimum distance requirement. The leaf test 

finds the minimum distance between the two leaf triangles, and checks the minimum 

distance line against the ranges of normals from the closest point features as in the leaf 

test for point-model queries. 

Results 

First, we tested the query point to model method with a variety of models. The 

models rotated randomly while the query point stayed fixed in space above the moving 

model. The local minimum distances (including the global minimum distance) from a 

point in space to a model (Table 2) are computed in sub-millisecond time on average. 

This makes the presented approach appropriate for a number of tasks, including haptic 

rendering of polygonal models and volumetric conversion.  

Table 2: The local minimum distance from a point in space to a model 
is fast for a range of model types. 

 Sphere Holes3 Small bunny Large bunny 

# triangles 32,700 11,800 10,800 69,500 

Time (ms) 0.06 0.05 0.1 0.2 
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To test this method applied to the distance between two models, we compared the 

speed of the local minimum distance method with the global minimum distance method 

from the PQP package. The normal cone method gives faster results on fairly smooth 

surfaces. This suggests it may be a good choice for certain classes of models, such as 

those derived from subdivision surfaces. It was slower on surfaces with a lot of fine 

detail, such as the bunny. The small bumps on the bunny translate into a wide range of 

normals in a small area, as well as producing numerous local minima. The normal cone 

method runs at a competitive speed (Table 3) compared with the global PQP method, but 

returns all the local minima as well (Figure 44).  

Table 3: Timing results for finding the distance between models. 

 sphere-torus torus-cow torus-bunny 

# Triangles 1 8192 4096 4096 

# Triangles 2 4096 5804 69451 

PQP (secs) 0.007 0.006 0.0057 

Normal cone (secs) 0.004 0.008 0.0059 

 
 

  
Figure 44: The local minimum distances between a torus and sphere.  
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Discussion 

In Figure 45, the normal cone method finds potentially interesting points on the 

legs, head and body of the cow compared to the one point provided by the global 

minimum. Of course, the shortest of these minima can also be chosen as the global 

minimum, if that measure is needed. In the next chapter, we explore how these local 

minimum distances provide useful guidance for haptic algorithms.  

 
 
 

 
Figure 45: The local minimum distance returns more information 
about the distance between models than the global minimum distance. 

 

 



 

 

CHAPTER 11 

SIX DEGREE-OF-FREEDOM HAPTIC RENDERING OF  

COMPLEX POLYGONAL MODELS

Spatialized normal cone hierarchies find the local minimum distances (LMDs) 

between polygonal models. The work in this section adapts the SNCH computation to a 

haptic rendering system for polygonal models by focusing computational resources on 

the portions of the models that are nearly in contact.  

Rather than finding forces that move models apart once they have collided, this 

haptic rendering algorithm prevents collisions by applying preventive forces as models 

approach each other (Figure 46). This technique is appropriate for representing 

interactions between models since allowing models to penetrate each other violates a 

real-world constraint we are interested in maintaining.  

 

 
Figure 46: The SNCH approach finds local minimum distances 
between models and applies repulsive forces to prevent contact. 
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Some distinguishing characteristics of a haptic rendering environment using the 

SNCH approach are as follows: 

• polygonal models of arbitrary shape can be used in the virtual environment. 

• elements of the scene can be moved or added and deleted without requiring 

substantial preprocessing. 

• environments with large number of triangles can be used, increasing the 

accuracy of simulated model interactions. 

System Overview 

The haptic system is based on a Sensable 6-DOF PHaNTOM haptic interface 

(Figure 47). The computations run on a dual processor Pentium 4 2.4 GHz Linux 

computer with a gigabyte of RAM and a GeForce 4 Ti 4400 graphics card. The 

application is multithreaded, with the haptic force computation thread running at a high 

priority to ensure fast update rates.  

 

 
Figure 47: The 6-DOF Phantom used in a virtual prototyping session. 
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Approach 

We adopt the approach of the Boeing voxel sampling virtual prototyping 

system[49], which prevents models from colliding rather than moving them apart once 

interpenetration has occurred. This has several advantages: 

• accuracy of virtual prototyping is maintained since real-world constraints 

are maintained, 

•  lower rates than the typical kilohertz haptic rate are acceptable, since we are 

not attempting to create the impulsive forces of hard contact, 

• minimum distances are faster to compute than penetration depths, allowing 

haptic rendering of more accurate models. 

Local Minimum Distances 

Global minimum distances may be rapidly computed between polygonal models 

using a number of algorithms. However, if these techniques were used in a haptic 

rendering system, the global minimum would generate only a single penalty force at a 

time. This force could rapidly change direction, creating haptic instabilities. 

Alternatively, one could easily imagine modifying a distance computation to return all 

pairs that are within a certain distance, rather than just the global minimum. However, 

this could potentially create large numbers of penalty forces, which would swamp the 

haptic computation (Figure 48).  

We argue that an appropriate solution is to compute the local minimum distances 

between models. Imagine two models that have just collided. This collision can be 

represented at a single point on each surface (even for manifold contacts, a single point 

encapsulates that area of contact). If the models move apart, this pair of points tracks the  
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 (a)                       (b)                            (c)                        (d) 

Figure 48: Different distance possibilities for force computation. (a) 
The global minimum distance. (b) All pairs within a distance.  
(c) Contact points between two colliding models. (d) Local minimum 
distances. 

local minimum distance and represents the potential future contact between entire 

sections of these two models. Additional pairs of contact points for those sections are 

redundant predictors of future contacts for those regions, thus the local minimum distance 

pairs are adequate. This formulation keeps a manageable number of contacts for the 

haptic computation, yet is complete enough to safely predict all potential contacts.  

Modifying the LMD Computation 

We use a modified LMD computation based on the spatialized normal cone 

hierarchies to quickly determine all the potential areas of contact. The main modification 

is to introduce a cutoff distance that prunes pairs of nodes that are further apart than this 

distance. This is appropriate for haptic rendering, where we are interested in computing 

penalty forces only for models in proximity (Figure 49). 
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Figure 49: Finding all LMDs will create forces between far apart 
portions of the models, as shown in the top image. Using a small cutoff 
distance in the lower image removes unnecessary LMDs from 
consideration and controls the onset of forces.  
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Forces and Torques 

At each time step in the haptic rendering loop, the haptic rendering algorithm 

computes the LMDs that are closer than the cutoff distance between the model that is 

controlled by the haptic interface and the rest of the models in the scene. Each LMD is 

considered a virtual spring with a rest length equal to the cutoff distance. Each spring is 

attached to the models by the pairs of points that form the LMD. The force applied to the 

moving model is then 
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and the torque is 
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where ipr  is the distance from the center of mass to the tracking point on the model for 

the local minimum distance. 

The center of mass and the first-order moments are approximated by the 

geometric extent of a PQP generated, oriented swept sphere bounding box surrounding 

and approximating the shape of the model. Values that are more precise could be easily 

used when available. 

The repulsive forces between models begin at zero at the cutoff distance, so 

LMDs that are created and destroyed as sections of the two models approach the cutoff 

distance only modify the total force and torque a small amount. Furthermore, since we 
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are not attempting to render the forces of hard contact, only guiding the placement of 

models, the springs can be fairly soft, smoothing the haptic rendering. 

Preprocessing 

The LMD computations require precomputing a spatialized normal cone 

hierarchy for each polygonal model in the virtual prototyping environment. However, 

models in the scene can be added and deleted, or moved around interactively, without 

needing further precomputation. The preprocessing step takes a few seconds for models 

of several thousand triangles. 

Results 

We have tested our algorithms on a variety of models. The 6-DOF force feedback 

allows the model controlled by the haptic device to slide around the objects in the 

stationary scene, providing good intuition for the user (Figure 50). We were able to 

explore concave portions of the stationary model, with repulsive forces keeping us from 

all the potential contact areas (Figure 51). 

 
Figure 50:  Users are able to feel translation forces and torques 
generated by interacting arbitrary models. 
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Figure 51: The technique handles concave regions of models. 

It is difficult to give a chart with timings for the rendering of these models, since 

the computation time varies with the cutoff distance, the number of LMDs found, and the 

relative configuration of the models. Instead, Figure 52-Figure 54 show a variety of 

sample interactions with the polygon counts, timings, and number of LMDs. Typically, 

haptic rates in the hundreds of Hertz are achieved between models with hundreds and 

thousands of polygons. 
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Figure 52: A disc model interacting with a gear 

Image Model (# tris) Scene (# tris) # of LMDs Rate (Hz) 

a Disc (512) Gear (6302) 3 176 

b Disc (512) Gear (6302) 1 1506 
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Figure 53: Mechanical and organic models can be used. 

Image Model (# tris) Scene (# tris) # of LMDs Rate (Hz) 

c Disc (512) Gear (6302) 10 121 

d Sphere ( 128) Bunny (2204) 2 337 
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Figure 54: Larger models scale well in this system. 

Image Model (# tris) Scene (# tris) # of LMDs Rate (Hz)

e Teapot (5648) Spring (23578) 2 181 

f Disc (512) Crankshaft (12802) 2 318 



 

 

CHAPTER 12 

SIX DOF HAPTIC RENDERING WITH LOCAL DESCENT  

In the last chapter, we computed local minimum distances (LMDs) between 

polygonal models using spatialized normal cone hierarchies (SNCHs).  In this chapter, 

this global search for LMDs is augmented with a local gradient search for maintaining 

LMDs during haptic rate interactions. This multistage approach provides much faster 

computation of the LMDs and allows haptic rendering of environments with much more 

complicated models. 

Approach 

The augmented approach adds a local search to speed intermediate time steps 

between global updates. The haptic rendering algorithm first computes all LMDs within a 

cut-off distance using the global SNCH search. These LMDs are fed to the local update 

thread, which performs local gradient descent on the LMDs given new positions of the 

models. The updated LMDs are used to compute forces and torques repelling the models. 

The local update works as fast as it can on the LMDs it knows about. 

Concurrently, the global search computes new LMDs. When it finishes a time step, it 

notifies the local search that new LMDs are available. The local search then updates these 

new LMDs to the current model positions and continues local updates. 
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Local Search 

A pair of points, one on each model, forms each LMD. After a model moves, the 

local search algorithm looks at the neighborhood around each LMD point and computes 

the distances between all the triangles in one neighborhood and all the triangles in the 

other model’s neighborhood. If any of these triangle pairs are closer than the current 

LMD, then the search continues with those triangles’ neighborhoods until the minimum 

distance converges.  The points that form this new minimum distance are the updated 

LMD. 

If the last LMD point was on the face of a triangle, then the local neighborhood is 

defined to be the triangle plus the three triangles bordering its edges. If the last point was 

on an edge, only the two triangles that share that edge are part of the local neighborhood. 

When the last point was at a vertex, all triangles that share that vertex are searched for a 

new LMD (Figure 55). 

 

 

 

(a)                                               (b)                                               (c) 

Figure 55: The three possible neighborhoods to be checked depend on 
the minimum distance point from the last time step. In (a), the 
minimum distance point was on a triangle face, and it and all its 
adjoining triangles form the neighborhood. When the point from the 
previous step was on an edge, as in (b), the triangles that share that 
edge form the neighborhood. The final case (c) is for a vertex, where 
all triangles that share that vertex form the neighborhood. 
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Computational Efficiency 

The number of neighborhoods that must be checked varies with the model 

resolution and the movement of the models. For models with reasonably formed 

triangles, the number of triangles searched on one model grows roughly as the n , where 

n is the number of triangles. Figure 56 shows the resolution quadrupling and the number 

of triangles crossed growing by a little more than a factor of two. In addition, for haptic 

rendering running near 1000 Hz, the number of triangles crossed is usually small. 

Preprocessing 

The local search routine uses local topological connectivity between the triangles 

of the models. This information can be derived from models consisting of just triangle 

lists. Most of the models used in our examples went through a one-time conversion from 

triangle list data structures to vertex-edge-triangle lists with neighbor information. 

 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 56: The number of triangles crossed grows roughly by n , 
where n is the number of triangles in the model. (a) This model has 
eight triangles and four are crossed. (b) There are four times as many 
triangles in this model, but roughly twice as many are crossed. 
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System Architecture 

This type of application would be difficult to write as a single thread of 

computation. We use three threads: a global search thread, a local update thread, and a 

graphics thread. This architecture allows us to restrict the computational load of the 

graphics and global threads, and let the local update run as fast as possible. On a two-

processor system, this translates into the local update getting one processor to itself and 

the other threads sharing the other processor. 

Results 

The local search algorithm computes updated forces and torques at kilohertz rates. 

When model complexity grows, the global search tends to slow down, but the local 

update speed is mostly dependent on the number of LMDs, not the complexity of the 

model. 

We instrumented the local update thread to record the time to compute the local 

update, the number of triangle pairs searched during the local update, and the time for the 

global search to compute the LMDs.  Figure 57-Figure 59 show these results for a variety 

of model-model interactions. For all these examples, the top graph represents the local 

update time, the middle graph the number of triangle-pairs searched during the local 

update, and the bottom graph the time for the global LMD computation to update. The 

local update and searched triangles graphs do not cover the full extent of the global 

search graph since the data were stored in a circular buffer and the fast updates of the first 

two graphs filled the available space. 
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Figure 57: The crankshaft model has 45,000 triangles and the gear has 
6,300 triangles. The local update time correlates well with the number 
of triangles searched. The bottom graph shows the computation time 
for the global search to find the LMDs. Without the local update, 
haptic interaction would have been unstable and slow. 
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Figure 58: The spring model has 23,500 triangles and the teapot has 
5,600 triangles. Even though the models are high resolution, typically 
there were only a few LMDs to track, and the local update was able to 
maintain a high update rate. 
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Figure 59: The horse model has 97,000 triangles and the bunny model 
has 2,200 triangles. The finely detailed surfaces can produce nearly 
redundant local minima. In this example, the algorithm still updates 
the LMDs and forces at around 1 kilohertz. 
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The forces of interaction feel smooth. Figure 60 shows the magnitude of the 

translational forces during haptic interaction between the horse model and the bunny. The 

large-scale bumps are from moving the bunny model around the horse and bumping 

against it. Smoother responses are possible when continuously pressing the two models 

together. Even in this example, there is not much high-frequency force response, as 

would be expected if the control system became unstable. 

Discussion 

The use of local updates dramatically improved the performance of the system 

over just using the SNCH global search. The haptic rendering system can use models that 

are an order of magnitude larger at update rates an order of magnitude faster than with 

just using global search for LMDs. The addition of local LMD updates makes the force 

computation much less dependent on the configuration of the two models. The resulting 

algorithm is a high performance haptic rendering system suitable for augmenting virtual 

reality interactions. 
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Figure 60: This graph shows the magnitude of the translation forces 
during the horse-bunny interactions. 



 

 

CHAPTER 13  

A VIRTUAL PROTOTYPING APPLICATION 

The last three chapters have developed techniques for computing local minimum 

distances between polygonal models and a multithreaded system applying these 

techniques to haptic rendering of complex scenes. In this chapter, we apply these ideas to 

a virtual prototyping system for polygonal models. 

While mechanical model design increasingly relies upon computer-aided design 

(CAD) and sophisticated simulation programs, physical prototypes still play an important 

role in design evaluation. Since physical prototypes are expensive to build, and may take 

significant time to manufacture, virtual prototyping environments attempt to replace as 

much functionality of the physical prototypes as possible with a virtual prototype. 

Accessibility is a design evaluation task that is difficult to simulate on a computer. 

Two main reasons preclude easy automatic simulation: 

1. computation of a collision-free path for complex models is difficult and 

time-consuming, 

2. modeling human manipulation capabilities is difficult. 

We propose a haptic system for virtual prototyping that allows human guidance 

and intuition in developing a collision-free path between virtual models. This type of 
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system provides the intuitive usability of a physical prototype, yet retains the low-cost 

and time advantages of a computer model. 

Virtual Prototyping Background 

Virtual prototyping of accessibility tasks is closely related to the area of path 

planning. The main distinction is that in virtual prototyping, there is some assumption of 

human involvement, whereas path planning is usually more of an automatic technique. 

Path planning methods fall into two main categories, global methods and local 

methods. Global methods try to sample the configuration space of the model and the 

environment, and then connect together collision-free instances into a collision-free 

path[50][51][53]. Local methods use local repulsion techniques to avoid collisions, while 

being drawn towards a distant goal[3]. However, these local methods can converge to 

local minima and never reach the goal. Our haptics system is similar to the local 

approach, but human guidance pushes models past local minima.  

Haptics has been proposed as a virtual prototyping interface in prior work. 

Hollerbach et al. [54] computed fast penetration depths between a point and a spline 

model to create a sensation of contact with the model, as did researchers at Ford Motor 

Company in [35]. Nelson developed haptic rendering of moving linkages using a three-

DOF haptic interface[55].  

McNeely used a 6-DOF device to manipulate a point-sampled model with a large-

scale voxelized environment[49]. The environment is static; however, this approach 

guarantees a worst-case computation time, important for reliable haptic rendering. They 

report that they were able to use haptics to find collision-free paths in complex 

environments for which global path planning algorithms failed. 
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Virtual Prototyping Approach 

Since we compute LMD’s while the moving model is still some distance from the 

environment models, haptic forces are used to guide the moving model away from 

collision with the environment. The onset distance for forces is adjustable, so the user can 

decide how much clearance between models is desired during testing. In general, the 

LMD’s tend to approximate the local distance field between the models, and the forces 

tend to push the moving model towards the medial axis between the models. Since the 

medial axis is the surface of maximum clearance between models, these forces tend to 

guide the moving model towards the safest path (Figure 61). 

 
Figure 61: The LMD’s provide guidance in regions of limited 

clearance. 
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While the test object is being moved by the haptic interface, its position and 

orientation are stored in a buffer. This buffer allows the motion of the test object to be 

played back for review, analysis, or further modification. 

If the moving model is forced to penetrate an environment model by the user, the 

simulation is no longer valid. A collision state is detected and the simulation is rolled 

back, using the stored positions and orientations in the buffer, until the model state is 

valid. The simulation can then resume, and the user can try new approaches for finding a 

collision-free path. This means that the path stored by our virtual prototyping program is 

always valid, and if the moving model can reach its goal, the problem has been solved. 

A collision state is detected by finding a LMD less than some specified parameter 

between the moving model and the environment. Changing the collision state distance 

allows the user to adjust for tessellation error in the models or for other desired 

constraints in the clearance of the collision-free path. 

Interface 

The main interface is, of course, the 6-DOF haptic interface. After loading models 

into the environment, the position of the currently selected model is controlled by the 

user moving the haptic interface. The selected model is changed with keyboard 

commands, so any model in the environment is freely movable by the haptic interface. 

Keyboard commands also control the recording of the collision-free path, 

stopping of recording, and visualization of the path in playback mode. 

The current set of LMD’s is displayed as lines between the two models. They help 

provide feedback cues to the relative positions of the two models in the absence of stereo 

viewing. 
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Results 

We tested our virtual prototyping system with a variety of models. In the tests, we 

threaded one moving model around and inside the environment model. In all the cases, 

we were able to intuitively find a collision-free path to accomplish the goal. 

Gear-Spring Part 

In the first test, we used a gear model with 6,300 triangles and a spring part model 

with 23,500 triangles. The goal was to have the gear enter the spring, traverse down the 

body, and then exit the spring. There was limited clearance between the gear and the 

spring and spring body, so without haptic feedback this would have been a difficult task 

(Figure 62). 

 
Figure 62: The gear had to rotate to slip between the coil and center 
axis of the environment model. 
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Crank-Holes-Teapot 

In this example, we used a crank model with 45,000 triangles, a three-holed block 

with almost 12,000 triangles, and a teapot model with 5,600 triangles. We used the haptic 

interface to position the block and the teapot in such a way that there was not a clear path 

from one hole to the next. The goal in this test was to thread the crank model through all 

three holes while avoiding the teapot. 

    The haptic interface provided enough cues to the user to find a path out of the 

middle hole and to tilt around the teapot, even though that portion of the path was 

occluded by the teapot during the test. (Figure 63 shows the view during the test and a 

tilted view after the test for the path visualization.) 

 
 

 

Figure 63: Haptics guides the crank model through the holes while 
avoiding the teapot model. 
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Helicopter-Rocker 

The final test used a helicopter model with 113,000 triangles and a rocker model 

with 40,000 triangles. For this test, we wanted to pass the rocker through the open 

window of the helicopter, around the interior, and back out (Figure 64). The haptic 

rendering system was able to provide useful feedback during this test, creating a 

collision-free path under user guidance. 

 

 
Figure 64: This test involved models with over 150,000 combined 
triangles. 
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Discussion and Conclusion 

The presented system advances the state-of-the-art in haptically enhanced virtual 

prototyping systems by allowing virtual prototyping on general, freely positioned, 

polygonal models. In addition, our mechanism for rolling back model collision states to a 

collision-free position and orientation simplifies motion planning by always storing a safe 

path. The use of adjustable distances for both force onset and collision distance enhances 

the capabilities of the system by simulating different clearance constraints during the 

task. 

The tests demonstrated the system on a variety of model types and sizes. While 

the chosen models were not solving an actual real-world problem, the model shapes, 

resolutions, and task types are representative of the kinds of problems the system can 

solve. 

 



 

 

CHAPTER 14 

CONCLUSION 

In this dissertation, a number of algorithms are derived for computing the 

minimum distance between computer models. In particular, one technique using normal 

cones for solving for a collinearity condition between models has broad application to 

polygonal and to parametric models. This style of computation seems particularly well 

suited for haptic applications, where stringent demands on computation rates make 

predictive methods a necessity. The set of local minima returned by normal cone methods 

provide greater knowledge of potential future interactions than global techniques, and 

thus can be used to initialize fast, local methods that can quickly react to interactions 

between models. The haptic applications developed using these techniques work on 

polygonal and smooth models, and at new levels of model complexity compared to 

previous techniques. These haptic applications provide the building blocks for virtual 

prototyping applications involving models of realistic complexity. 

Future Directions 

An area of haptic rendering not addressed herein is rendering of deformable 

models. This topic is important for medical simulation, where a person is touching or 

cutting models of soft tissue. The normal cone approach for sculptured surfaces should 
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work well in this context, since unlike most methods, it does not require a lengthy 

preprocessing of a static model to work.  

Normal cones, even with demonstrated successes when applied to distance and 

haptics problems, are still in the early stages of development. In global distance 

computations, spherical bounding hierarchies were a standard technique for some 

time[14], but the introduction of bounding volumes with variable aspect ratios, such as 

swept sphere volumes[17], dramatically improved computation speed. A similar 

development should be possible with normal cones, by bounding vector spreads and 

geometries with more general volumes that still possess fast tests for orthogonality or 

collinearity. 

Additionally, since distance finding is a basic operation on virtual models, the 

techniques developed here have broad application to problems in simulation, animation, 

and modeling. Even more broadly, the normal cone approach can be seen as quickly and 

robustly solving a system of constraints, in this case for collinearity between models’ 

surface normals. However, other kinds of constraints should be solvable in a similar style, 

so the normal cone approach should prove useful in other applications solving constraints 

based on surface properties.  
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