

MINIMUM DISTANCE QUERIES FOR HAPTIC RENDERING

 by

David Edward Johnson

A dissertation submitted to the faculty of

the University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

May 2005

Copyright © David Edward Johnson 2005

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a dissertation submitted by

David E. Johnson

This dissertation has been read by each member of the following supervisory committee

and by majority vote has been found to be satisfactory.

_________________ ______________________________
 Chair: Elaine Cohen

_________________ ______________________________
 Richard Riesenfeld

_________________ ______________________________
 Samuel Drake

_________________ ______________________________
 William Thompson

_________________ ______________________________
 John Hughes

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the dissertation of David E. Johnson in its final form and have found that
(1) its format, citations, and bibliographic style are consistent and acceptable; (2) its
illustrative materials including figures, tables, and charts are in place; and (3) the final
manuscript is satisfactory to the supervisory committee and is ready for submission to
The Graduate School.

_________________ ______________________________
 Date Elaine Cohen
 Chair: Supervisory Committee

Approved for the Major Department

Christopher Johnson

Chair

Approved for the Graduate Council

David S. Chapman

Dean of The Graduate School

ABSTRACT

Finding the closest points between two modeled objects is a fundamental

operation in robotics, computer graphics, and computational geometry. This dissertation

is motivated by the use of distance functions in haptic interfaces for virtual prototyping,

where distance measures provide the basis for forces that are applied to a human user.

The requirements for haptic interfaces mean that these distances must be computed both

quickly and robustly.

This dissertation begins by exploring the robustness of simple numerical methods

for finding the minimum distance between a point and a curve. A geometric analysis of

the convergence conditions yields an algorithm for precomputing a set of starting values

with robustness guarantees. Embedding this simple local method within a geometric

convergence test then provides some guarantees of global convergence.

 The requirements of haptic interfaces motivate another approach, based on

normal cones, for global search of local minima. This technique extends to surfaces and

mixed with numerical methods allows a haptic rendering system for NURBS models.

Finally, the normal cone approach is applied to polygonal models, which provides

the basis for a general 6DOF haptic interface for virtual prototyping. These methods

provide significant performance and reliability benefits over existing haptic rendering

techniques.

For Susan and Lucy

TABLE OF CONTENTS

1. ABSTRACT... iv

2. ACKNOWLEDGMENTS ... ix

3. INTRODUCTION .. 1

Virtual Prototyping .. 2
Haptic Interfaces .. 3
Distance Measures ... 4
Summary.. 5

4. BACKGROUND .. 6

Distance.. 6
Modeling.. 7
Distance Queries for Polygonal Models .. 7
Parametric Models ... 8
Other Representations.. 9
Haptic Rendering ... 10
Discussion.. 15

5. DISTANCE TO PARAMETRIC MODELS .. 17

Distance from a Point to a Curve... 17
Extremal Distance.. 20
Distance from a Point to a Surface .. 22
Distance Between Two Surfaces ... 24
Extremal Distance Formulation ... 24
Discussion.. 26

6. THE SCALED EVOLUTE BOUND FOR RELIABLE CONVERGENCE OF
POINT-CURVE MINIMUM DISTANCE QUERIES .. 27

Newton’s Method for Minimum Distance Queries ... 28
Computing Seed Points.. 42
Discussion.. 54

7. LOWER BOUND PRUNING FOR GLOBAL MINIMUM DISTANCE QUERIES
BETWEEN A POINT AND A CURVE.. 55

Lower Bounds.. 56
Results.. 60
Discussion.. 60

8. GLOBAL SEARCH FOR POINT-CURVE DISTANCE MINIMA USING
NORMAL CONES ... 63

Normal Cone Approach ... 63
Bounding the Range of Normals with Normal Cones 64
Checking the Collinearity Condition ... 66
Computing an Exact Solution .. 66
Results.. 68

9. MINIMUM DISTANCE QUERIES BETWEEN A POINT AND A SURFACE 69

Multidimensional Newton’s Method ... 69
Degeneracy Conditions.. 71
Degeneracy Along the Normal .. 73
Additional Examples of the Degeneracy Quadric ... 75
Discussion.. 77

10. GLOBAL SEARCH FOR POINT-SURFACE DISTANCE EXTREMA USING
NORMAL CONES ... 78

Coherency with the Dynamic Subdivision Tree .. 82
Discussion.. 82

11. HAPTIC RENDERING OF NURBS SURFACES .. 84

Finding Local Minima ... 84
Local Update.. 85
Results.. 86

12. GLOBAL SEARCH FOR LOCAL DISTANCE MINIMA BETWEEN
POLYGONAL MODELS... 88

The Spatialized Normal Cone Hierarchy... 89
Constructing the Hierarchy .. 89
Minimum Distance Computations with a SNCH... 90
Results.. 95
Discussion.. 97

13. SIX DEGREE-OF-FREEDOM HAPTIC RENDERING OF COMPLEX
POLYGONAL MODELS... 98

System Overview... 99
Approach.. 100
Local Minimum Distances... 100

vii

Modifying the LMD Computation... 101
Forces and Torques .. 103
Preprocessing ... 104
Results.. 104

14. SIX DOF HAPTIC RENDERING WITH LOCAL DESCENT............................... 109

Approach.. 109
Local Search... 110
Computational Efficiency .. 111
Preprocessing ... 111
System Architecture... 112
Results.. 112
Discussion.. 116

15. A VIRTUAL PROTOTYPING APPLICATION ... 118

Virtual Prototyping Background.. 119
Virtual Prototyping Approach.. 120
Interface ... 121
Results.. 122
Discussion and Conclusion.. 125

16. CONCLUSION... 126

Future Directions ... 126

REFERENCES ... 128

viii

ACKNOWLEDGMENTS

I am grateful to the members of the Virtual Prototyping Group for initiating and

developing an interesting research endeavor in haptics, in particular, Elaine Cohen, John

Hollerbach, and Bill Thompson. My student colleagues in haptics, Tom Thompson and

Don Nelson, provided great insight as well as hard work to advance haptic rendering. The

members of my committee have provided valuable feedback on this research and

dissertation. This work could not have been completed without the support of several

agencies, the National Science Foundation and Army Research Office in particular, and I

am grateful for their support.

CHAPTER 1

INTRODUCTION

The practical pursuit of a computer environment for virtual prototyping guides

this research into the more abstract realm of geometric computations. In particular,

adding force-feedback human-computer interfaces to virtual prototyping environments,

so that a person’s sense of touch can guide placement of virtual objects, has motivated the

development of efficient algorithms to compute the distance and interactions between

these objects. The resulting distance algorithms are basic computational building blocks

that are useful not only in force-feedback interfaces, but also for a broad class of

geometric computations.

There are three main areas to this dissertation. The first area examines distance

algorithms for distance queries between a point and a curve and produces algorithms for

local and global distance solutions. The insights from this investigation guide the

development of distance algorithms for surfaces in the second area and culminate in a

practical implementation of a distance algorithm for NURBS models suitable for haptic

rendering of NURBS surfaces. The third area applies the ideas of the local minima

method algorithms to purely geometric algorithms and shows how these concepts can be

applied to polyhedral models. These polyhedral algorithms are adapted for use in a virtual

prototyping system with force-feedback.

2

The next few sections provide more detail for why virtual prototyping is an

interesting problem, and how virtual prototyping requirements are connected to the

computation of distance minima.

Virtual Prototyping

Mechanical designers have employed computer-aided design (CAD), computer-

aided engineering (CAE) and computer-aided manufacture (CAM) in their design

processes. This integration allows products to be designed and analyzed on computers

before manufacture takes place. However, physical prototypes are typically used at some

point in the process to validate the proposed design. In industries such as the car industry,

designers may cycle between computer models and physical prototypes multiple times.

These cycles may take considerable time and expense due to the difficulty in translating

the model between the virtual and physical worlds.

Virtual prototyping replaces physical prototypes with virtual objects in a

computer. Ideally, the virtual prototyping environment can use the same computer

models that are used in the design processes, else a cumbersome translation from one

computer model format to another is needed. The virtual prototyping environment must

provide the same design evaluation functionality as the physical prototype it replaces.

Typically, designers use physical prototypes to evaluate model aesthetics, ergonomics,

and assembility.

Virtual prototyping systems often depend heavily on advanced displays, such as

head mounted displays (HMD) or wall displays like the CAVE, to give a proper sense of

scale to the virtual objects. These systems have focused primarily on evaluation of the

visual aesthetic qualities of the design. However, for many objects other senses play an

3

important role in the aesthetic quality of a design. In car design, the way a door feels and

sounds as it closes imparts sensations of solidity and reliability. The feel of the seats

similarly influences perceptions of luxury. In these examples, the sense of touch plays a

major component in the aesthetic evaluation of a prototype.

For other prototyping tasks, the sense of touch is similarly important. Sensations

of contact guide the assembly process when checking how various parts of a model fit

together. Without a way to reflect those sensations to the user of the virtual prototyping

environment, they must be mapped into new sensory channels, such as alarm sounds or

changes of color for the colliding objects. This remapping, as well as the lack of expected

touch cues, can be disconcerting for the users of the system, creating a less effective user

experience.

Similarly, the controls of many objects are designed to be manipulated by hand

with adjustments guided by the sense of touch. To properly evaluate the ergonomic

quality of these controls, the virtual prototype must engage this additional sensory

channel. The predominance of visual feedback in current virtual prototyping systems

makes testing the ergonomic quality of a design difficult.

Haptic Interfaces

Haptic interfaces provide a means of engaging the sense of touch in a human-

computer interface, and thus provide a means of addressing the lack of touch cues in

virtual prototyping environments. Haptic means “relating to or based on the sense of

touch” and haptic interfaces may engage a person’s tactile or kinesthetic sense of touch.

A haptic interface is a robotic mechanism controlled by computer and attached to a

person. This mechanism can reflect forces simulated in a virtual prototyping

4

environment, such as those computed from collisions of virtual objects, back to the

person attached to the device. Thus, a person’s hand or arm may be prevented from

moving in a certain direction when doing so would require that objects in the virtual

world would interpenetrate.

This reflection of simulated forces is known as haptic rendering. Just as rendering

in computer graphics simulates the interaction of light with virtual objects and presents

that simulation through a visual display, haptic rendering simulates the forces of contact

and presents that simulation through a haptic device. A key computational component of

the force simulation is the ability to measure the distance between two virtual objects.

Distance Measures

Computing the distance between virtual objects, variously referred to as the

minimum distance problem or the closest point problem, is a generalization of collision

detection, a long-studied problem in robotics and computer graphics that determines if

two objects are in contact. When objects are interpenetrated, measuring the penetration

depth is a related computation to the minimum distance problem.

Our interest in computing the distance between objects rather than just their

collision status derives from two main reasons. First, distance measures are predictive.

They can report not only when two objects are in contact, but also when two objects are

close and likely to collide, or even when two objects are distant and are unlikely to have

any influence on each other. Second, when objects are in contact, distance measures can

give a sense of how badly things have gone awry and even how to rectify the situation by

providing a direction to collision response methods. This second reason is a key

component of the haptic rendering computation.

5

Summary

This introduction has provided a chain of dependency from the utility of virtual

prototyping, to the need for haptic interfaces in these environments, and finally to the

dependency of haptic rendering on fast and robust minimum distance computation

between virtual objects. The remainder of the document will focus primarily on distance

computations, but many of the decisions made in algorithm design will be motivated by

their eventual use in a virtual prototyping system.

CHAPTER 2

BACKGROUND

Prior art in the area of distance computation draws from a number of fields,

including computer graphics[1][2], robotics[3][2][4], computational geometry[5][6], and

haptics[7][8][10][11]. This chapter provides an overview of distance computations, then

devotes more detail to distance computations in support of haptic rendering.

Distance

In the Euclidian space nR the Euclidian distance between two points x and y of

nR is the L2 distance

n
n

i
ii yxyxyxD R∈






 −= ∑

=
,:),(

2/1

1

2 , (1)

or more compactly,

yxyxD −=),(. (2)

The Euclidian distance between two subsets S and T of a Euclidian space is the infimum

of the vector lengths between all points in the two sets, or

},:),(inf{),(TtSstsDTSD ∈∈= . (3)

7

The closest points between the subsets S and T are the points s in S and t in T whose

distance is D(S,T), if there are any. There may be multiple pairs of closest points, or none

at all in the case of open sets. For the remainder of this thesis assume S and T are closed,

a valid assumption for the points, triangular models, and NURBS curves and surfaces

used as models in this dissertation.

Modeling

In geometric modeling, these subsets of Euclidian space are often represented as a

boundary representation model. The minimum distance problem then becomes finding

the closest points on the surfaces representing the model boundaries.

Prior minimum distance algorithms have used different approaches depending on

the types of models being queried. Distance algorithms for polygonal models have

favored geometric pruning methods[12][13][14], while algorithms for parametric

surfaces have concentrated on numerical techniques[15][1][16].

Distance Queries for Polygonal Models

Polygonal models are typically composed of collections of triangles, and most

distance algorithms for polygonal models deal with triangle primitives. The model may

contain topological connectivity information. Models without connectivity are known as

a triangle cloud, and ones with are properly described as a triangle mesh.

Lin[17] and Gilbert, Johnson, and Keerthi[18] developed fast minimum distance

methods for convex polygonal models. Since local gradient search produces a global

minimum for convex objects, their algorithms can converge quickly.

8

Quinlan[14] developed a spherical bounding hierarchy for general triangle clouds.

The bounding hierarchy was used to determine an upper bound on minimum distance

between the two models, and then to prune away portions of each model with lower

bounds on distance larger than the upper bound. The PQP package, by Larsen et al.[19],

followed the successful application of oriented bounding boxes to collision detection[20]

by using swept sphere volumes as a bounding hierarchy for triangle clouds. These

volumes can control their aspect ratio to more tightly bound contained geometry than

sphere bounds, which provided faster distance queries.

More recently, the distance methods for convex model distance queries have been

applied to convex decompositions of triangular models[12]. Essentially, this method

reduces the number of leaf nodes by replacing triangles with convex sets.

For these general polygonal models, the predominant techniques create bounding

volume hierarchies, and the advancements have come mostly from improving the

tightness of the bounding volumes. This approach differs markedly from techniques used

for parametric models.

Parametric Models

Parametric models are composed of smooth surface patches, and typical models

have fewer primitives than polygonal models. The emphasis in research, then, has not

been on efficient means of pruning large numbers of primitives. Instead, methods have

explored various numerical techniques for quickly and reliably solving systems of

equations derived from setting up minimum distance conditions between two parametric

models[15][21].

9

The distance between two parametric models),(vuF and),(tsG can be

computed by finding the shortest length vector of the difference function.

G(s,t)F(u,v)(u,v,s,t)D −=
v

. (4)

In [16], a bound and subdivide scheme explicitly searched this four-dimensional space

for a minimum length difference vector. More commonly, distance minima are expressed

as minima of the scalar valued distance squared function, and computed by finding

coincident zeros from the set of its partial derivatives, as in

()
()
()
() 0

0

0

0

=⋅−

=⋅−

=⋅−

=⋅−

t

s

v

u

GGF

GGF

FGF

FGF

 . (5)

The system of equations for distance extrema has also been variously defined as sets of

cross-products[15] or augmented with explicit normal collinearity conditions[22]. These

extrema conditions have been solved by employing symbolic computation[21], interval

methods[23], and Newton-Rapheson iteration[24]. Having the advantage of high speed

and rapid convergence, the latter has been a practical choice for many implementers.

Other Representations

Other model representations that provide unique capabilities have also been used.

Implicit models provide easy intersections and Boolean operations. Since implicit models

are the zero set of a scalar function, evaluating that function at a point in space is itself a

type of distance function, even though it need not be an exact match to Euclidian

distance.

10

CSG models are typically combinations of primitives, such as spheres, cones,

cubes, and tori. Each primitive needs a custom distance function. Most CSG models are

not made up of large numbers of primitives, so efficient pruning methods are not needed.

Haptic Rendering

Each proposed model representation has different trade-offs in terms of control of

shape, surface smoothness, complexity of data structures, and memory requirements.

These various trade-offs have been carefully studied for visual rendering of models.

However, haptic rendering has a different set of requirements, namely, the update rate for

haptic systems must be much higher than for visual systems. Typically, force

computations must be updated at 1,000 times per second[25] for stable haptic rendering,

whereas visual updates at 60Hz are generally considered adequate. However, since a user

cannot touch the whole environment at once, haptic interaction is much more local than

for visual rendering. These different requirements mean these representational trade-offs

may have different impacts on a haptic rendering system than on a visual one. Thus,

haptic rendering must develop its own distinct set of techniques to take best advantage of

a model representation.

Haptic rendering computes the restoring forces needed to generate a sense of

contact with a model. These restoring forces typically depend on the depth of penetration

of the virtual hand into the model and the direction to apply the restoring force. Because

of the difficulty of computing contact between complex models, the virtual hand in the

environment is often represented as a point or collection of points called the end effector

points[25]. In this thesis, the term query points will be most often used instead of that

robotics specific term.

11

Computing the depth of penetration now reduces to finding the closest point on

the model to the query points. As the virtual hand moves, this closest point changes and

must be updated at haptic rates. Various techniques have been developed that compute

and track the closest point on the model for different model representations. Below, we

outline the development of haptic rendering methods from early stateless volume

approaches to more current surface boundary techniques.

An early approach for determining the restoring force filled the modeled object

with a vector field corresponding to the desired restoration force[26]. Typically, the

interior of the model was subdivided into regions with a common direction and

containing force vectors with lengths proportional to the distance to the surface. Yet this

approach poses several difficulties as noted in [27]: creating the vector field is non-trivial

for complex shapes, force discontinuities may occur when crossing internal field

boundaries, and thin objects do not have enough depth to allow for an adequate force

vector field. In the worst case, where the virtual hand penetrates too deeply, the volume

method may accelerate the user from one side of the object to the other. Because of these

difficulties, other techniques like boundary methods have largely supplanted volume

approaches.

The intermediate plane[25] is an early type of boundary representation for haptic

rendering. The intermediate plane approximates the local, underlying geometry of the

model with a single plane. This plane updates as the virtual hand moves, usually much

slower than the haptic update rate. This method maintains high update rates for the force

computation by decoupling the cost of the depth computation from the complexity of the

12

underlying geometry and is also suitable for distributed computations, an especially

attractive feature when the haptic controller runs on specialized hardware.

This time-varying approximation of the surface works best for low curvature

surfaces; otherwise, noticeable force discontinuities may occur. An approach for

alleviating these discontinuities “fades-in” the computed force[8]. The intermediate plane

approach was most recently applied to NURBS surfaces[28]. Importantly, using an

intermediate plane does not eliminate the need to track the closest point on the surface;

rather, it simply alleviates the high haptic rate demands. As such, recent efforts have

focused on speeding the more fundamental closest point tracking algorithms so that they

may apply directly[11], rather than continuing efforts to mask some of the deficiencies of

the intermediate plane approach.

Haptic Rendering of Polygonal Models

Polygonal models are the first of the true boundary surface representations we

consider. Much work in computer graphics and robotics has focused on polygonal

models; the haptics community has leveraged this research to good effect. Polygonal

models are attractive because they readily lend themselves to fast computations[20]. In

addition, current graphics displays essentially force surfaces to be converted to polygons,

so polygonal haptic approaches share a common representation with the visual display.

Zilles and Salisbury[27] developed an approach for haptic rendering of simple

polygonal models. Some history of the haptic interaction, they argue, avoids the problems

related to the volume rendering methods mentioned earlier. Their haptic rendering

method tracked the closest point on the surface with a simple method of determining

collision with the facets of the model, an approach that limited model size to a few

13

hundred polygons. Ruspini[10] employs a more advanced collision detection method[14]

to increase model size to tens of thousands of polygons and allowed a spherical end

effector, instead of merely a point. He adopts the term proxy to refer to the constrained

surface point that maintains the closest point. A competing method [29] combines spatial

decomposition and oriented-bounding boxes to efficiently test intersection of a model

with the end effector motion vector.

Complex interactions are difficult to model with a simple point end effector. As

computing power has increased and haptic devices have improved, more general model-

model interactions have become possible.

An extension to a general collision detection and response system[30] to haptic

environments allowed the moving model and the virtual environment to be composed of

the union of convex polygonal models. The computational burden of the collision method

limits the scene to tens of polygons, but interactions using this extension are richer then

with single query point methods.

More recently, research has looked at collections of convex bodies[31], as well as

incremental methods for computing the penetration depth[32]. Most recently, the convex

decomposition approach has been extended with perceptual level of detailing to

accelerate haptic rendering for larger models[33].

Although limited as a surface representation due to compactness and smoothness

concerns, these polygonal methods currently dominate haptic rendering. Their simple

structure facilitates the development of fast algorithms for contact and depth computation

as needed for haptic systems.

14

Sculptured Surfaces Methods

Sculpted surfaces represent smoothly curved surfaces in a natural way, thus

avoiding some of the difficulties associated with polygonal representations. In addition,

they are often more compact than a high-resolution polygonal model, so more complex

environments can be accommodated in comparable computer storage space.

The success and ubiquity of NURBS in CAD and graphics indicates NURBS as

the surface representation of choice for precise shape control (along with the more

general subdivision surfaces representation). Advantages of NURBS include compact

representation, higher order continuity, and exact computation of surface normals. For

haptics, a further advantage is being able to directly manipulate CAD models without

first having to create a polygonal representation.

Some review of NURBS terminology is appropriate for our discussion. NURBS

surfaces are piecewise-polynomial vector-valued functions of two parametric variables

that form the domain of the surface. The control mesh influences the shape of the surface

and each control point of the control mesh provides a vector coefficient for the basis

functions of the surface. Each polynomial piece of the surface is influenced by a local set

of control points and the convex hull of that set completely contains that piece. The

“parametric nodes” of the surface are readily computable first-order approximations to

the parametric value of the closest points on the surface to each control point. Through a

process known as refinement, which embeds the surface into a new, higher-dimensional

parameter space, more degrees of freedom can be added to the control mesh of the

surface. One can add trimming curves to NURBS to represent holes and other sharp

surface boundaries that do not fall along the parametric directions[34].

15

As seen from this synopsis, the mathematics for NURBS is considerably more

complex in comparison to the underlying mathematics for polygonal models. Real-time

computations using NURBS can seem formidable. Indeed, in the past, simpler

representations such as polygons or intermediate planes derived from a NURBS surface

seemed necessary for haptic rendering[35]. However, algorithmic advances, together with

inexorable improvements in computing power, have made direct computation on NURBS

models possible[11].

Some of the lessons from polygonal haptic rendering methods apply to techniques

for NURBS surfaces. At a high level, the proxy point transforms a global minimum

distance solution to a local, continuous solution so that the restoring force direction

remains continuous. On a NURBS surface an analogous situation exists. Haptic rendering

needs a solution that is in the local neighborhood of the previous time step's solution.

Local root finding methods, given an initial starting point, should converge to the nearest

root, and these local root methods encapsulate many of the qualities of the proxy point.

Thus, assuming the necessary components can be computed quickly enough, they are

appropriate for tracing along a NURBS surface. This dichotomy between global and local

closest points also suggests an approach for haptic rendering of NURBS surfaces – one

could use global closest point methods to provide initial starting points and local closet

point methods for tracking the surface point when the query point moves inside the

model.

Discussion

Haptic rendering has progressed quickly from rather simple models such as cubes

and spheres to quite general models made from tens of thousands of polygons or full-

16

featured, trimmed, NURBS models. This dissertation presents a number of new distance

computations for both polygonal and parametric models that increase the complexity and

robustness of haptic interaction with complex environments.

CHAPTER 3

DISTANCE TO PARAMETRIC MODELS

As discussed in the background section, the geometric approaches for computing

the minimum distance between polyhedral objects differ markedly from the numerical

approaches used for sculptured models. The material in this chapter bridges the

background chapter and upcoming research chapters by delving more deeply into

distance to parametric models, with the goal of developing intuition and definitions that

will be used in later chapters. The following sections deal with models defined by

parametric NURBS curves and surfaces. In all our discussion of sculptured models, we

assume the model is a regular curve or surface with at least C2 continuity, although the

approaches can be adapted to piece-wise lower continuity models by subdivision.

Distance from a Point to a Curve

The vector difference between a point in space P and a point γ(t) on a planar

space curve (Figure 1.A), is

PγD −=)()(tt
v

. (6)

For a fixed P and varying t, the vector difference can be thought of as a sequence of

vectors from P to each point on the curve γ(t) (Figure 1.B).

18

A. B.

Figure 1: The difference between a point and curve is a vector valued
function. (A) The point P and a curve. (B) The sequence of vectors
between the origin and the curve translated by –P.

The distance between P and the curve can now be expressed as a parametric

function,

()Pγ −=)()(ttD , (7)

and minimizing D(t) finds the minimum distance. Since D(t) can be rewritten as

() ()()2
1

)()()(PγPγ −⋅−= tttD , (8)

the distance squared,

() ()PγPγ −⋅−=)()()(2 tttD , (9)

shares common extrema parameters with D(t) and avoids the square root. The distance-

squared function for the example given in Figure 1 is shown in Figure 2.

The minimum of)(2 tD can be found by computing all its extrema and choosing

the smallest. Extrema of)(2 tD occur when the derivative is zero, as in

() 0)(2)(2

=⋅−=
dt
dt

dt
tdD γPγ . (10)

P

γ(t)

19

Figure 2: The function)(2 tD , with heights shown at the same t values
used for the sample vectors in Figure 1.

Figure 3: The derivative of D2(t) overlaid on D2(t) . Zero crossings
correspond to extrema in distance.

In the general case, extrema also occur at endpoints of the curve or at non-differentiable

points. A curve with tangent discontinuities can be split into multiple curves, each of

which is considered independently. The endpoints of the curve can also be checked as a

special case. For now, we concern our analysis to the interior of a model.

Figure 3 shows the Eq. 10 superimposed on the squared distance function of

Figure 2. The parameter values along the x-axis where the derivative curve crosses zero

correspond to minima or maxima of the squared distance function.

t

)(2 tD

)(2 tD

dt
tdD)(2

20

The factor of two on the right-hand side of Eq. 10 is irrelevant to the finding of

zeros. Thus, distance extrema are found at zeros of the simplified extrema equation

()
dt
dttE γPγ ⋅−=)()(. (11)

This formulation shows that distance extrema occur at orthogonal projections of P onto

the curve, which is where the projection vector is at right angles to the tangent at the

projected point. Another way to think of this is that the extremal point normal must be

collinear with the vector between the extremal point and the query point. This collinearity

condition will be the basis for many of the techniques developed in this thesis.

Extremal Distance

The collinearity condition of Eq. 6 makes no distinction between a local minimum

and a local maximum of the squared distance function. The maximum is also known as

the extremal distance[1]. There is a geometric relationship between the curvature of the

curve,)(tκ , at the extremum, the distance to the extremum, and the side of the curve on

which the query is made that determines whether the distance is a minimum or a

maximum (Figure 4).

When the curve at the extremum is convex relative to the query point, then the

extremum is always a local minimum, since the curve in this region bends away from the

query point. When the curve at the extremum is concave relative to the query point, then

it bends towards the query point. If the radius of curvature,
)(

1
tκ

, at the extremum is

larger than D(t), then none of the local region of curve is nearer than the extremum, so it

is a minimum. If the radius of curvature is smaller than the distance, then the curve bends

21

Figure 4: As the query point moves away from the curve (left
column), the squared distance function (right column) changes from a
minimum to an extremal distance at the same zero crossing of the
derivative function.

inside the distance bound, and the extremum is a local maximum. These conditions are

illustrated in Figure 4. Notice how a circle centered at the query point of radius equal to

the extremal distance just touches the curve at the extremal point (top row of Figure 4),

with the rest of the local curve further away, making a local minimum. As the query

point moves away from the curve, the circle expands. When the query point is further

away then the radius of curvature, then the circle expands past the local curve (bottom

row of Figure 4), implying that the curve on either side of the solution is closer and the

solution is a local maximum.

)(2 tD

)(2 tD

dt
tdD)(2

dt
tdD)(2

22

Distance from a Point to a Surface

The minimum distance between a point in space, P , and a bivariate parametric

surface),(vuS (Figure 5) is the minimum of the distance function

PS −=),(),(vuvuD . (12)

Following the approach for computing the minimum distance between a point and a

curve, the distance squared to a surface

() ()PSPS −⋅−=),(),(),(2 vuvuvuD (13)

shares the same parameters at extrema as the distance and has a less complex

formulation. In Figure 5, local distance minima between the query point and the surface

are visible in the visualization of the distance squared function as two bumps, each

corresponding to a local closest point on the original surface to P.

Figure 5: The squared distance between the point and surface at left is
visualized on the right as a function mapping parameter value vs.
squared distance.

23

The distance-squared function generates a system of equations that are satisfied at

an extremum.

()
() 0),(

0),(
=⋅−
=⋅−

v

u

SPS
SPS

vu
vu

 (14)

This system is an analogue to the extrema equation for minimum distance to a curve, as it

shows that the closest point on the surface is also an orthogonal projection of the query

point onto the surface.

These partial derivatives are complex three-dimensional surfaces and difficult to

visually understand. However, mapped as)),(,,(
2

u
vuDvu

∂
∂ and)),(,,(

2

v
vuDvu

∂
∂ , their

zero crossings generically form curves in the uv plane (Figure 6), and the intersections of

each zero set are solutions to Equation 8.

Figure 6: The zero crossings of each partial of the distance-squared
function generically form curves in the uv plane. The intersections
between the two curves are local extrema of the distance-squared
function.

24

Distance Between Two Surfaces

Distance queries between surfaces extend naturally from the query for a point to a

surface. The distance function for two surfaces),(vuF and),(tsG is

),(),(),,,(tsvutsvuD GF −= . (15)

As before, distance extrema occur at zeros of the set of partial differentials of the

squared distance

()
()

()
() 0

0
0
0

=⋅−
=⋅−
=⋅−
=⋅−

t

s

v

u

GGF
GGF
FGF
FGF

 (16)

However, Equation 16 does not naturally express the possible configurations two

surfaces can have relative to each other. Two surfaces can interpenetrate each other, and

an extremum of distance is at the maximum penetration. While this extremum is a valid

root for Equation 16, another set of roots occurs along the curve of intersection between

the two surfaces during interpenetration, where ()GF − is zero. Numerical methods will

tend to find a solution in the set of roots associated with this intersection curve rather than

the extremum in distance. Defining the distance as an extremal distance, rather than the

minimum distance, helps to avoid these problems.

Extremal Distance Formulation

Following [1], the extremal distance can be defined as the minimum distance

between the two models when they are disjoint, zero during tangential contact, and the

25

locally maximum penetration depth when they interpenetrate. This measure reflects the

possible configurations of two surfaces more accurately than the minimum distance.

The extremal distance between parametric surfaces),(vuF and),(tsG is the

following scalar valued equation:

()),(),(),(),,,(vutsvutsvuE NGF
r

⋅−= . (17)

Extrema of Equation 17 are at simultaneous roots of its partials, which are

()
()

0

0

0

0

=⋅−

=⋅−

=⋅−+⋅

=⋅−+⋅

NG

NG

NGFNF

NGFNF

r

r

rr

rr

t

s

vv

uu

 (18)

This can be simplified by noting that the normal N
r

 is always orthogonal to the tangent

plane formed by the partials uF and vF , so the NF
r

⋅u and NF
r

⋅v terms are always zero

and may be removed. Additionally, the partials of N
r

 lie in the tangent plane of),(vuF ,

so replacing the partials of N
r

 with the partials of),(vuF forms an equivalent constraint.

These substitutions form this simplified set of equations

()
()

0

0

0
0

=⋅

=⋅

=⋅−
=⋅−

t

s

v

u

GN

GN

FGF
FGF

r

r (19)

The first two partials constrain the solution line to lie along the normal of),(vuF ,

and the second two maintain collinearity of the two surface normals. An intersection of

26

the two surfaces, where ()GF − is zero, no longer fully satisfies the set of partials, and is

not a solution to the extremal distance formulation.

Discussion

This chapter develops sets of equations for the minimum distance between points

and curves, points and surfaces, and two surfaces, as well as a special set of constraints

for the extremal distance between two surfaces. The next chapters delve into techniques

for solving these equations using numerical and geometric methods, eventually applying

them to haptic rendering.

CHAPTER 4

THE SCALED EVOLUTE BOUND FOR RELIABLE

CONVERGENCE OF POINT-CURVE MINIMUM

DISTANCE QUERIES

Minimum distance queries between a point and a curve can be computed

symbolically for curves of low degree[21]. For higher degree curves, a mixture of

symbolic and numerical computation can be used. In many cases, a local solution is

desired, and purely numerical approaches are feasible. This last approach also lends itself

to rapid computation.

This chapter analyzes a convergence condition of Newton’s method, a standard

numerical approach, for minimum distance queries between a point and a curve. Based

on that analysis, we develop an algorithm for computing a set of starting parametric

values and an associated geometric bound on query point location that ensures

convergence of Newton’s method during minimum distance queries. We restrict our

analysis to planar, twice-differentiable, regular curves. An example of this type of curve

is a planar, B-spline curve, commonly used in CAD, modeling, and animation, so this

restriction is not onerous.

Because this chapter requires significant background and mathematical analysis

before developing the main argument, we summarize the approach here:

28

1. Convergence of Newton’s method depends on its initial parameter and the

query point.

2. A geometric interpretation of a convergence condition for Newton’s method

yields safe spatial regions for point queries relative to the current estimated

closest point.

3. These regions are largely dependent on the radius of curvature at that point on

the curve. By properly computing sets of starting parameters, the convergence

condition will hold for all query points to one side of a scaled evolute curve

and Newton’s method will converge.

This result is different from the typical analysis of the convergence properties of

Newton’s method. In point estimation theory[36], convergence conditions are derived for

a particular query point relative to a curve, based on the initial parameter value. Our

approach determines for which families of curves (corresponding to different query

points) will a set of initial parameter values provide adequate assurance of convergence.

This approach allows the initial computational cost of analysis to be amortized over many

queries, and to know a priori whether a minimum distance query will, in fact, converge.

Newton’s Method for Minimum Distance Queries

Newton’s method is a standard approach for local root finding, especially when

derivative information is readily available[37]. For a univariate parametric function F(t),

Newton’s method solves for a change in t, such that iterations of Newton’s method

should converge to a root. The new parameter value depends on the previous iteration,

the function value, and its derivative at the prior parameter value, specifically

...2,1,0,
)(
)(1 =

′
−=+ j

tF
tFtt

j

j
jj (20)

29

First, it should be noted that there is no guarantee that Newton’s method will find

a root. It may diverge due to poor starting conditions; cycle, rather than converge; or just

fail when 0)(=′ tF . Additionally, Newton’s method may find a root, but not one near the

starting parameter. In this case, the method essentially diverges for a step or more, and

then happens to land in the basis of attraction for another root.

Careful choice of parameter value to initialize the Newton iteration helps avoid

these problems. For minimum distance queries, starting parameters can be generated as

needed[24], or precomputed. In neither case do these methods provide any assurances

that Newton’s method will converge as desired. For precomputed starting parameters, a

standard algorithm[34] evaluates the curve at multiple evenly spaced potential starting

parameters, or seed points. A seed parameter, t, is a parameter value used to initialize

Newton’s method. A particular seed parameter out of an ordered set of seed parameters is

indicated by it . A seed parameter also defines a seed point,)(itγ .

The standard distance algorithm

1. computes a set of evenly spaced seed parameters on the curve,

2. finds the closest seed point to the query point,

3. solves for a root of the extrema equation (Eq. 11) using Newton’s method

initialized with the seed parameter corresponding to the nearest seed point,

4. returns the distance between the query and)(tγ , where t is the root of the

extrema equation from step 3.

However, there are no guarantees that Newton’s method will actually converge given a

particular starting seed parameter. This shortcoming motivates this chapter’s

30

development of an algorithm for generating seed parameters with known convergence

properties for an associated spatial region of possible query points.

Visualizing the Convergence of Newton’s Method

A distance map is an image that represents the distance from the center of a pixel

to an object of intekrest by pixel intensity. The top of Figure 7 shows a distance map for a

sample curve. Another useful mapping is to associate a gradient of color with the curve

parameter, so that the start of the curve is associated with black, the end with white, and

the portion in the middle a linear interpolation between the two. With this mapping the

intensity of the pixel in the image is proportional to the parametric value of the closest

point on the curve (Figure 7 bottom), thus we refer to it as a closest point map.

An analogous idea provides visual evidence for when the standard algorithm

succeeds or fails. Calling the standard algorithm at every pixel and using its distance

result, rather than the correct distance used in Figure 7, provides a visual representation

of its success. Furthermore, since Newton’s method can detect when it fails to converge,

that result can be shown in a warning color. Figure 8 shows distance maps using the

standard algorithm with varying numbers of seed points. Figure 9 shows the equivalent

closest point maps.

These images clearly show that an inadequate number of seed points on the curve

can result in unreliable convergence of Newton’s method. However, they also show that

even when there are large numbers of seed points, troublesome, albeit small, regions of

divergence remain.

31

Figure 7: Two different distance visualizations. (top) A distance map
for a sample curve. (bottom) A closest point map for the same curve.

32

Figure 8: Distance maps show distance to the curve by mapping pixel
intensity to distance. The number of seed points is increased in each
successive image, and places where Newton’s method fails to converge
map to a warning color.

33

Figure 9: Closest point maps set pixel intensity to the parametric
value of the closest point on the curve. This mapping provides more
information about where the standard algorithm converged to than
the distance map.

34

Convergence of Distance Queries Between a Point and Curve

The convergence of numerical methods in general and Newton’s method in

particular has been thoroughly analyzed. In this section, a convergence condition from

the literature[37] is studied in detail. A geometric interpretation of those conditions

provides a basis for an algorithmic means of generating a set of seed points on a specified

curve with known convergence properties for regions of query points.

Eq. 20 can be rewritten as

)(
)()(
tF
tFttG

′
−= . (21)

Newton’s method will converge when for each iteration[37],

.1)(<′ tG (22)

Using the quotient rule for differentiation on Eq. 21 and then simplifying,

2)(
F
FFtG
′

′′
=′ (23)

When looking at the specific problem of minimum distance, where the function to be

minimized is)(tE (from Eq. 6), the convergence condition becomes

.)(2E
EEtG
′

′′
=′ (24)

Derivatives of the Distance Extrema Equation

The functions for distance extrema and its derivatives are needed to expand the

convergence condition. E(t) in dot product bracket notation (and without explicit

parameters) is

35

γPγ ′−= ,E , (25)

and, by the chain rule, its first and second derivatives are

γ,γγP,γ ′′+′′−=′E , (26)

γγγPγ ′′′+′′′−=′′ ,3,E . (27)

Using these derivatives, each step of Newton’s method (Equation 21) expands to

γ,γγP,γ
γPγ

′′+′′−
′−

−=∆
,

t (28)

and the value of 'G (Eq. 24) used in the convergence condition for Newton’s method

when used for the extrema distance equation is then

[]
[] 2,,

,3,,

γγγPγ

γγγPγγPγ

′′+′′−

′′′+′′′−′−
=′G . (29)

Visualizing the Convergence Conditions for Newton’s Method

A technique similar to a distance map can be used to visualize the value of

'G during application of the standard algorithm. Rather than mapping distance to pixel

intensity, the visualization technique maps the value of 'G at the initial seed, based on the

seed parameter and the query point. Magnitudes of 'G between zero and one map to

image intensity between black and white. Magnitudes greater than or equal to one, where

Newton’s method is not expected to reliably converge, map to a warning color (Figure

10). This visualization helps us understand convergence properties during the initial step

of Newton’s method. During later steps, new 'G values would be associated with the

current parameter value of the estimated closest point.

36

Figure 10: Regions of 1≥′G are easily visualized by finding the
closest seed point on the curve to each pixel and computing the value
of 'G based on the intrinsic properties of the curve. Magnitudes larger
or equal to one are colored. The images above show visualizations of

'G based on varying numbers of seed points.

37

Analysis of Degenerate Conditions

These magnitude images of 'G reveal several features that are worth exploring

mathematically. An analysis of these conditions will eventually yield a more tractable

form of Equation 29.

The worst case for 'G is when it is degenerate, and our analysis starts there. The

degeneracy condition for 'G is when its denominator is zero. Thus when

γγγPγ ′′−=′′− ,, , (30)

'G is degenerate. Note that this is also the same condition where Newton’s method

(Equation 28) becomes degenerate. For a fixed value of t, Equation 30 determines a line,

defined by the vector from P to)(tγ projecting onto the normalized)(tγ ′′ with the same

magnitude as the length of)(tγ ′ squared. A query point on this line produces a

degeneracy in 'G , for the parameter used in that iteration of Newton’s method.

This line of degeneracy forms the region’s center backbone (Figure 11). The area

where this line crosses the normal to the seed point warrants additional attention.

Figure 11: The area of 1≥′G for one seed point along the curve is
shown. Some portions for other seed points are visible outside the
Voronoi region of the seed point.

38

Restricting P to lie along the normal, N, at the current)(tγ , as in

ΝPγ y=− , (31)

and substituting in Eq. 29,

[]
[] 2,,

,3,,

γγγΝ

γγγΝγΝ

′′+′′

′′′+′′′′
=′

y

yy
G , (32)

immediately shows that the numerator of 'G is always zero for this restricted placement

of P along the normal, since the dot product of the normal and tangent in the first factor is

always zero. This is also demonstrated in Figure 11, which shows a line of black (with 0

value) extending along the normal from the seed point. However, the degeneracy in the

denominator still exists. By using a relation for curvature, κ , and the normal of a

curve[38],

42

44

,

,,

γ

γγγ

γ
γΝ

γ

γγγ

γ

γγγ
Ν

′

′′′′
−

′

′′
=

′

′′′′
−

′

′′′′
=

κ

κ

 (33)

the denominator, d, of 'G ,

4

2

2 1, γ
γ
γΝ ′














+

′

′′
= yd , (34)

can be rewritten in terms of the curvature,

4

2

4 1
,

, γ
γ

γγγ
ΝΝ ′














+

′

′′′′
+= κyd . (35)

39

Again, since the first derivative and normal at a point on the curve are orthogonal, then

[] 421, γΝΝ ′+= κyd . (36)

Since we are discussing regular curves, γ ′ is never zero, and only the first factor can go

to zero, which occurs when

.1
κ

−=y (37)

This implies 'G is degenerate and Newton’s method fails when

ΝγP
κ
1+= , (38)

or when P lies at the center of the osculating circle at)(tγ . This result, along with the

line of degeneracy from Equation 30, is shown in Figure 12.

A Geometric Interpretation of the Unsafe Convergence Region

For reliable use of Newton’s method, determining degenerate locations is not

enough – all query point locations where the magnitude of 'G is greater than or equal to

one for all parameter values used by Newton’s method need to be avoided. However, the

style of analysis used to determine the degeneracy condition is applicable in this more

general case as well.

The vector from P to)(tγ can be represented in terms of a reference frame at)(tγ ,

formed by the tangent direction and normal at)(tγ , as in

ΝγPγ yx +′=− . (39)

40

Figure 12: Placements of P that cause degeneracies in 'G for a given
parameter value lie along the line orthogonal to the second derivative.

Using this representation, 'G becomes

[]
[] 2,,

,3,,

γγγΝγ

γγγΝγγΝγ

′′+′′+′

′′′+′′′+′′+′
=′

yx

yxyx
G (40)

and expanding, yields

4222222

2222

,2,2,,2,,

,,3,

γγγΝγγγγΝγγγΝγγ

γNγγγγγγγ

′+′′′+′′′′+′′′′′+′′+′′′

′′′′+′′′′+′′′′′
=′

yxxyyx

xyxx
G

. (41)

We call a P that yields a 'G magnitude less than one for a given parameter a safe position

of P. Then the curve representing the boundary between unsafe and safe positions of P is

where

1)(=′ tG , (42)

which forms two implicit curves defined by

1)(

1)(

−=′

=′

tG
or

tG
 (43)

41

Choosing the positive condition forms a quadratic equation in x and y in the local

tangent-normal reference frame

[] []
[] .0,2,3,2

,,,2,,,
4222

222222

=′+′′′Ν+′′′′−′′′′

+′′′′−′′Ν′′′+′′Ν+′′′′′−′′′

γγγγγγγγγ

γγγγγγγγγγγ

yx

Nxyyx

 (44)

The implicit equation describing the negative boundary is similarly formed. Together,

these two boundaries (Figure 13) form the outline of the regions of poor convergence

from a single step of Newton’s method, matching those from the 'G visualization (Figure

11).

This form of the convergence condition is more amenable to computation than

Eq. 29 and will be used in support of this chapter’s motivating problem – how should

seed points be distributed on the curve to support regions of safe positions of P for all

steps of Newton’s method during convergence?

Figure 13: The implicit form of 1=′G may be easily graphed and
used in computations, as opposed to the purely visual representation
in Figure 11.

42

Computing Seed Points

Tools are now in place to obtain the goal in this chapter – namely, to compute a

set of seed points that provides guaranteed convergence of Newton’s method for query

points inside a spatial bound. Constrained by the previously discussed degeneracy

conditions, convergence for Newton’s method is impossible to guarantee for all query

points, independent of the number of initial seed points used. Instead, given the derived

geometric interpretation of the convergence conditions, we develop techniques to

compute seed points such that Newton’s method will converge for all query points within

a spatial bound that we call the scaled evolute bound.

Scaled Evolute Bound

As shown by Eq. 38, Newton’s method becomes degenerate when the query point

is at the center of the osculating circle at)(tγ . The locus of points fulfilling this condition

forms a possibly discontinuous curve called the curve evolute (Figure 14 left), defined as

)(
)(

1)()(t
t

tt ΝγR
κ

+= . (45)

Any spatial region bounding query points that includes any of this curve cannot guarantee

avoiding degeneracy in Newton’s method. Therefore, we use a scaled evolute (SE) curve

that lies between the curve and its evolute (Figure 14 bottom), defined as

)(
)(

)(),(t
t

tt ΝγS
κ
αα += . (46)

The parameter α , restricted to values between zero and one, determines the interpolation

between the original curve and its evolute.

43

Figure 14: The curve and the three discontinuous parts of the evolute
(left) and a scaled evolute in-between the curve and its evolute (right).
The curve, entire evolute, and scaled evolute are shown at bottom.

44

Given the SE-curve, we bound query point locations to the disjoint regions

bounded on one side by the SE-curve, and extending infinitely in the direction from the

SE-curve to the original curve, or the bivariate (for a fixedα) planar regions defined by

0),()(
)(

)(),(≥−+= utut
t

tut ΝΝγB
κ
α . (47)

These scaled evolute regions are shown in Figure 15.

One further subdivision of the scaled evolute regions will be useful. A seed point

interval (SPI) region is a piece of the scaled evolute region bounded on each side by lines

through neighboring seed points of the curve and parallel to the seed point normals

(Figure 16), or just),(utΒ evaluated over the defining seed point interval 1+≤≤ ii ttt .

Now, given these regions, we want to compute a set of seed points on the curve

guaranteeing convergence of Newton’s method for minimum distance queries between

query points in the regions and the curve. A summary of the approach is

1. Compute the seed points such that there is no overlap between a SPI region and

the 1)(' ≥tG unsafe convergence regions over the defining seed point intervals,

as in

1,),(1)(' +≤≤≡∩≥ ii tttutBtG φ . (48)

2. Show that a query point inside a SPI region will converge to a closest point on the

curve on its defining interval and that during convergence, the estimated closest

point will not leave the interval.

45

Figure 15: The three disjoint scaled evolute regions that bound query
point location. (left) The scaled evolute regions with an alpha of 0.25.
(right) The regions with an alpha of 0.1, which simplifies the structure
of the regions for visualization.

46

Figure 16: A seed point interval region is an interval of the scaled

evolute region between two seed parameters.

Together, these steps show that during convergence, a curve parameter never yields an

unsafe 'G value for query points inside the SPI region, so Newton’s method is guaranteed

to converge.

Computing the Seed Points

The seed point computation is constructive in nature. The algorithm takes in a

planar, twice-differentiable, regular curve and generates a set of seed points for the curve.

As a preprocess, the algorithm breaks the curve at inflection points, so that the evolute of

each subcurve, and its associated SPI-regions, is a continuous region.

The basic idea of the algorithm is to extend out a potential new seed point until it

fails to create a safe SPI region for query points, at which point it stores the last

parameter that created a safe SPI region as a new seed. A parameter, delta, determines

how fast the new seed point extends, and there is an assumption that two seed parameters

47

separated by delta will pass the safe bounds test as described below. Because the

algorithm is computationally efficient and a pre-process, a reasonable choice for delta is

just a small floating point value, such as 0.00001, as long as it is a small fraction of the

smallest difference between knot values. The algorithm, repeated on each subcurve, in

pseudo-code is as follows:

0t = the minimum parametric value for the subcurve
save_seed(0t)

0ttt newlast ==

while (newt <= maximum parametric value)

 bounds = seed_point_region(lastt , ttnew ∆+)

 if (!safe(bounds))
 save_seed(newt) # newt is still safe

 newlast tt =

ttt newnew ∆+=

end while
save_seed(maximum parameter for subcurve)

For the safe test, recall that the convergence condition requires that 1)(<′ tG for

all iterations of Newton’s method. Since knowing the specific steps taken during

convergence is equivalent to already knowing the solution, the test for a safe region uses

the more conservative condition of Eq. 48, that 1)(<′ tG for all query points in the SPI

region and for all parameter values in its defining interval.

 The validity of this condition depends on Newton’s method generating a series of

t root estimates that stay within the interval. If the t∆ generated by a step of Newton’s

method moves t outside the interval from it to 1+it , then the 1)(≥′ tG area associated

with that t will not have been tested against the current SPI region.

48

To guard against this, we need to show that there is an extremum, and thus a place

to which to converge, on a SPI region’s defining interval for a query point in that region.

Furthermore, Newton’s method must move into the interval containing P, rather than the

neighboring interval associated with the chosen seed point, and t must stay within that

interval during the convergence process.

Lemma 1: If the query point P is within a seed point region associated with an

interval of the curve, then that interval also contains a local distance minimum to the

query point.

Proof: When P is within the SPI region, then

0)(,)(and 0)(,)(11 ≥′−≤′− ++ iiii tttt γPγγPγ (49)

A local extremal point is defined by a tangent orthogonal to the vector from the

query point to the extremal point (Equation 6). Since the tangent is continuously

varying within an interval, then the value of Equation 6 must cross zero as t

goes from it to 1+it , and the dot product with the tangent goes from negative to

positive. When the dot product is zero, there is an extremal point on the curve.

Because the query point is either on the convex side of the curve or closer to the

curve than the evolute, that extremal point must be a minimum rather than a

maximum.

By Lemma 1, if Newton’s method converges, then the converged solution must

lie on the defining interval of the SPI region that contains the query point. Additionally,

Newton’s method must start within the interval as it is initialized with a seed parameter

that is one of the ends of the interval. Therefore, the only opportunity for the estimated

closest point to escape the interval is during one of the intermediate steps.

49

Lemma 2: The first parametric step of Newton’s method is in the parametric

direction from the initial seed parameter towards the other end of the interval.

Proof: Recalling Eq. 28

γ,γγ,
t

′′+′′−
′−

−=∆
Pγ

γPγ ,
,

suppose the seed parameter it represents the parametric start of the interval.

Then the seed point tangent points in the direction of the interval and the dot

product of the tangent and the vector from P to)(itγ will be negative. The

denominator of Eq.28 is positive because a point P on the curve yields a positive

denominator and the denominator does not cross zero until P is at the radius of

curvature, which is outside the SPI region. Therefore, t∆ is positive. If the

initial seed parameter is at the parametric end of the interval, then the numerator

of Eq. 28 is positive, and t∆ is negative.

Taken together, Lemmas 1 and 2 show that there must be a solution to converge

to within the interval and that the first step moves the estimated root parameter from the

seed parameter into the interval. Additional iterations must stay within the interval as the

endpoints of the interval have already been tested to determine the starting parameter

value and since the SPI regions are built such that 1)(<′ tG for all 1+≤≤ ii ttt ,

divergence cannot occur.

 Having shown that 1)(<′ tG for all 1+≤≤ ii ttt is a reasonable condition for

testing the safety of a SPI region, we now need an implementation of that test. The safe

test algorithm approximates the safety condition by sweeping a dense sampling of

50

parameter values from it to 1+it . A sampling density of 0.00001 was used in our later

examples; in general, the ends of the domain usually contain the problems so this is a

robust test. At each sample t , a check is made to see if the 1)(≥′ tG region lies

completely outside a conservative approximation of the SPI region for that interval.

First, the 1)(=′ tG boundary curves are computed in the local reference frame of

)(tγ (as in Equation 44). Then, a line segment (the approximate scaled evolute curve)

connecting the endpoints of the scaled evolute curve for the defining interval is

transformed into that local reference frame and intersected with the 1)(=′ tG boundary

curves. An intersection with the line segment results in the safe test failing. Finally, the

point of degeneracy along the normal is checked to make sure it lies outside the

approximate scaled evolute curve. Passing these tests for all the sample t values shows

that the condition 1)(<′ tG for all 1+≤≤ ii ttt is satisfied to the level of approximation,

and the spatial region is safe.

This check is adequate because of the nature of the 1)(≥′ tG regions. Each is

composed of two implicit quadratics with their point of maximum curvature placed along

the normal to the estimated root, further away than the scaled evolute curve. The

1)(≥′ tG region cannot completely contain the SPI region, because we know there is a

line of 0)(=′ tG along the normal except at the point of degeneracy. The 1)(≥′ tG

region cannot bend back to intersect the sides of the SPI region because of the number of

undulations in a quadratic. Finally, it is possible that the approximate scaled evolute

curve diverges from the actual scaled evolute curve enough that the point of degeneracy

along the normal lies inside the SPI region, and that case is explicitly tested. Therefore,

51

the only remaining possibilities are that the 1)(≥′ tG region is completely outside the

SPI region, or that the 1)(=′ tG boundary intersects the line segment approximating the

scaled evolute curve. These possibilities are the ones that are checked by the safe region

tests.

Results

This algorithm is straightforward to implement and runs quickly even though the

repeated sweeps through each interval during testing may appear inefficient. Once a set

of seed points is generated, repeated queries can use it, thereby amortizing the cost of

generation.

Figure 17 shows the result of running the seed point generation algorithm on an

example curve, with an 5.0=α . The results set of seed points are densely placed in order

to create safe regions, especially in areas of high curvature. The scaled evolute bound can

be difficult to visualize, especially as it crosses inflection points. Figure 18 shows the

same curve, but this time with 1.0=α instead. This keeps the bound closer to the curve.

Note how the tighter bound requires fewer seed points to maintain safety.

To make the bounds even easier to visualize, we can clip the maximum distance

of the scaled evolute bound from the curve. This keeps the safe region a consistent

distance from the curve in regions of low curvature. These bounds are shown in Figure

19, along with a new visualization that computes the maximum magnitude of 'G for all

values of t in the interval nearest the query point. This visualization reassures that the

computed seed points provide 1)(≤′ tG for all t within that interval, and thus, that all t

used by Newton’s method will converge for query points within the safe spatial region.

52

Figure 17: A sample curve with its approximate scaled evolute bound
and generated seed points.

Figure 18: A tighter bound requires fewer seed points than for the
bound in Figure 17.

53

Figure 19: The generated seed points for two example curves, with the
scaled evolute region clipped to a maximum distance. The left column
shows the curve, seed points, and bounds. The corresponding
maximum G ′ values, visualized on the right, are computed by

densely sampling the interval for each pixel, with G ′ magnitudes
greater or equal to one shown in a warning color. The maximal values
approach but do not cross into the safe bounds, implying that
repeated iterations of Newton’s method will yield the closest point on
the interval.

54

Discussion

This chapter has developed two main results – a geometric understanding of the

convergence conditions for Newton’s method for local minimum distance queries and an

algorithm for generating seed points such that Newton’s method is guaranteed to

converge when the query point is within a safe spatial region associated with the seed

points.

While the generated seed parameters provide assurance of local convergence, they

do not provide any guarantees about global convergence. In the next chapter, methods are

developed for global convergence of minimum distance queries of a point to a curve.

CHAPTER 5

LOWER BOUND PRUNING FOR GLOBAL MINIMUM

DISTANCE QUERIES BETWEEN A

POINT AND A CURVE

The last chapter derives a way to compute a set of initial seed points for Newton

method, such that if the query point P lay within a spatial region based on a scaled

evolute curve, then Newton’s method would converge to a local minimum distance

solution. However, the choice of initial seed point may lock the convergence process into

the wrong region of the curve for a global minimum. This is most apparent along the

medial axis of the curve as a zigzag pattern in the visualization of the closest point

(Figure 20).

Figure 20: Choosing a seed point that converges only to a local
minimum produces the zigzag pattern along the medial axis of the
curve.

56

The solution is to not just use the nearest seed point to initialize Newton’s

method. Instead, Newton’s method should test all seed points that might produce the

nearest point on the curve. From the resulting set of local minima, the closest is chosen as

the global solution. The basic steps of this process are:

1. Choose the closest untested seed point.

2. Find a local minimum using the chosen seed point, which establishes an upper

bound on the minimum distance to the curve.

3. Compute a lower bound on distance to each interval of the curve associated

with a seed point.

4. Remove from consideration seed points from intervals with a lower bound

greater than the upper bound.

5. Repeat until all valid seed points have been tested.

The first two steps of this process are just the components of the minimum

distance algorithm as developed in the previous chapter. The following section develops

an efficient lower bound test for spline curves as needed for step 3.

Lower Bounds

 Spline curves have the convex hull property, which states that the convex hull of

the control polygon completely contains the curve. Furthermore, each polynomial piece

(or rational piece in the positive weight NURBS case) of the curve is contained within the

convex hull of the control vertices that influence its shape. This second property provides

a tighter bound to the curve than the overall convex hull (Figure 21), but each polynomial

piece may still contain several seed points, thus preventing a lower bound computation

using the convex hull from distinguishing between them.

57

Figure 21: This quadratic curve has three polynomial pieces. The
convex hull for each piece is shown as a different filled region. Each
convex hull can enclose multiple seed points.

In order to provide tighter bounds, and thereby improve the algorithm’s selectivity

in pruning away seed points, a preprocess step to the algorithm refines the curve into

intervals centered on each seed point (Figure 22). Note that these intervals are different

from the safe region intervals used in the last chapter – those intervals spanned between

two seed points. These new, refined intervals have control polygons that more tightly

bound the intervals, and each convex hull bounds only one seed point.

The lower bound pruning algorithm may now efficiently determine which seed

points will potentially yield a new global minimum and which ones may be removed

from further consideration. In Figure 23, an upper bound has been found by using

Newton’s method on the nearest seed point. All other convex hulls that are within that

58

Figure 22: A refined curve provides a separate convex hull for each
seed point. (A) The interval associated with each seed point colors
each portion of the curve. (B) The refined control polygon produces
tighter convex hulls that more closely bound the seed points.

A.

B.

59

Figure 23: The circle shows the current upper bound on distance. The
convex hull at the bottom of the curve overlaps that circle, showing
that its seed point may produce a new global minimum.

upper bound distance may potentially contain portions of the curve that are closer than

the existing upper bound point. This is visualized by drawing a circle around the query

point with a radius equal to the upper bound distance. All convex hulls that overlap that

circle contain seed points that are candidates for producing a new global minimum.

Fortunately, an explicit computation of the convex hull of each interval’s control

polygon is not needed, just the convex hull distance. The gjk package

(web.comlab.ox.ac.uk/oucl/work/stephen.cameron/distances/) computes the minimum

distance to the convex hull of a set of points by creating an implicit local portion of the

hull while doing a simplex search of the point set for a minimum distance.

As new and better upper bounds are found, the circle shrinks, and more intervals

of the curve (and associated seed points) can be pruned away. Eventually, all seed points

are either tested or pruned away, and the final upper bound on distance can be used as the

global minimum distance.

60

Results

Figure 24 demonstrates how lower bound pruning can yield global minima by

testing several candidate seed points. The closest point visualization using lower bound

pruning shows a smooth medial axis, while the visualization using a single seed point

shows the effect of locking in convergence. In addition, the results using lower bound

pruning show fewer regions of divergence, as the multiple seed points provide some

redundancy in difficult regions.

In order to compare the computation costs, repeated queries like those in Figure

24 were used, but without actually creating the image. A 1000x1000 query grid was

timed for Newton’s method and for Newton’s method augmented with lower bound

pruning. Computation time was measured on a 1.1GHz PIII-M laptop. As Table 1 shows,

using lower bound pruning adds only about 10% to the computation time.

Discussion

The lower bound pruning technique is independent of the proper computation of

seed points as developed in the last chapter and provides useful redundancy in multiple

calls to Newton’s method when seed points are less carefully chosen. In practice, only a

few seed points are needed to find a global minimum and the remaining points are pruned

with only the additional cost of a minimum distance to convex hull call. However, when

used with the safe seed point technique, and when the query point P is within the safe

regions of all the used intervals, then the convex hull pruning creates a guarantee of

global convergence for minimum distance queries.

61

Figure 24: Distance fields computed using a single seed point and
using lower bound pruning. (top) Only using the closest seed point
yields incorrect global minima. (bottom) The lower bound pruning
technique developed in this chapter produces global minima as well as
improved convergence.

62

Table 1: Lower bound pruning is not much more expensive to use
than standard Newton’s method but provides much better reliability

Method # seed points precision time (s)

Newton 15 10-6 59.5

Lower bound pruning 15 10-6 67.4

CHAPTER 6

GLOBAL SEARCH FOR POINT-CURVE DISTANCE

MINIMA USING NORMAL CONES

The last chapter introduced a set of tests for reliable global distance queries

between a point and a curve. This chapter develops a global method for reliably finding

all the local extrema in distance between a point and a curve.

Prior global methods pruned curve intervals using lower and upper distance

bounds and subdivision[39], or robust root finding using interval testing and

subdivision[40]. However, from Equation 6

()
dt
dttE γPγ ⋅−=)()(,

we see that collinearity between the solution point normal and the vector between the

query and solution point is the key to a distance extrema. Pruning based on distance may

find a global minimum, but does not use any of the curve normal information in that

search. This chapter develops an approach based on bounded normals to prune the curve

based on collinearity, rather than distance bounds.

Normal Cone Approach

Just as it did for the global minimum approach, curve subdivision plays an

important role in this approach. Since the search is for all local extrema of the curve,

64

rather than comparing a distance measure of each subdivided interval to a global

standard, each interval is judged independently. The outline of the normal cone approach

is

1. Bound the range of normals and spatial extent of each interval.

2. See if the collinearity condition might be satisfied for the interval for a given

query point.

3. Subdivide intervals that might meet the collinearity condition.

4. Repeat until the remaining curve intervals contain small normal ranges, then

compute exact local extrema using local methods.

Bounding the Range of Normals with Normal Cones

The derivative of a NURBS curve is a vector-valued NURBS curve. Thus, the

properties of NURBS curves, such as the convex hull property, also apply to the

derivative curve. This can be used to bound the range of normals for that curve.

The curve subdivision process turns pieces of NURBS curves into rational Bézier

curves, which are a subset of NURBS curves. For a Bézier curve)(tB of degree d, with

control points iP , and basis functions)(, tdiβ

∑=
i

dii tPtB)()(,β (50)

and its derivative is

∑ −+ +=′
i

diii tPPdtB)()()(1,1 β . (51)

The derivative curve is also known as the hodograph, and is readily computed as scaled

differences of adjacent control points of the original curve. Since the convex hull

65

property holds for the derivative curve, the range of tangent directions is bounded by the

convex hull of the derivative curve control points.

These tangent directions are encapsulated as a cone that contains the range of

tangent directions. The normalized tangent control points are averaged, and the spread of

the cone is computed by finding the maximum angle between the average tangent and the

tangent curve control points. The normal cone is just the tangent cone rotated by 90

degrees.

Since the collinearity condition depends not only on the curve normal, but also on

the vector between the query point and the solution point, the normal cone alone is

insufficient to compute bounds on the collinearity condition. The range of vectors

between the query and possible solution points must also be taken into consideration.

Those vectors are bounded by first bounding the spatial extent of the curve interval with a

circle. This circle bounds the possible locations of the solution point on the curve. The

range of vectors between the query point and solution point then forms a cone, called the

solution line cone, between the query point and bounding circle (Figure 25).

(a) (b) (c)

Figure 25: Building the bounds on normal and solution vectors.
(a) The query point and curve interval, with its control polygon.
(b) The tangent cone computed from differences of control points.
(c) The solution line cone encompasses the circle around the interval.

66

Checking the Collinearity Condition

Given the normal cone and the solution line cone, the collinearity check looks for

overlap between the normal cone and the solution line cone. An overlap indicates a

possible solution within that curve interval. Checking for a perpendicularity condition

between the tangent and solution line cone rather than collinearity with the normal cone

avoids the need for an additional cone in the negative normal direction to handle query

points on both sides of the curve.

Intervals passing the collinearity test are subdivided. These subdivided curves

have tighter bounds on their spatial extent, which produces tighter solution line cones and

tighter bounds on their normal cone. These tighter bounds are better able to prune

intervals during the next iteration (Figure 26).

Computing an Exact Solution

The subdivision terminates when the normal cone spread angle falls below a user

specified epsilon. Exact local minima are computed from these intervals using local

numerical methods. An interval accepted for exact tests performs nodal mapping between

the query point and interval, followed by Newton’s method. Our tests used an epsilon of

0.01, which implies that Newton’s method is fed with an initial estimate at least that close

to the exact solution.

Not all intervals will contain a valid local minimum because of the conservative

nature of the bounding cone and bounding circle tests. Solutions that leave the interval

during Newton’s method can be removed, or converged solutions can be checked for

redundancies. The latter approach is preferred since it potentially provides multiple initial

guesses to Newton’s method for each local minimum, improving robustness.

67

Figure 26: Two consecutive levels of subdivision during the normal
cone approach and the final result are shown. The cones are the
tangent cones computed from the derivative curve and the circles
provide the basis for solution line cones. Intervals in that pass are
subdivided and ones that fail are removed from further computation.

68

Results

The normal cone approach reliably finds all the local extrema. The speed of the

method is roughly linearly dependent on the number of local minima. If the minima are

closely spaced, then they may share common subdivided intervals, improving

performance. In tests using the same curve as in the last chapter, the normal cone

approach ran three times slower than the globally convergent approach; however, it is

computing and returning more information about distance to the curve.

CHAPTER 7

MINIMUM DISTANCE QUERIES BETWEEN

A POINT AND A SURFACE

Until this chapter, only points and curves have been the primitives under

consideration for distance queries. The next chapters extend the approaches developed for

curves to apply to surfaces and further to haptic applications. This chapter provides an

analysis of the degeneracy conditions for Newton’s method when solving for minimum

distances between a point and a parametric surface, which will help motivate later

development of robust geometric techniques.

Multidimensional Newton’s Method

Multidimensional Newton’s method solves for simultaneous zeros in a system of

functions, F ,

F∆pJ −=⋅ , (52)

where J is the Jacobian of F , and ∆p is the change in parameter needed to

simultaneously move each function in F closer to zero[41]. The actual change in

parameter is found by inverting the Jacobian and multiplying the inverse through the

system of functions,

70

FJ∆p 1−−= . (53)

Recall from Chapter 3 that the squared distance between a point in space, P , and a

regular parametric surface),(vuS is

() ()PSPS −⋅−=),(),(),(2 vuvuvuD . (54)

Minima are found by solving for simultaneous zeros of the two partials of),(2 vuD ,

()
() 








⋅−
⋅−

=
v

u

SPS
SPS

F
),(
),(

vu
vu

, (55)

as well as checking the edges of the domain.

For the particular case of finding the roots of Equation 55, multidimensional

Newton’s method expands to

[] []

[] []








⋅−
⋅−

−=
























⋅−
∂
∂⋅−

∂
∂

⋅−
∂
∂⋅−

∂
∂

v

u

vv

uu

SP)(S
SP)(S

SP)(SSP)(S

SP)(SSP)(S

∆v
∆u

v

vu

u

, (56)

or









⋅−
⋅−

−=















⋅+⋅−⋅+⋅−
⋅+⋅−⋅+⋅−

v

u

vvvvvuuv

vuuvuuuu

SP)(S
SP)(S

SSSP)(SSSSP)(S
SSSP)(SSSSP)(S

∆v
∆u

. (57)

The rest of this section analyzes degeneracy conditions while using Newton’s method to

find roots of Eq. 55, in particular, by providing a geometric interpretation of allowable

placements of P.

71

Degeneracy Conditions

As in the curve case, recasting the vector between the point and the surface to

local coordinates on the surface helps create a geometric interpretation of degeneracy

conditions. So, by using the tangent plane and normal at),(vuS as a local frame

NSSPS vu zyx ++=− , (58)

the Jacobian in Eq. 57 becomes













+⋅+⋅+⋅⋅+⋅+⋅+⋅
⋅+⋅+⋅+⋅+⋅+⋅+⋅= 2

2

vvvvvvvvuvuuvuvvuvu

vuuvuvvuvuuuuuuvuuu

SSNSSSSSSSNSSSS
SSSNSSSSSSNSSSSJ

zyxzyx
zyxzyx . (59)

An iteration of multidimensional Newton’s method becomes degenerate when J when

0)det(=J , (60)

which for our two-dimensional case is just

0)det(10011100 =−= JJJJJ . (61)

Computing the determinant of J = 0 when it is in the form of Eq. 59 forms a quadric

implicit surface, the degeneracy quadric, where positions of P, defined in the local

coordinate frame, cause J to be singular. Looking at Eq. 59, each element in the Jacobian

is a plane with a normal defined by the second partial in that element, so that the plane in

00J is orthogonal to uuS , the plane in 11J is orthogonal to vvS , and the planes for both

01J and 10J are orthogonal to uvS . These planes are the dominant visual cues in some

forms of the quadric surfaces.

For example, Figure 27 shows a surface with an estimated closest point near the

center of the patch. The degeneracy quadric is shown as a point sampled implicit. The

72

Figure 27: The shape of the degeneracy quadric derives from the
direction and magnitude of the surface partial derivatives.

73

second part of Figure 27 shows the same situation, but with the model rotated to show

how the shape of the quadric is largely determined by uuS and vvS , which are much

larger in magnitude than uvS . The implicit hyperboloid has portions perpendicular to uuS

and vvS . When uvS grows in magnitude, these cues are no longer so easily discernable.

More special forms of the quadric will be discussed later in this chapter.

Degeneracy Along the Normal

While the shape of the degeneracy quadric can be quite complex, we are most

interested in finding minimum distance solution given a reasonable starting point, such as

tracking the closest point on a surface while moving a haptic interface. This situation is

when x and y in Eq. 58 are small.

So, setting x = 0 and y = 0, the determinant of J equals zero when

0det 2

2

=






















+⋅⋅+⋅
⋅+⋅+⋅

vvvvuuv

vuuvuuu

SSNSSSN
SSSNSSN

zz
zz (62)

The first and second fundamental forms of a surface[38] are









=








⋅⋅
⋅⋅

=









=








⋅⋅
⋅⋅

=

NM
ML

L

GF
FE

G

NSNS
NSNS

SSSS
SSSS

vvuv

uvuu

vvvu

vuuu

. (63)

Thus, in terms of the first and second fundamental forms, Eq. 62 is

0det =















++
++

GzNFzM
FzMEzL

, (64)

74

and the determinant equals zero at the roots of

.012
22

2
2 =+








−
−++









−
−

FEG
MFENLGz

FEG
MLNz (65)

These roots are more easily interpreted by rewriting the quadratic in terms of the

principal curvatures at),(vuS . The principal curvatures of a surface, 1κ and 2κ , define

the maximum and minimum curvatures of curves through a point on a surface. They are

defined in terms of the fundamental forms of a surface[42] such that









−
−+=+









−
−=

221

2

2

21

2
FEG

MFENLG
FEG
MLN

κκ

κκ
 (66)

These definitions offer a simple substitution for rewriting Eq. 62 as

01)(2121
2 =+++ κκκκ zz , (67)

and the roots are just

21

11
κκ

−=−= zandz (68)

which shows that Jacobian becomes singular and Newton’s method fails to converge

when the query point P is a distance along the normal equal to one of the principal radii

of curvature of the estimated closest point on the surface. Figure 28 shows a circle for

each principal curvature, oriented in the corresponding principal direction. The

exaggerated dots are the centers of the circles, and the centers lie on the degeneracy

quadric, as predicted in Eq. 68.

75

Figure 28: The surface normal intersects the degeneracy quadric at
the radius of curvature for each the principal curvatures.

Additional Examples of the Degeneracy Quadric

There are forms of),(vuS that produce simpler forms of the degeneracy quadric.

Figure 29 shows a surface patch with uuS and vvS in the same direction, and uvS with

zero magnitude. The quadric collapses to two parallel lines, each a principal radius of

curvature along the normal from the point on the surface. This particular patch was

defined using a warp operator, which displaces control points along a common normal

direction weighted by distance from the warp center. Surfaces of revolution also have

second partials that lead to simplified forms of the degeneracy quadric such as the

cylindrical ellipsoid in Figure 30.

76

Figure 29: The degeneracy quadric forms two parallel planes
perpendicular with the second partials.

Figure 30: A cylindrical ellipsoid degeneracy quadric forms from a
point on a surface of revolution.

77

Discussion

This chapter shows how to use multidimensional Newton’s method to find local

minima in distance between a point and a surface. As in the curve case, regions of

degeneracy can cause Newton’s method to fail, but the degeneracy conditions are even

more complex in the surface case. In addition, simply avoiding a degeneracy does not

mean that Newton’s method will converge. Therefore, while Newton’s method plays a

role where fast local methods are essential, this result motivates the development of

robust geometric approaches to solve point to surface minimum distance queries.

CHAPTER 8

GLOBAL SEARCH FOR POINT-SURFACE DISTANCE

EXTREMA USING NORMAL CONES

The normal cone approach for point-curve distance extrema extends naturally to

point-surface distance queries. In the curve case, a cone bounded the range of normals for

a curve interval. In the surface case, the same approach applies, except to surface patches

instead of curve intervals.

While it is possible to compute surface normal cones using symbolic

pseudonormals, with non-unit length vectors, we use simpler tests based on both tangent

directions. The subdivision test computes bounding cones for each of the tangent

directions (Figure 31) and a solution line cone from the query point to a bounding sphere

around the patch. Patches are pruned by checking each tangent cone for perpendicularity

with the solution line cone. A failure to find potential orthogonality between a vector in

the solution line cone and vectors in either of the tangent cones means that surface patch

cannot contain a local solution.

Tangent cones are computed by finding differences of control points over all the

rows or columns of the control mesh, depending on the tangent direction. Similarly, the

patch bounding sphere is computed from the average and extent of the patch control

79

Figure 31: Two surface patches with their sample tangent cones. The
spheres bound he spatial extent of the patch and help to form the
solution line cone from the query point.

points. For low order Bézier surfaces, the number of rows or column is equal to the

parametric order, so the computation is not too costly.

Surface patches that may contain a solution are split into four smaller patches

(Figure 32), while patches that fail the normal cone test are removed. Exact closest points

are found on patches with both tangent cone spread angles smaller than an epsilon. A

combination of nodal mapping[11] followed by Newton’s method computes these exact

local closest points (Figure 33). Because leaf nodes may not contain a local solution,

solutions that leave the leaf node domain need to be discarded, or checked against

existing solutions to see if they are redundant. The second approach also provides some

additional robustness to Newton’s method by providing multiple starting locations for

each local minimum distance solution.

When the local solutions form a curve on the surface, this curve is approximated

to the level of the convergence epsilon. However, heuristics can detect the large number

of child patches being created in this degenerate situation and choose a smaller sample if

speed is needed over a full solution.

80

Figure 32: Refining a patch splits it into four independent surfaces.
The new control meshes more tightly bound the surface.

Figure 33: All local minimum distance solutions are found using the
normal cone approach. Nodal mapping and Newton’s method
improve the final solution.

81

Experiments indicate that the subdivision hierarchy manages to stay fairly sparse

during typical distance queries, which shows the subdivision and pruning test is effective.

Figure 34 shows the number of patches checked at each iteration of the algorithm for two

different query points, one yielding five solutions and the other three. The chart does

show that for the tested queries, little pruning occurs during the first few levels of

subdivision, and that further on, the algorithm creates and destroys a lot of patches that

do not yield a solution. Fortunately, since the subdivision process always splits patches in

half, a tested child patch is identical from one query to the next, so surface patches and

their associated cones could be stored for use in following queries. However, retaining all

surface patches can be costly in terms of computer memory.

Number of Patches vs. Iteration Number

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12

iterations

N
um

be
r o

f P
at

ch
es

3 solutions 5 solutions

Figure 34: The number of active surface patches during each iteration
varies with search complexity. The query that returned five local
minima had to create and search many more patches than the query
that returned three.

82

Coherency with the Dynamic Subdivision Tree

Instead, we adopt the approach of retaining portions of the subdivision tree over

multiple queries, but removing portions that are no longer currently used. Patches are

stored as computed in a tree data structure, a dynamic subdivision tree, with each node

having four children. Patches (and their children) are deleted only when a query tests a

patch’s tangent cones and determines there is no local solution in that patch. This has the

effect of retaining patches during sets of temporally and spatially coherent queries. The

patch may need to be recomputed later, but this approach balances memory usage with

computational efficiency.

The dynamic subdivision tree approach dramatically improves computational

speed when query points are closely spaced. The dynamic subdivision tree was tested by

creating a sample path above a surface, moving along the path in small increments, and

performing a distance query at each step (Figure 35). Without coherence, 1000 distance

queries took 24 seconds; with coherence, the same test took 4 seconds, 6 times faster.

Discussion

 Normal cones, in conjunction with dynamic subdivision trees, provide robust and

efficient computation of all local distance minima between a point and a surface. In the

next chapter, we show how the developed distance techniques can be applied to haptic

rendering of NURBS surfaces.

83

Figure 35: The query point moves along the test path (thin line). The
local closest points on the surface are shown as densely placed points,
and include regions where three local minima were found. This type

of test is sped using a dynamic subdivision tree.

CHAPTER 9

HAPTIC RENDERING OF NURBS SURFACES

Haptic rendering requires update rates around 1000 Hertz to maintain stability and

sensations of contact between a point and a surface. These rates cannot be met without

careful design of the overall system so that virtual environment complexity can be

handled gracefully. We use a three-phase approach to focus computational resources

where they are needed during each time step of the haptic rendering:

1. Remove surfaces too distant to be interacted with using spherical bounds.

2. Use normal cones to find local minima on the remaining surfaces.

3. Update these local minima using Newton’s method as the haptic query point

moves, using these local updates to determine penetration into the surface.

Finding Local Minima

Local distance minima are needed, rather than a global distance to the surface,

because the local minima provide more information about possible future contacts.

Imagine the haptic query point is above the surface, but in a valley between two hills. The

haptic query point could enter the surface at the floor of the valley, or along either of the

two hills. If these features are small, there might not be enough time for a global distance

computation to reinitialize Newton’s method after a discontinuous jump in closest point

85

location. A normal cone search for all local minima tracks all these potential future

contacts (Figure 36).

Local Update

Newton’s method updates the local minima found with the normal cone

computation. Only those normal cone minima that start above the surface are tracked,

else additional extrema from the far side of the model could be included. Newton’s

method updates these local closest points at haptic rates. The normal cone computation

continually feeds the local update so that discontinuous jumps are correctly updated.

Figure 36: All local minima are needed to initialize local tracking.
(top) A global minimum is not updated in time to jump the local
tracking to the new side. (bottom) Normal cone computation finds all
local minima, all of which are tracked, so the penetration is detected.

86

However, if the haptic query point enters the surface, as determined with a test with the

surface normal, then only that local minimum updates and the normal cone computations

are ignored until the haptic query point leaves the surface.

Newton’s method is fairly stable in this situation because the normal cone

computation provides an accurate initial point when outside the surface, and inside the

surface, the haptic interaction forces prevent the haptic query point from penetrating far

into the model, where degeneracies are more likely. If Newton’s method fails to

converge, then the local closest point is updated using a linear approximation from [11].

Results

Figure 37 shows the results of a simulated haptic path entering a surface. When

the patch first starts, there are multiple local distance minima, and the normal cone

algorithm identifies these regions. Newton’s method provides fast updates to these

minima. As the path nears the surface, only one local minimum remains, and again, the

normal cone computation updates the set of minima for the local tracking to update.

When the path enters the surface, the local closest point is maintained only by Newton’s

method. Upon exit, the normal cone algorithm again periodically updates the local

update.

For this test case, the combined normal cone and Newton method algorithm was

able to maintain a 2000Hz update rate, well in the realm for haptic rendering. This

technique provides a robust means of quickly tracking local distance minima on a

surface.

87

Figure 37: A simulated haptic path enters a surface. Above the
surface, multiple minima are tracked, whereas only one is tracked
while below. Forces are generated only while inside. The normal cone
computation updates the set of local minima for the local update to
maintain at haptic rates.

CHAPTER 10

GLOBAL SEARCH FOR LOCAL DISTANCE MINIMA

BETWEEN POLYGONAL MODELS

Distance queries to and between polygonal models have most frequently relied

upon upper and lower bound distance algorithms to hierarchically prune away model

regions[20][43][14][44]. In Chapters 7-8, bounds on normal direction allowed a global

search for local minima to parametric surfaces. This chapter applies that paradigm to

polygonal models, extending the computation of local solutions from sculptured models

to faceted ones. In support of this computation, we develop a data structure, the

spatialized normal cone hierarchy (SNCH) that hierarchically encapsulates the range of

normals and the position in space for portions of a triangulated surface.

Many computer graphics applications depend upon the surface normal. Data

structures to encapsulate sets of these surface normals have accelerated backface

culling[45], lighting[46], model simplification[47], and silhouette extraction[48]. These

problems can be defined in terms of a point, such as a viewpoint or point light source,

and a single model. The SNCH data structure applies to problems involving two models,

and is thus suitable for general minimum distance computations.

89

The Spatialized Normal Cone Hierarchy

For polygonal models, with their fixed resolution, it is feasible to precompute a

hierarchy of normal cone bounds, rather than the dynamic computation used in the earlier

chapters. This hierarchy is based on a simple data structure consisting of a normal cone,

represented by a cone axis vector and a cone semiangle; and a Euclidean bounding

volume, in this case a sphere, represented by a center and a radius (Figure 38). The

bounding volume associates the normals with a particular region of model space, or

spatializes the normal cone. Each node of the data structure also contains pointers to two

child nodes and a pointer to an underlying triangle if it is a leaf node.

Constructing the Hierarchy

This data structure encapsulates a triangular mesh structure of vertices, edges, and

triangles. The connectivity of the triangles is not important for the operation of the

minimum distance algorithm, except for the construction of appropriate normals for each

of the primitives.

Figure 38: The spatialized normal cone encompasses the range of
normals and bounds the geometry.

90

The first step in the construction process constructs a spatial bounding volume

hierarchy. The publicly available PQP code (http://www.cs.unc.edu/~geom/SSV/)

recursively subdivides the model into a Euclidean bounding volume hierarchy. A

bounding sphere fits the geometry at each node for use in the normal cone.

The second step computes a normal cone for each node of the Euclidean bounding

volume. We compute the cone axis by averaging the triangle, edge and vertex normals

contained in that node. The cone semiangle is the maximum angle between the cone axis

and the node geometry normals. These steps are repeated down the hierarchy until the

normal cone data structure is complete.

Minimum Distance Computations with a SNCH

Although this data structure was developed for model-model distance

computations, we start by describing the solution to the minimum distance between a

query point P and a polygonal model. All the surface features, such as faces, edges, or

vertices, on the model containing a local minimum distance solution have an associated

vector collinear with the vector from P to the closest point on the feature (Figure 39).

Figure 39: The line between the query point and the feature is in line
with the normal at the feature.

91

The global minimum distance is the length of the shortest such vector to a feature

on the model. However, it is not necessary to select only the shortest line as the solution.

Instead, all the vectors that satisfy the criteria can be used. These are the local minimum

distance solutions between P and the model (Figure 40).

While a linear algorithm could test each triangle for a potential solution, this

would be slow for large models. Instead, the SNCH is used to hierarchically test portions

of the model, quickly excluding most of it from consideration.

The range of possible vectors from the query point P to the geometry primitives

contained within a node of the SNCH forms a potentially complicated shape. Instead of

computing this form, the range of vectors from P to the bounding sphere at a node

conservatively bounds the range of vectors to the contained geometry. This set of vectors

forms a solution line cone between P and the bounding sphere (see Figure 41).

Figure 40: All the solutions satisfying the collinearity approach. The
local minimum distance lines extend to each leg, the udder, and tail.

92

Figure 41: A node of the SNCH contains geometry bounded by a
sphere. The range of vectors from a query point to that sphere forms
the solution line cone, which bounds the range of vectors to the
contained geometry.

If the solution line cone contains a vector that is collinear with a vector in the

node’s normal cone, then there may be a local minimum distance solution from the query

point to the contained geometry. This possibility is simply tested by expanding the

normal cone by the solution line cone semiangle, and then seeing if P is contained within

the expanded normal cone. Nodes that pass this test are subdivided and recursively tested

until the leaf level, where an exact test is applied. Nodes that fail are pruned, as neither

they nor their children can contain a local minimum distance solution.

Leaf Tests for Local Minimum Distance

In a global minimum leaf test, the minimum distance between the query point and

the leaf triangle is computed and compared to previous leaf distances. To test for a local

minimum distance, the leaf test also computes the closest point on the leaf triangle to the

93

query point. Rather then comparing to a global minimum, the geometric feature

associated with this closest point must have a normal that is collinear with the minimum

distance vector. The closest point may lie on a triangle face, edge, or vertex, each with a

characteristic range of normals. If the closest point lies on the triangle face, the leaf test

must only compare the triangle normal with the minimum distance vector. If the closest

point lies on a triangle edge, the minimum distance vector must be compared against the

span of normals from the triangle face to the edge normal.

When the closest point matches up with a triangle vertex, the minimum distance

vector must be compared against the span of normals for the vertex. Each vertex normal

covers an area on the Gauss sphere defined by the surrounding triangle face normals

(Figure 42). This area is divided into disjoint regions to associate with each surrounding

triangle for computational efficiency.

We divide the normal range for a vertex among each surrounding triangle to

prevent redundant solutions. A possible region would be to take the span from the

triangle normal to the vertex normal and then half of each edge span. However, that

Figure 42: A. The vertex normal is surrounded by triangles. B. Each
triangle normal maps to a point on the Gauss sphere and each edge
maps to an arc.

94

produces a quadrilateral on the sphere that may cross itself in complex ways. Instead, the

triangular span from the triangle normal to the vertex normal to the left neighbor’s face

normal (Figure 42.B.) is associated with each triangle vertex. Given this association, it is

easy to determine if the minimum distance vector falls within the triangular range of

normals.

Local Minimum Distance for Two Models

This approach for local minimum distance between a query point and model

extends to problems involving two models. Essentially, when there are two models, we

must account for the range of possible solution lines between two nodes, one on each

model. The range of solution lines now spans between the two bounding spheres, one

from each node, and forms a solution line cone for two models (Figure 43).

Figure 43: The solution line cone now spans between the two
bounding spheres – encompassing all possible solution lines between
the models.

normal cones

solution line cone

95

The pruning test for a pair of nodes checks if the normal cones face each other,

contain at least one pair of collinear normals, and that this pair is also collinear with a line

in the solution line cone. This extension allows pruning of each model’s normal cone tree

down to leaf nodes that may meet the local minimum distance requirement. The leaf test

finds the minimum distance between the two leaf triangles, and checks the minimum

distance line against the ranges of normals from the closest point features as in the leaf

test for point-model queries.

Results

First, we tested the query point to model method with a variety of models. The

models rotated randomly while the query point stayed fixed in space above the moving

model. The local minimum distances (including the global minimum distance) from a

point in space to a model (Table 2) are computed in sub-millisecond time on average.

This makes the presented approach appropriate for a number of tasks, including haptic

rendering of polygonal models and volumetric conversion.

Table 2: The local minimum distance from a point in space to a model
is fast for a range of model types.

 Sphere Holes3 Small bunny Large bunny

triangles 32,700 11,800 10,800 69,500

Time (ms) 0.06 0.05 0.1 0.2

96

To test this method applied to the distance between two models, we compared the

speed of the local minimum distance method with the global minimum distance method

from the PQP package. The normal cone method gives faster results on fairly smooth

surfaces. This suggests it may be a good choice for certain classes of models, such as

those derived from subdivision surfaces. It was slower on surfaces with a lot of fine

detail, such as the bunny. The small bumps on the bunny translate into a wide range of

normals in a small area, as well as producing numerous local minima. The normal cone

method runs at a competitive speed (Table 3) compared with the global PQP method, but

returns all the local minima as well (Figure 44).

Table 3: Timing results for finding the distance between models.

 sphere-torus torus-cow torus-bunny

Triangles 1 8192 4096 4096

Triangles 2 4096 5804 69451

PQP (secs) 0.007 0.006 0.0057

Normal cone (secs) 0.004 0.008 0.0059

Figure 44: The local minimum distances between a torus and sphere.

97

Discussion

In Figure 45, the normal cone method finds potentially interesting points on the

legs, head and body of the cow compared to the one point provided by the global

minimum. Of course, the shortest of these minima can also be chosen as the global

minimum, if that measure is needed. In the next chapter, we explore how these local

minimum distances provide useful guidance for haptic algorithms.

Figure 45: The local minimum distance returns more information
about the distance between models than the global minimum distance.

CHAPTER 11

SIX DEGREE-OF-FREEDOM HAPTIC RENDERING OF

COMPLEX POLYGONAL MODELS

Spatialized normal cone hierarchies find the local minimum distances (LMDs)

between polygonal models. The work in this section adapts the SNCH computation to a

haptic rendering system for polygonal models by focusing computational resources on

the portions of the models that are nearly in contact.

Rather than finding forces that move models apart once they have collided, this

haptic rendering algorithm prevents collisions by applying preventive forces as models

approach each other (Figure 46). This technique is appropriate for representing

interactions between models since allowing models to penetrate each other violates a

real-world constraint we are interested in maintaining.

Figure 46: The SNCH approach finds local minimum distances
between models and applies repulsive forces to prevent contact.

99

Some distinguishing characteristics of a haptic rendering environment using the

SNCH approach are as follows:

• polygonal models of arbitrary shape can be used in the virtual environment.

• elements of the scene can be moved or added and deleted without requiring

substantial preprocessing.

• environments with large number of triangles can be used, increasing the

accuracy of simulated model interactions.

System Overview

The haptic system is based on a Sensable 6-DOF PHaNTOM haptic interface

(Figure 47). The computations run on a dual processor Pentium 4 2.4 GHz Linux

computer with a gigabyte of RAM and a GeForce 4 Ti 4400 graphics card. The

application is multithreaded, with the haptic force computation thread running at a high

priority to ensure fast update rates.

Figure 47: The 6-DOF Phantom used in a virtual prototyping session.

100

Approach

We adopt the approach of the Boeing voxel sampling virtual prototyping

system[49], which prevents models from colliding rather than moving them apart once

interpenetration has occurred. This has several advantages:

• accuracy of virtual prototyping is maintained since real-world constraints

are maintained,

• lower rates than the typical kilohertz haptic rate are acceptable, since we are

not attempting to create the impulsive forces of hard contact,

• minimum distances are faster to compute than penetration depths, allowing

haptic rendering of more accurate models.

Local Minimum Distances

Global minimum distances may be rapidly computed between polygonal models

using a number of algorithms. However, if these techniques were used in a haptic

rendering system, the global minimum would generate only a single penalty force at a

time. This force could rapidly change direction, creating haptic instabilities.

Alternatively, one could easily imagine modifying a distance computation to return all

pairs that are within a certain distance, rather than just the global minimum. However,

this could potentially create large numbers of penalty forces, which would swamp the

haptic computation (Figure 48).

We argue that an appropriate solution is to compute the local minimum distances

between models. Imagine two models that have just collided. This collision can be

represented at a single point on each surface (even for manifold contacts, a single point

encapsulates that area of contact). If the models move apart, this pair of points tracks the

101

 (a) (b) (c) (d)

Figure 48: Different distance possibilities for force computation. (a)
The global minimum distance. (b) All pairs within a distance.
(c) Contact points between two colliding models. (d) Local minimum
distances.

local minimum distance and represents the potential future contact between entire

sections of these two models. Additional pairs of contact points for those sections are

redundant predictors of future contacts for those regions, thus the local minimum distance

pairs are adequate. This formulation keeps a manageable number of contacts for the

haptic computation, yet is complete enough to safely predict all potential contacts.

Modifying the LMD Computation

We use a modified LMD computation based on the spatialized normal cone

hierarchies to quickly determine all the potential areas of contact. The main modification

is to introduce a cutoff distance that prunes pairs of nodes that are further apart than this

distance. This is appropriate for haptic rendering, where we are interested in computing

penalty forces only for models in proximity (Figure 49).

102

Figure 49: Finding all LMDs will create forces between far apart
portions of the models, as shown in the top image. Using a small cutoff
distance in the lower image removes unnecessary LMDs from
consideration and controls the onset of forces.

103

Forces and Torques

At each time step in the haptic rendering loop, the haptic rendering algorithm

computes the LMDs that are closer than the cutoff distance between the model that is

controlled by the haptic interface and the rest of the models in the scene. Each LMD is

considered a virtual spring with a rest length equal to the cutoff distance. Each spring is

attached to the models by the pairs of points that form the LMD. The force applied to the

moving model is then

∑−=

−=

i
i

iii

fkF

LMDLMDcutoffDistf
rr

r
)(

 (69)

and the torque is

∑ ×=
i

ii fp
rrrτ (70)

where ipr is the distance from the center of mass to the tracking point on the model for

the local minimum distance.

The center of mass and the first-order moments are approximated by the

geometric extent of a PQP generated, oriented swept sphere bounding box surrounding

and approximating the shape of the model. Values that are more precise could be easily

used when available.

The repulsive forces between models begin at zero at the cutoff distance, so

LMDs that are created and destroyed as sections of the two models approach the cutoff

distance only modify the total force and torque a small amount. Furthermore, since we

104

are not attempting to render the forces of hard contact, only guiding the placement of

models, the springs can be fairly soft, smoothing the haptic rendering.

Preprocessing

The LMD computations require precomputing a spatialized normal cone

hierarchy for each polygonal model in the virtual prototyping environment. However,

models in the scene can be added and deleted, or moved around interactively, without

needing further precomputation. The preprocessing step takes a few seconds for models

of several thousand triangles.

Results

We have tested our algorithms on a variety of models. The 6-DOF force feedback

allows the model controlled by the haptic device to slide around the objects in the

stationary scene, providing good intuition for the user (Figure 50). We were able to

explore concave portions of the stationary model, with repulsive forces keeping us from

all the potential contact areas (Figure 51).

Figure 50: Users are able to feel translation forces and torques
generated by interacting arbitrary models.

105

Figure 51: The technique handles concave regions of models.

It is difficult to give a chart with timings for the rendering of these models, since

the computation time varies with the cutoff distance, the number of LMDs found, and the

relative configuration of the models. Instead, Figure 52-Figure 54 show a variety of

sample interactions with the polygon counts, timings, and number of LMDs. Typically,

haptic rates in the hundreds of Hertz are achieved between models with hundreds and

thousands of polygons.

106

Figure 52: A disc model interacting with a gear

Image Model (# tris) Scene (# tris) # of LMDs Rate (Hz)

a Disc (512) Gear (6302) 3 176

b Disc (512) Gear (6302) 1 1506

107

Figure 53: Mechanical and organic models can be used.

Image Model (# tris) Scene (# tris) # of LMDs Rate (Hz)

c Disc (512) Gear (6302) 10 121

d Sphere (128) Bunny (2204) 2 337

108

Figure 54: Larger models scale well in this system.

Image Model (# tris) Scene (# tris) # of LMDs Rate (Hz)

e Teapot (5648) Spring (23578) 2 181

f Disc (512) Crankshaft (12802) 2 318

CHAPTER 12

SIX DOF HAPTIC RENDERING WITH LOCAL DESCENT

In the last chapter, we computed local minimum distances (LMDs) between

polygonal models using spatialized normal cone hierarchies (SNCHs). In this chapter,

this global search for LMDs is augmented with a local gradient search for maintaining

LMDs during haptic rate interactions. This multistage approach provides much faster

computation of the LMDs and allows haptic rendering of environments with much more

complicated models.

Approach

The augmented approach adds a local search to speed intermediate time steps

between global updates. The haptic rendering algorithm first computes all LMDs within a

cut-off distance using the global SNCH search. These LMDs are fed to the local update

thread, which performs local gradient descent on the LMDs given new positions of the

models. The updated LMDs are used to compute forces and torques repelling the models.

The local update works as fast as it can on the LMDs it knows about.

Concurrently, the global search computes new LMDs. When it finishes a time step, it

notifies the local search that new LMDs are available. The local search then updates these

new LMDs to the current model positions and continues local updates.

110

Local Search

A pair of points, one on each model, forms each LMD. After a model moves, the

local search algorithm looks at the neighborhood around each LMD point and computes

the distances between all the triangles in one neighborhood and all the triangles in the

other model’s neighborhood. If any of these triangle pairs are closer than the current

LMD, then the search continues with those triangles’ neighborhoods until the minimum

distance converges. The points that form this new minimum distance are the updated

LMD.

If the last LMD point was on the face of a triangle, then the local neighborhood is

defined to be the triangle plus the three triangles bordering its edges. If the last point was

on an edge, only the two triangles that share that edge are part of the local neighborhood.

When the last point was at a vertex, all triangles that share that vertex are searched for a

new LMD (Figure 55).

(a) (b) (c)

Figure 55: The three possible neighborhoods to be checked depend on
the minimum distance point from the last time step. In (a), the
minimum distance point was on a triangle face, and it and all its
adjoining triangles form the neighborhood. When the point from the
previous step was on an edge, as in (b), the triangles that share that
edge form the neighborhood. The final case (c) is for a vertex, where
all triangles that share that vertex form the neighborhood.

111

Computational Efficiency

The number of neighborhoods that must be checked varies with the model

resolution and the movement of the models. For models with reasonably formed

triangles, the number of triangles searched on one model grows roughly as the n , where

n is the number of triangles. Figure 56 shows the resolution quadrupling and the number

of triangles crossed growing by a little more than a factor of two. In addition, for haptic

rendering running near 1000 Hz, the number of triangles crossed is usually small.

Preprocessing

The local search routine uses local topological connectivity between the triangles

of the models. This information can be derived from models consisting of just triangle

lists. Most of the models used in our examples went through a one-time conversion from

triangle list data structures to vertex-edge-triangle lists with neighbor information.

Figure 56: The number of triangles crossed grows roughly by n ,
where n is the number of triangles in the model. (a) This model has
eight triangles and four are crossed. (b) There are four times as many
triangles in this model, but roughly twice as many are crossed.

112

System Architecture

This type of application would be difficult to write as a single thread of

computation. We use three threads: a global search thread, a local update thread, and a

graphics thread. This architecture allows us to restrict the computational load of the

graphics and global threads, and let the local update run as fast as possible. On a two-

processor system, this translates into the local update getting one processor to itself and

the other threads sharing the other processor.

Results

The local search algorithm computes updated forces and torques at kilohertz rates.

When model complexity grows, the global search tends to slow down, but the local

update speed is mostly dependent on the number of LMDs, not the complexity of the

model.

We instrumented the local update thread to record the time to compute the local

update, the number of triangle pairs searched during the local update, and the time for the

global search to compute the LMDs. Figure 57-Figure 59 show these results for a variety

of model-model interactions. For all these examples, the top graph represents the local

update time, the middle graph the number of triangle-pairs searched during the local

update, and the bottom graph the time for the global LMD computation to update. The

local update and searched triangles graphs do not cover the full extent of the global

search graph since the data were stored in a circular buffer and the fast updates of the first

two graphs filled the available space.

113

Figure 57: The crankshaft model has 45,000 triangles and the gear has
6,300 triangles. The local update time correlates well with the number
of triangles searched. The bottom graph shows the computation time
for the global search to find the LMDs. Without the local update,
haptic interaction would have been unstable and slow.

114

Figure 58: The spring model has 23,500 triangles and the teapot has
5,600 triangles. Even though the models are high resolution, typically
there were only a few LMDs to track, and the local update was able to
maintain a high update rate.

115

Figure 59: The horse model has 97,000 triangles and the bunny model
has 2,200 triangles. The finely detailed surfaces can produce nearly
redundant local minima. In this example, the algorithm still updates
the LMDs and forces at around 1 kilohertz.

116

The forces of interaction feel smooth. Figure 60 shows the magnitude of the

translational forces during haptic interaction between the horse model and the bunny. The

large-scale bumps are from moving the bunny model around the horse and bumping

against it. Smoother responses are possible when continuously pressing the two models

together. Even in this example, there is not much high-frequency force response, as

would be expected if the control system became unstable.

Discussion

The use of local updates dramatically improved the performance of the system

over just using the SNCH global search. The haptic rendering system can use models that

are an order of magnitude larger at update rates an order of magnitude faster than with

just using global search for LMDs. The addition of local LMD updates makes the force

computation much less dependent on the configuration of the two models. The resulting

algorithm is a high performance haptic rendering system suitable for augmenting virtual

reality interactions.

117

Figure 60: This graph shows the magnitude of the translation forces
during the horse-bunny interactions.

CHAPTER 13

A VIRTUAL PROTOTYPING APPLICATION

The last three chapters have developed techniques for computing local minimum

distances between polygonal models and a multithreaded system applying these

techniques to haptic rendering of complex scenes. In this chapter, we apply these ideas to

a virtual prototyping system for polygonal models.

While mechanical model design increasingly relies upon computer-aided design

(CAD) and sophisticated simulation programs, physical prototypes still play an important

role in design evaluation. Since physical prototypes are expensive to build, and may take

significant time to manufacture, virtual prototyping environments attempt to replace as

much functionality of the physical prototypes as possible with a virtual prototype.

Accessibility is a design evaluation task that is difficult to simulate on a computer.

Two main reasons preclude easy automatic simulation:

1. computation of a collision-free path for complex models is difficult and

time-consuming,

2. modeling human manipulation capabilities is difficult.

We propose a haptic system for virtual prototyping that allows human guidance

and intuition in developing a collision-free path between virtual models. This type of

119

system provides the intuitive usability of a physical prototype, yet retains the low-cost

and time advantages of a computer model.

Virtual Prototyping Background

Virtual prototyping of accessibility tasks is closely related to the area of path

planning. The main distinction is that in virtual prototyping, there is some assumption of

human involvement, whereas path planning is usually more of an automatic technique.

Path planning methods fall into two main categories, global methods and local

methods. Global methods try to sample the configuration space of the model and the

environment, and then connect together collision-free instances into a collision-free

path[50][51][53]. Local methods use local repulsion techniques to avoid collisions, while

being drawn towards a distant goal[3]. However, these local methods can converge to

local minima and never reach the goal. Our haptics system is similar to the local

approach, but human guidance pushes models past local minima.

Haptics has been proposed as a virtual prototyping interface in prior work.

Hollerbach et al. [54] computed fast penetration depths between a point and a spline

model to create a sensation of contact with the model, as did researchers at Ford Motor

Company in [35]. Nelson developed haptic rendering of moving linkages using a three-

DOF haptic interface[55].

McNeely used a 6-DOF device to manipulate a point-sampled model with a large-

scale voxelized environment[49]. The environment is static; however, this approach

guarantees a worst-case computation time, important for reliable haptic rendering. They

report that they were able to use haptics to find collision-free paths in complex

environments for which global path planning algorithms failed.

120

Virtual Prototyping Approach

Since we compute LMD’s while the moving model is still some distance from the

environment models, haptic forces are used to guide the moving model away from

collision with the environment. The onset distance for forces is adjustable, so the user can

decide how much clearance between models is desired during testing. In general, the

LMD’s tend to approximate the local distance field between the models, and the forces

tend to push the moving model towards the medial axis between the models. Since the

medial axis is the surface of maximum clearance between models, these forces tend to

guide the moving model towards the safest path (Figure 61).

Figure 61: The LMD’s provide guidance in regions of limited

clearance.

121

While the test object is being moved by the haptic interface, its position and

orientation are stored in a buffer. This buffer allows the motion of the test object to be

played back for review, analysis, or further modification.

If the moving model is forced to penetrate an environment model by the user, the

simulation is no longer valid. A collision state is detected and the simulation is rolled

back, using the stored positions and orientations in the buffer, until the model state is

valid. The simulation can then resume, and the user can try new approaches for finding a

collision-free path. This means that the path stored by our virtual prototyping program is

always valid, and if the moving model can reach its goal, the problem has been solved.

A collision state is detected by finding a LMD less than some specified parameter

between the moving model and the environment. Changing the collision state distance

allows the user to adjust for tessellation error in the models or for other desired

constraints in the clearance of the collision-free path.

Interface

The main interface is, of course, the 6-DOF haptic interface. After loading models

into the environment, the position of the currently selected model is controlled by the

user moving the haptic interface. The selected model is changed with keyboard

commands, so any model in the environment is freely movable by the haptic interface.

Keyboard commands also control the recording of the collision-free path,

stopping of recording, and visualization of the path in playback mode.

The current set of LMD’s is displayed as lines between the two models. They help

provide feedback cues to the relative positions of the two models in the absence of stereo

viewing.

122

Results

We tested our virtual prototyping system with a variety of models. In the tests, we

threaded one moving model around and inside the environment model. In all the cases,

we were able to intuitively find a collision-free path to accomplish the goal.

Gear-Spring Part

In the first test, we used a gear model with 6,300 triangles and a spring part model

with 23,500 triangles. The goal was to have the gear enter the spring, traverse down the

body, and then exit the spring. There was limited clearance between the gear and the

spring and spring body, so without haptic feedback this would have been a difficult task

(Figure 62).

Figure 62: The gear had to rotate to slip between the coil and center
axis of the environment model.

123

Crank-Holes-Teapot

In this example, we used a crank model with 45,000 triangles, a three-holed block

with almost 12,000 triangles, and a teapot model with 5,600 triangles. We used the haptic

interface to position the block and the teapot in such a way that there was not a clear path

from one hole to the next. The goal in this test was to thread the crank model through all

three holes while avoiding the teapot.

 The haptic interface provided enough cues to the user to find a path out of the

middle hole and to tilt around the teapot, even though that portion of the path was

occluded by the teapot during the test. (Figure 63 shows the view during the test and a

tilted view after the test for the path visualization.)

Figure 63: Haptics guides the crank model through the holes while
avoiding the teapot model.

124

Helicopter-Rocker

The final test used a helicopter model with 113,000 triangles and a rocker model

with 40,000 triangles. For this test, we wanted to pass the rocker through the open

window of the helicopter, around the interior, and back out (Figure 64). The haptic

rendering system was able to provide useful feedback during this test, creating a

collision-free path under user guidance.

Figure 64: This test involved models with over 150,000 combined
triangles.

125

Discussion and Conclusion

The presented system advances the state-of-the-art in haptically enhanced virtual

prototyping systems by allowing virtual prototyping on general, freely positioned,

polygonal models. In addition, our mechanism for rolling back model collision states to a

collision-free position and orientation simplifies motion planning by always storing a safe

path. The use of adjustable distances for both force onset and collision distance enhances

the capabilities of the system by simulating different clearance constraints during the

task.

The tests demonstrated the system on a variety of model types and sizes. While

the chosen models were not solving an actual real-world problem, the model shapes,

resolutions, and task types are representative of the kinds of problems the system can

solve.

CHAPTER 14

CONCLUSION

In this dissertation, a number of algorithms are derived for computing the

minimum distance between computer models. In particular, one technique using normal

cones for solving for a collinearity condition between models has broad application to

polygonal and to parametric models. This style of computation seems particularly well

suited for haptic applications, where stringent demands on computation rates make

predictive methods a necessity. The set of local minima returned by normal cone methods

provide greater knowledge of potential future interactions than global techniques, and

thus can be used to initialize fast, local methods that can quickly react to interactions

between models. The haptic applications developed using these techniques work on

polygonal and smooth models, and at new levels of model complexity compared to

previous techniques. These haptic applications provide the building blocks for virtual

prototyping applications involving models of realistic complexity.

Future Directions

An area of haptic rendering not addressed herein is rendering of deformable

models. This topic is important for medical simulation, where a person is touching or

cutting models of soft tissue. The normal cone approach for sculptured surfaces should

127

work well in this context, since unlike most methods, it does not require a lengthy

preprocessing of a static model to work.

Normal cones, even with demonstrated successes when applied to distance and

haptics problems, are still in the early stages of development. In global distance

computations, spherical bounding hierarchies were a standard technique for some

time[14], but the introduction of bounding volumes with variable aspect ratios, such as

swept sphere volumes[17], dramatically improved computation speed. A similar

development should be possible with normal cones, by bounding vector spreads and

geometries with more general volumes that still possess fast tests for orthogonality or

collinearity.

Additionally, since distance finding is a basic operation on virtual models, the

techniques developed here have broad application to problems in simulation, animation,

and modeling. Even more broadly, the normal cone approach can be seen as quickly and

robustly solving a system of constraints, in this case for collinearity between models’

surface normals. However, other kinds of constraints should be solvable in a similar style,

so the normal cone approach should prove useful in other applications solving constraints

based on surface properties.

REFERENCES

[1] D. Baraff, “Curved Surfaces and Coherence for Non-penetrating Rigid Body
Simulation,” Computer Graphics, vol. 24, no. 4, pp.19-28, Aug. 1990.

[2] J.E. Bobrow, “Optimal Robot Path Planning Using the Minimum-time Criterion,”
IEEE Journal of Robotics and Automation, vol. 4, no. 4, pp. 443-450, Aug. 1988.

[3] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots,” The International Journal of Robotics Research, vol. 5, no. 1, pp. 90-98,
Spring 1986.

[4] S. Quinlan, “The Real-Time Modification of Collision-Free Paths,” Ph.D.
dissertation, Dept. of Mechanical Engineering, Stanford University, 1994.

[5] D. Dobkin and D. Kirkpatrick, “Determining the Separation of Preprocessed
Polyhedra - A Unified Approach,” Proc. 17th International Colloq. Automata
Lang. Program, pp.400-413, 1990.

[6] H. Edelsbrunner, “Computing the Extreme Distances Between Two Convex
Polygons,” Journal of Algorithms, vol. 6, no. 2, pp. 213-224, June 1985.

[7] Y. Adachi, “Touch and Trace on the Freeform Surface of Virtual Object,” Proc.
IEEE Virtual Reality Annual Intl. Symp., pp. 162-168, 1993.

[8] F. Brooks, M. Ouh-Young, J.J. Batter, and P.J. Kilpatrick, “Project GROPE --
Haptic Displays for Scientific Visualization,” Computer Graphics, vol. 24, no. 4,
pp. 177-185, Aug. 1990.

[9] W.R. Mark, S.C. Randolph, M. Finch, J.M. Van Verth, and R.M. Taylor III,
“Adding Force Feedback to Graphics Systems: Issues and Solutions,” Proc.
SIGGRAPH’ 96, pp. 447-452, 1996.

[10] D.C. Ruspini, K. Kolarov, and O. Khatib, “The Haptic Display of Complex
Graphical Environments,” Proc. SIGGRAPH‘97, pp. 345-352, 1997.

[11] T.V. Thompson II, D.E. Johnson, and E.C. Cohen, “Direct Haptic Rendering Of
Sculptured Models,” Proc. 1997 Symposium on Interactive 3D Graphics,
pp. 167-176, 1997.

129

[12] S. Ehmann, and M. Lin, “Accurate and Fast Proximity Queries Between
Polyhedra Using Surface Decomposition,” Proc. Eurographics, pp. 500-510,
2001.

[13] M. Ponamgi, D. Manocha, and M. Lin, “Incremental Algorithms for Collision
Detection Between Solid Models,” Proc. of ACM/SIGGRAPH Symposium on
Solid Modeling, pp. 293-304, 1995.

[14] S. Quinlan, "Efficient Distance Computation between Non-Convex Objects,"
IEEE Int. Conference on Robotics and Automation, pp. 3324-3329, 1994.

[15] M. Mortenson, Geometric Modeling, pp. 305-317, New York: John Wiley &
Sons, 1985.

[16] J. Snyder, “Interval Analysis for Computer Graphics,” Computer Graphics,
vol. 26, no. 2, pp.121-130, July 1992.

[17] M. Lin, “Efficient Collision Detection For Animation and Robotics,” Ph.D.
dissertation, Dept. of Electrical Engineering and Computer Science, Univ. of
California, Berkeley, 1993.

[18] E. Gilbert, D. Johnson, and S. Keerthi, "A Fast Procedure for Computing the
Distance Between Complex Objects in Three-Dimensional Space," IEEE Journal
of Robotics and Automation, pp. 193-203, April 1988.

[19] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast Distance Queries Using
Swept-Sphere Volumes,” Proc. IEEE International Conference on Robotics and
Automation, pp. 24-28, 2000.

[20] S. Gottschalk, M.Lin, and D. Manocha, “OBBTree: A Hierarchical Structure for
Rapid Interference Detection,” Computer Graphics Proceedings, Annual
Conference Series, pp.171-180, 1996.

[21] P. Schneider, Graphics Gems I, p. 607, San Diego: Academic Press, 1990.

[22] M. Lin and D. Manocha, “Fast Interference Detection Between Geometric
Models,” The Visual Computer, vol. 11, no. 10, pp. 542-561, Nov. 1995.

[23] J. Snyder, A.R. Woodbury, K. Fleischer, B. Currin, and A.H Barr, “Interval
Methods For Multi-Point Collisions Between Time-Dependent Curved Surfaces,”
Computer Graphics, vol. 27, no. 2, pp. 321-334, Aug. 1993.

[24] J. Snyder, "An Interactive Tool for Placing Curved Surfaces Without
Interpenetration," Proceedings of Computer Graphics, pp. 209-218, 1995.

[25] Y. Adachi, T. Kumano, and K. Ogino, “Intermediate Representation For Stiff
Virtual Objects,” Proc. Virtual Reality Annual Intl. Symposium, pp. 203-210,
1995.

130

[26] H. Iwata, and H. Noma, “Volume Haptization,” Proc. IEEE Symp. Research
Frontiers in Virtual Reality, pp. 16-23, 1993.

[27] C.B. Zilles, and J.K. Salisbury, “A Constraint-based God-object Method for
Haptic Display,” Proc. IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems,
pp. 146-151, 1995.

[28] P. Stewart, Y. Chen, and P. Buttolo, “Direct Integration of Haptic User Interface
in CAD Systems,” Proc. ASME Dynamic Systems and Control Division, pp. 93-
99, 1997.

[29] A. Gregory, M. Lin, S. Gottschalk, and R. Taylor, “H-COLLIDE: A Framework
for Fast and Accurate Collision Detection for Haptic Interaction,” Proc. IEEE
Virtual Reality '99, pp. 38-45, 1999.

[30] D. Baraff, “Interactive Simulation of Solid Rigid Bodies,” IEEE Computer
Graphics and Applications, vol. 15, no. 3, pp. 63-75, May 1995.

[31] A. Gregory, A. Mascarenhas, S. Ehmann, M. Lin, and D. Manocha, “Six Degree-
of-Freedom Haptic Display of Polygonal Models,” Proc. IEEE Visualization, pp.
139-146, 2000.

[32] Y. Kim, M. Otaduy, M. Lin, and D. Manocha, “Six Degree-of Freedom Haptic
Display Using Localized Contact Computations,” Tenth Symposium on Haptic
Interfaces For Virtual Environment and Teleoperator Systems, pp. 209-216, 2002.

[33] M. Otaduy, and M. Lin, “Sensation Preserving Simplification for Haptic
Rendering,” Proceedings of ACM SIGGRAPH 2003, pp. 543-553, 2003.

[34] L. Piegl and W. Tiller, The NURBS Book, p. 230, Berlin: Springer-Verlag, 1995.

[35] P. Stewart, Y. Chen, and P. Buttolo, “CAD Data Representations For Haptic
Virtual Prototyping,” Proceedings of DETC’97, pp. 249-255, 1997.

[36] S. Smale, “Newton's Method Estimates from Data at One Point,” The Merging of
Disciplines: New Directions in Pure, Applied, and Computational Mathematics,
R. E. Ewing, K. I. Gross, and C. F. Martin, eds., pp. 185-196, New York:
Springer-Verlag, 1986.

[37] T. McCalla, Introduction to Numerical Methods and FORTRAN Programming,
New York: John Wiley & Sons, 1967.

[38] E. Cohen, R. Riesenfeld, and G. Elber, Geometric Modeling with Splines: An
Introduction, Natick, Mass.: A K Peters, 2001.

[39] D.E. Johnson and E. Cohen, “A Framework for Efficient Minimum Distance
Computations,” Proc. IEEE Intl. Conf. Robotics & Automation, pp. 3678-3684,
1998.

131

[40] G. Elber, “Free Form Surface Analysis using a Hybrid of Symbolic and Numeric
Computation,” Ph.D. dissertation, Dept. of Computer Science, University of Utah,
Salt Lake City, 1992.

[41] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical recipes in C,
Cambridge, U.K.: Cambridge Press, 1997.

[42] M. DoCarmo, Differential Geometry of Curves and Surfaces, Prentice-Hall. 1976.

[43] P.M. Hubbard, “Interactive Collision Detection,” Proceedings of the IEEE
Symposium on Research Frontiers in Virtual Reality, pp. 24-31, 1993.

[44] J. Tornero, J. Hamlin, and R. Kelley, “Spherical-Object Representation and Fast
Distance Computation For Robotic Applications,” Proceedings of the 1991 IEEE
Int. Conf. on Robotics and Automation, pp. 1602- 1608, 1991.

[45] S. Kumar, D. Manocha, W. Garrett, and M. Lin, “Hierarchical Backface
Computation,” Proc. of 7th Eurographics Workshop on Rendering, pp. 231-240,
1996.

[46] L. Shirman. and S. Abi-Ezzi, “The Cone of Normals Technique for Fast
Processing of Curved Patches,” EUROGRAPHICS’93, vol. 12, no. 3., pp. 261-
272, Aug. 1993.

[47] D. Luebke and E. Erickson, “View-Dependent Simplification of Arbitrary
Polygonal Environments,” Computer Graphics Proceedings, SIGGRAPH 1997,
pp. 199-208, 1997.

[48] P. Sander, X. Gu, S. Gortler, H. Hoppe, and J. Snyder, “Silhouette Clipping,”
Computer Graphics Proceedings, SIGGRAPH 2000, pp. 327-334, 2000.

[49] W. McNeely, K. Puterbaugh, and J. Troy, “Six Degree-of-Freedom Haptic
Rendering Using Voxel Sampling,” Computer Graphics Proceedings,
SIGGRAPH 1999, pages 401–408, 1999.

[50] J.F. Canny, “The Complexity of Robot Motion Planning,” ACM Doctoral
Dissertation Award. MIT Press, 1988.

[51] R. Whitaker and D. Breen, “Level-Set Models for the Deformation of Solid
Objects,” Proceedings of the 3rd International Workshop on Implicit Surfaces,
pp. 19-35, 1998.

[52] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic Roadmaps
for Path Planning in High-Dimensional Configuration Spaces,” IEEE Trans.
Robot. Automat., vol. 12, no. 4, pp. 566–580, May 1996.

132

[53] M. Foskey, M. Garber, M. Lin, and D. Manocha, “A Voronoi-Based Hybrid
Motion Planner,” Proc. IEEE/RSJ International Conf. on Intelligent Robots and
Systems, pp. 89-97, 2001.

[54] J. Hollerbach, “Haptic Interfacing for Virtual Prototyping of Mechanical CAD
Designs,” ASME Design for Manufacturing Symposium, pp. 201-207, 1997.

[55] D. Nelson and E. Cohen, “Optimization-Based Virtual Surface Contact
Manipulation at Force Control Rates,” IEEE Virtual Reality 2000, pp. 37-44,
2000.

