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ABSTRACT

INTRODUCTION

Biologists are enthusiastic about the ability to handle physi-
cal representations of the molecular data with which they work.
These 3-dimensional visualization tools make it easy to explore
and understand the models. This work addresses the challenges
associated with the fabrication of their molecular data. The goal
is to construct a colorful molding of a protein strand snaking
through a translucent plastic representing its water inaccessible
surface. Construction of a physical model is not a trivial task as
the data is described by both spline and triangular mesh struc-
tures.

Many challenges exist when working within a heteroge-
neous environment. Operations to deform, combine, and work
with the assorted objects are best performed when all representa-
tions are similar. In order to utilize modeling software packages,
it is necessary to convert one representation into to the other.
Conversion of spline models into triangular meshes results in the
loss of data and injects a level of coarseness into the model. In-
stead, methods to perform the reverse can preserve the original
data while hypothesizing the surface between known points.

In this paper, we define a system to convert a triangular mesh
into a spline model, producing a smoother model that interpo-
lates the original data points. The continuity of the splines is
more adept at capturing the natural flow of biological data. The
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transformation also produces a homogenous environment, con-
dusive to performing the necessary operations required for man-
ufacturing the desired pieces.

Our system creates a near G' continuous model by com-
positing 10 bi-cubic spline patches to encompass the original
mesh. The interior points of each tensor product surface are
C? continuous by the properties of the splines. Meanwhile, the
boundaries and corners require special considerations to ensure
a level of smoothness. This work introduces an algorithm to
minimize ridges along boundaries at the intersection of an odd
number of spline patches. When coupled with complete spline
interpolation, the system generates a smooth spline model that
exactly interpolates the original data points.

System Overview

Figure 1 illustrates the pipeline that converts an input trian-
gular mesh into a spline model. The following section briefly
highlights the steps in the pipeline and the problems addressed
by the system. Further implementation details, motivations, and
challenges are provided in later sections.

The input to the pipeline is a triangular mesh with a connec-
tivity equivalent to the nt" subdivision level of an icosahedron.
This data structure is the bi-product of sampling techniques used
to obtain some molecular models, including the water inacces-
sible surfaces that motivate this work. The input mesh can be
reduced to its original 20 faces by recursively grouping children
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Figure 1. lllustration of the conversion pipeline of a molecular triangular mesh into a spline model. The input mesh has connectivity equivalent to the nth
subdivision level of an icosahedron. The data is segmented into 10 rectangular grids, tangents are fit across adjacent boundaries, and complete spline
interpolation creates the spline surfaces. Boolean operations combine two spline models in the fabrication process.

with their parent triangles.

The system first groups the 20 hierarchical triangle trees into
10 pairs that will become the base for each bi-cubic patch. Rect-
angular grids of data points are extracted by walking the paired
trees. Next, cross-boundary tangents are computed to fit the
shared boundaries. After, the system computes cross-boundary
tangents and twists for each of the corners, the intersection of
multiple patches. Estimates of all cross-boundary tangents make
considerations to avoid undulations by analyzing surfaces fit to
the regions.

The final phase of the system involves complete spline inter-
polation, using the earlier collected rectangular grids and com-
puted tangents and corner twists. The 10 bi-cubic tensor product
spline patches then describe surfaces that completely encompass
the original data. The resultant model is C? continuous within
each spline surface and G* across the shared boundaries.

The configuration of the 10 patches produces two intersec-
tion scenarios. On the end model, there are corners where either
3 or 5 spline surfaces intersect at a common point. It is impossi-
ble to specify cross-boundary tangents at these corners to make
a C! intersection without producing a singularity for one patch.
Consequently, this algorithm is only capable of achieving a G*
stitching at the corner.

The remainder of the paper is organized as follows. The
previous work section summarizes similar efforts in surface sub-
division and spline fitting. The implementation section further
describes the details, methods, and motivations of the pipeline
highlighted by this section. The case studies analyze the results
of the conversion process and illustrates the constraints of the al-
gorithms. Finally, the last section provides concluding remarks,
reporting the results and success of the conversion process, as
well as stressing the importance of the issues addressed by this
work.

PREVIOUS WORK

Many research topics exert efforts in solving mesh smooth-
ing to better define a model. The most popular techniques are
subdivision surfaces. Catmull-Clark [1], Doo-Sabin [2], and
Loop [3] schemes each develop refinement methods to recur-
sively define new smoother meshes. Stencils weight existing in-
formation in order to computed the locations of new vertices,
edges and faces. Subdivision schemes produce smooth surfaces,
which , in their limit are equivalent to a spline surface of a given
degree. These refined meshes soften features; however, they fail
to interpolate the original data as each recursive step shrinks the
model.

Algorithms designed to fit surfaces to point cloud data sets
address similar smoothing and data interpolation considerations.
Xie etal. [4] create C! models by growing a defined surface along
a frontier. The prioritized expansion fits quadrics to the local
data points in an area at the edge of the defined surface. The re-
cent efforts of Cheng et al. [5] present an iterative method to fit
a Loop subdivision surface to an unorganized point cloud. The
defined surface converges toward the original data by optimiz-
ing a defined square distance minimization method. Similarly
Hoppe et al. [6] fit Loop subdivision surfaces to scattered data,
focusing on constructing smooth piecewise surfaces. This work
also present modifications to Loop’s subdivision rules in order
to model sharp features. Quadrics and triangular meshes closely
approximate the input data without shrinking the model as with
subdivision surfaces. However, they do not produce the homoge-
nous environment needed to model our molecular data.

Instead, multiple non-uniform b-spline surfaces (NURBS)
may be composited to define complex models. The patches
are stitched together in order to match the differential proper-
ties across shared boundaries. Geometric modeling tests, [7], de-
scribe interpolation techniques capable of considering tangential
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Figure 2.  An unwound icosahedron and the triangle pairing scheme.

information. NURBS may be computed such that they exactly
interpolate a set of data and produce seamless models.

Some efforts recognize these advantages and focus on defin-
ing splines to model input data. Grimm et al. [8] produce mani-
fold surfaces of medical data by leveraging a user produced gen-
erator polyhedron. The model aids in the calculation of spline
patches that are fit to the original data. Stitching between ad-
jacent patches is avoided by overlapping boundaries. Loop [9]
fits a Gt continuous representation of an irregular mesh by uti-
lizing quad-nets to generate smooth spline surfaces. Krishna-
murthy and Levoy [10] describe an interactive algorithm, allow-
ing a user to paint the boundaries of spline patches on the input
mesh. They fit the spline patches to the user-partitioned data.
These approaches develop methods to smoothly interpolate data
with spline representations; however, our system removes user
input by leveraging additional assumptions based on the inherent
nature of our input data.

In a related master’s thesis, Livingston [11] explores the con-
tinuity stitching the intersection of three spline patches. His work
allows the end stitching to modify the location of corner point, to
produce smoother results. In order to preserve the input data, we
require that the end model interpolates the orginal mesh’s ver-
tices. The additional constraint inhibits the ability to modify the
location of the corner control point.

IMPLEMENTATION

The following section further describes the system pipeline
illustrated in Figure 1. Molecular models are smooth by nature
without ridge lines or creases on their surface. The main chal-
lenge when converting the triangular mesh into a spline model
arises when smoothing the boundaries of adjacent patches, more
specifically when dealing with corners. The following subsec-
tions describe an algorithm to handle the stitching process be-
tween adjacent patches, focusing on minimizing the trouble areas
surrounding corners shared by an odd number of spline patches.

The system requires the input triangular mesh to have a
known connectivity, in order to remove the need for user in-
put and avoid unnecessary complications. The molecular data
is sampled and represented as a mesh with connectivity similar
to the nt" subdivision level of an icosahedron. These triangles are
recursively grouped under parent triangles to find the 20 hierar-

chical trees who’s roots are the original faces of the icosahedron.
The extracted trees are paired together as shown in Figure 2 such
that no T-junctions occur between boundary edges and every tri-
angle is paired once and only once. The coupling of the trees
provides the data segmentation scheme that will be used to de-
scribe each spline patch. After pairing the triangles, the lowest
level of children triangles are marched to extract the rows and
columns of the rectangular data grids.

Complete spline interpolation is a frequently used technique
to define surfaces through a grid of data by using non-uniform
open cubic B-splines. Interpolation techniques require that each
data point is assigned a parameter value {(ui, pi)}7_,. The pa-
rameter values specify when the surface will interpolate the
point. Spline surfaces ensure continuity conditions through their
degree. A C? continuous surface requires the interpolant curve’s
domain be the interval [ug, ug], all interior knots have a multiplic-
ity of one, u;, i =1,...,5—1, and the degree is 3. This forms a
unique knot vectort = {tj} wheretj =up, j =0,1,2,3;t; =uj_3,
j=4,..,s+2;andtj = us; j =S+3,...,5+6. The cubic B-spline
defined by this knot set has s+ 3 degrees of freedom, and only
s+ 1 data points exist to be interpolated.

Complete spline interpolation defines the final two con-
straints by specifying the tangents at the endpoints, pg, and pj.
This is an attractive method to composite surfaces describing a
model because it exactly interpolates original data values and is
able to ensure that adjacent spline patches are continuous across
their shared edge.

Cross-Boundary Tangents

Defining cross-boundary tangents matches the differential
properties of the two interpolant surfaces. In order to perform the
interpolation with stitching, first each point is associated with a
parameter value. In the molecular model, each data point is sam-
pled at a regular interval, making the parameter assignment sim-
ply its row and column within the grid. In a more general case,
these parameter values may be computed based on the distances
separating each data point. Next, complete spline interpolation
requires the computation of cross-boundary tangents.

The stitching tangents require an educated guess at a rea-
sonable values to avoid possible undulations. Point interpola-
tion methods may create a surface that needs to fluctuate, some-
times wildly, in order to pass through each data point. Because
the molecular model is a smooth surface and sampled regularly,
then reasonable tangents exist along these edges. These tangents
will closely represent the molecular surface without introducing
waves along the patches’ boundaries.

Quadratic B-splines, fit through 3 data points at every shared
vertex, {po, P1, P2}, compute sensible tangents. The points are
selected to align rows and columns across patches, with the
points, po and py, belonging to the separate adjacent patches,
and the point, p1, located on their shared edge. Parameter val-
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ues are assigned to the 3 points in the same manner that they had
been assigned to the rectangular grids previously described. The
curve’s tangent,

c/(t) = 2apt + at, 1)
where
P2—Po _ P1—Po
gp =t il )
Uz — Uz

1— Po
ag =P ax(u1 + o), 3)

Uy —Uo

is evaluated at t = uj.

The tangents computed across shared boundaries must be
reasonable in order to reduce undulations in the surfaces. The
closeness and regularity of the sampling, as well as the smooth-
ness of the molecular surface causes tangents calculated by fit-
ting a quadratic spline over an edge to closely resemble tangents
that would be produced by fitting cubic surfaces over the same
region. Quadratic fit splines require as little as 3 data points, giv-
ing each involved patch equal influence over the direction of the
tangent. The computed educated guess is a reasonable estimate
that will not produce any undulations within the surface that do
not exist, based on the knowledge that the original model is a
smooth molecular surface.

Corner Tangents and Twists

The intersection of an odd number of patches at a common
point requires further attention and is the heart of this research.
The following method describes a technique to compute a com-
bination of tangents and twists for each spline patch surrounding
the corner. The twist is defined as gj—a‘f, where u and v are defined
along the boundaries for the patch.

It is impossible to specify cross-boundary tangents, for an
odd number or intersecting patches, without introducing a sin-
gularity on one of the patches. Instead, an optimal configura-
tion must be computed such that the normals belonging to two
patches at a shared point closely align. By striving for G* conti-
nuity along boundaries it is not required that cross-boundary tan-
gents be co-linear at the corner. The remainder of this subsection
describes the algorithm implemented by our system to deal with
smoothing corners. While only the 3 patch intersection is dis-
cussed, it is scalable to any number of odd patches, and, in fact,
must be scaled to the 5 patch intersection to solve the conversion
process.
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Figure 3. The point neighborhood of the 3 patch intersection with the
parameter values and weights associated with each point.

The system analyzes the properties of a cubic surface fit to
the corner region in order to estimate tangent and twist values
that will smoothly stitch the intersections of the different patches.
First the neighborhood fo the corner is extracted from the patch.
As pictured in Figure 3 the static parameter values are assigned to
this double ring of neighbor points. The parameter values treat
the points as equally separated, and while this is not the case,
an analysis in later sections further discusses the effects of these
parameter values. Weighted least square algorithm then fits a
cubic surface to the intersection area. The surface’s equation is a
product of the (u,v) parameter space,

0 = ago + aioU+ a1V + aU? + a1 uv + agV2 4
+agoU3 + ap UV + ajpuv2 + aga\C.

The partial derivatives, 9 and 92 evaluated at 6(0,0), span
the tangent plan located at the origin. The tangent values are
computed down each of the boundary edges by multiplying the
parameter values for the boundary points with the computed par-
tials.

lile) lile)
tangent (uj,vi) = A ®)

The system evaluates the control points along each boundary

equal to %rd the length of the corresponding tangent value. The
variables a,b,c,d, and e are computed corresponding to the con-
trol points locations on the tangent plane spanned by the previ-
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Figure 4. The computed control points surrounding the 3 patch intersec-
tion, depicting the variables and constraints enforced on the corner.

ously computed partials. Figure 4 illustrates the control points
with their corresponding (u, V) position coordinates.

After the control points for the tangent values have been
computed, the control points responsible for the corner’s twists,

gj—a‘{/, are computed for each spline patch. Figure 4 depicts the
constraints made on the twists” locations. The midpoints be-
tween each pair of twist control points is the tangent control point
for the boundary between them. Additionally each twist point
lies on the line defined by the tangent vector opposite it. These
constraints continue the co-linear cross-boundary tangents and
all points are co-planar around the corner thus restriciting the
normals at this point to be equivalent. The constraints restrict
the variables illustrated in Figure 4 to the following equations
dependant upon j’s value:

jad

~ be—cd’ ©)
_ _Jab
_,2jabd 2jabe

Figure 5. The converted molecular mesh as a smooth spline model.

(X27y2) = (0,—2]3), (9)

2jabd 2jacd
cd — be’ cd —be

(X?n y3) = ( )7 (10)

where, the j variable is set such that j,k,| <= 1.0, and
max(j,k,1) = 1.0.

After computing the desired locations of the co-planar twist
and tangent control points surrounding the corner, the system re-
verts these values back into the tangent and twist values for each
patch. Referring to Figure 4, tangent and twist values for each
patch are computed as follows.

tangent; = 3(cpi — cpo), (11)

twisti = 9(cpi—1 + CPi+1— CPi — CPo)- (12)

The algorithm produces the required components to create
the spline patches. Complete spline interpolation converts the
rectangular grids of data points, tangents, and twists into these
spline surfaces. By compositing each patch the original molecule
is reconstructed as a smoother model, as illustrated in Figure 5.
The following section quantifies the smoothness results and ana-
lyzes the end surface.

CASE STUDY
The following section separately analyzes the continuity in
two different cases. The first model is a flatter molecule, while
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Figure 6. The angles between normals at shared points along each
boundary on (a) the better model and (b) the high curvature model.

the second is dominated by areas of high curvature, particularly
at the corner intersections. The first and last knot interval are the
only areas of a boundary not gauranteed to be G* continuous by
the configuration of the cross-boundary tangents.

Figure 6 plots the angle differences between normals of
shared points along each boundary on the models. The graphs
only depict the differences within the first and last knot inter-
vals, focusing on the regions of potential trouble. The graphs
indicate that the first model experiences better results than the
second model.

The flatter molecule of graph (a) endures a worst case angle
of 1.74°. This same boundary on the original mesh has a 7.6°
angle between the triangle normals. Approximately 92% of the
boundary points for this model are G* continuous, and 99% are
within 1° of G! continuity, by the graphs. The conversion process
produces a smoother model, that in its worst case still is better
than the original representation. The ridges resulting between the
composited patches add to a small fraction of the overall surface,
and of those creases, a small portion may have an actual impact.

The second model with higher curvature experiences similar
results, however, with a higher worst case. The 4.71° angle dif-

T (W)

E €3 r
] fb“Jq e
1, €2 | Y
1 {1 T
PATCH, PATCH,
L(u) R(uw)

M

PATCH,

Figure 7. The naming scheme of L(u), R(u), and Y (u), used during
the examination of the poor performance surrounding areas of high cur-
vature.

ference corresponds to a 12.4° angle difference between the tri-
angles on the original mesh. The converted spline model is 91%
G! continuous and 98% within 1° of G* continuity. While the
worst case is larger than the first model, the conversion records
similar percentages of smoothness. The second model converts
well in most cases, and only 4 boundaries, as indicated by Figure
6, exhibit poor performance.

The size of the ridges produced by the corners corresponds
with the curvature of the surfaces at their intersection. To pro-
duce a G! continuous boundary the twists and tangents must sat-
isfy the equation,

Y (W) x (L(u) —R(u) =0. (13)

Figure 7 illustrates these variables and the naming scheme of
their associated points. Reducing the equation by defining y (u)
and L(u) — R(u) explains poor performance recorded around
some boundaries.

Y (u) = (1 — Co)Bo(U) + (2 — C)Ba(U) + (C3 — C2)B2(u), (14)
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Figure 8. The swirl effect of a static parameterization versus the straight-
ened results of the dynamic parameterization.

L(u) = R(u) = [(I3— c3) — (c3—r3)]O3(u)
+(l2—c2) = (c2—r2)]O2(u)
+[(l1—c1) — (1 —r1)]O1(u)
+[(lo—co) — (Co—r0)]Oo(u)

= (I3+r3—2c3)O3(u) + (I2+r2 — 2¢2)O2(u)
+(l1+c1—2¢1)O1(u) + (lp+ co — 2¢o) Op(u)
= 2('o%fo — c)@p(u)
= 2(M — C0)Oo(u),
(15)
By substituting back into the original equation,

Oo(U)[ (M —co) x (1= Co)Bo(u)
(M —co) x (€2 —€1)Ba(u) (16)
(M —cp) x (€3 —C2)B2(u)] =0

+ +

The algorithm gaurantees that (M — cp) aligns with (¢ — ¢p) thus
cancelling the error calculated by the first term. Bo(u) is a major
contributor over the region of potential trouble, thus such a con-
figuration will yield good results. However, in areas where the
region is not planar, (c; —¢1) and (cz — ¢y) are not similar to the
vector (c; — Cp). Because 1(u) also has a strong influence over
this region, the second error term will contribute largely. When
the vectors (c3 — c2, (C2 —¢1), and (c1 — Cp) do not align, it is
impossible to create a perfectly G* surface across the boundary
without modifying the original data. The best one can hope for is
that the chosen tangents compute an M that minimizes the error.

Multiple methods to compute different tangent planes were
implemented, including using dynamic parameter values for the
cubic surface fit. This method computes parameter values based
on the points location to a projected plane. This method is in-
tended to remove the small swirls that appear around corners
with the static parameterization. Dynamic parameter values eval-
uate tangents that emanate directly from the corner to the first
data value. The new parameter values remove the swirl; how-
ever, it fails to realize better worst case results. As shown earlier,
the tangent planes fit by the static parameterization consistantly
compute better M values for each boundary.

Figure 9. Within the homogenous environment, the protein spline model
is combined with the converted molecular spline model.

CONCLUSION

The system successfully converts a molecular mesh into
a spline model. The new surface preserves the original data
by interpolating the vertices of the input mesh. 10 bi-cubic
patches seamlessly encompass the original molecular model with
a smoothness that more closely simulates a biological surface.
99% of the boundary space is within 1° of G! continuity, as
regions of potential trouble are confined to the corners of each
patch. In the worst case, the angles between normals of two
patches at a common point are smaller than their correspond-
ing boundaries on the original mesh. The resultant spline model
is an accurate representation of the original data with an added
level of smoothness.

Leveraging the homogenous environment, modeling soft-
ware toolkits can combine the protein strand’s spline model with
its water inaccessible surface via boolean operations. A rapid
prototype machine constructs the combined model, which in turn
is used to create a flexible split away mold. Meanwhile the pro-
tein model is manufactured with opaque plastics colored based
on the different properties of the strand. The fabricated protein is
fit into the split away mold and a translucent plastic fills the re-
maining volume. Figure 9 shows the combined models and gives
an idea of the manufactured piece.

The restriction on the connectivity of the input mesh con-
strains the generality of the conversion process. The pipeline
makes assumptions of the input mesh, not addressing the prob-
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lem of data segmentation. Instead the algorithms focus on
smoothly stitching boundaries between adjacent patches, partic-
ularly at the intersections of an odd number of spline surfaces.
While the system is unable to support arbitrary meshes, it does
produce the algorithms to create the optimal continuity across
boundaries.
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