
Painting Textures with a Haptic Interface

David Johnson, Thomas V Thompson II, Matthew Kaplan, Donald Nelson, Elaine Cohen
Department of Computer Science, University of Utah

Abstract

We present a method for painting texture maps
directly onto trimmed NURBS models using a haptic
interface. The haptic interface enables an artist to use
a natural painting style while creating a texture. It
avoids the traditional difficulty of mapping between
the 2D texture space and the 3D model space by using
parametric information available from our haptic
tracing algorithm. The system maps user movement in
3D to movement in the 2D texture space and
adaptively resizes the paintbrush in texture space to
create a uniform stroke on the model.

1 Introduction

 (a) (b)
Figure 1(a). Simple geometry. (b). Simple
geometry with textures.

In this paper we address the creation of hand-drawn
texture images on three-dimensional models. The
value of textures derives from their ability to add
visual complexity to a model without requiring
increased geometric complexity (Figure 1) [1].
Textures also allow artists to paint effects that would
be difficult to achieve by combining geometry, surface
properties, and lighting alone.

Our texture painting technique applies to models
constructed from NURBS -- piecewise polynomial
tensor product surfaces. These sculpted models are

particularly useful in the areas of design and
animation, where textures have frequent application.

Hand-drawn textures can be difficult to create
because textures undergo a mapping from 2D texture
space to the 3D model space during the rendering
process. This mapping depends on the underlying
mathematical representation of the model and can
result in a non-intuitive positioning of the texture on
the model.

(a)

(b)
Figure 2: (a) Textures may undergo distortion
when mapped onto a model. (b) Our system
maintains a uniform model space stroke by
adaptively resizing in texture space.

An additional complication arises from the
distortion the image may undergo during the mapping
process. In Figure 2a, the checkerboard texture map
stretches at the top of the goblet and compresses at the
stem. A single line in the texture highlights this effect.

Drawing by hand the distorted texture image that maps
to a uniform line on the model would be very difficult
(Figure 2b).

We propose to avoid these problems by painting
directly on the surface with a haptic interface. Our
system maps the location of the paint on the surface
back into the texture image. The user does not need to
know the relationship between the portion of model
being painted and the underlying texture map or maps.
In addition, the system adaptively sizes the brush in
the texture image to maintain a uniform brush size on
the model. This avoids problems with distortion
between the texture image and the model.

An additional advantage of the system comes from
the natural interaction style the haptic interface
enables. Using the sense of contact provided by the
force-feedback device, the user can draw on portions
of the model that are not directly visible. The contact
cues also aid in spatial positioning of the brush. The
overall feel is that of painting a real object, but aided
by the power of a computer.

2 Background

We follow the definition of texture mapping from
[1], a mapping of a function onto a surface in 3D. In
the case of a hand-drawn texture representing or
modulating the model color, the function has a 2D
domain, evaluates to an (r,g,b) point, and is stored in
an array. Each point in the array is known as a texel.
Texture mapping to a surface color was introduced by
[2]; other mappings include normal vector pertubation
[3], specularity [4], and transparency [5].

There have been two main approaches to the
creation and application of hand-drawn textures. The
first approach attempts to map textures in model space
back into texture space to hide the effects of distortion.
The second approach uses information about the
surface to minimize the effects of distortion and
placement from the mapping process [6,7,8]. Our
approach falls in the first category.

2.1 3D paint

Methods that allow a user to paint onto the model
rather than in the texture image space are commonly
known as 3D paint programs. In [9], Hanrahan painted
onto 3D mesh objects using a mouse. An auxiliary
item buffer that stores an object ID for each pixel in
the display provided an efficient means of determining
what portion of the model lay underneath the mouse
cursor. Paint and surface property information could
then be stored with the mesh vertices.

This approach was extended to 3D input devices in
[10]. Their system was intended for scanned physical

objects --- paint colors are stored in the vertices of the
scanned model while the registered physical model
provides an object to paint against with a virtual brush.
A Polhemus tracker determines the position of the
paintbrush in space.

For both of these systems, the painting style can be
awkward. In the first paper, the mouse can only paint
on directly visible portions of the model. Orienting a
model so that desired portions are visible can be a non-
trivial task. In the second paper, the use of a physical
object plus the need for registration between the mesh
and object complicates the painting process.

Furthermore, both papers store the painted color
information at the mesh vertices. This implies that
added paint detail requires an increase in mesh
complexity. Normally, a benefit of texture mapping is
that it allows increased visual detail without added
geometric detail; we would like to maintain that
advantage.

3 System overview

Our 3D paint system is built upon a system for
virtual prototyping of CAD models [11]. A basic
functionality provided by the virtual prototyping
system is tracing along NURBS models using a haptic
interface [12]. We can use this functionality as a basis
for directly painting textures onto a model.

3.1 Hardware

Figure 3: The paint system in use. A haptic
interface allows 3D positioning and returns
contact sensations.

The paint system (Figure 3) consists of three main
components: an SGI Onyx2 with hardware texturing,
an SGI Indigo2, and a haptic device. We currently
allow either a high-resolution Phantom [13] or a high
degree-of-freedom SARCOS Dextrous Arm as the
haptic device [14].

3.2 Software

The SGI Octane workstation runs customized
multi-threaded modeling and viewing programs [15]
to display the painting environment. The Indigo2
workstation controls the Phantom and runs the haptic
tracing code. This distributed model allows both the
graphics and haptic tracing code to run with
appropriately high update rates.

As the Phantom moves, the Indigo2 sends the
Phantom’s position to the viewing program. The
viewing program determines rough proximity to
models in the scene and returns that information to the
tracing code on the Indigo2. The haptic tracing process
on the Indigo2 tracks the closest point on the model at
haptic rates using the direct parametric tracing (DPT)
method [12]. Penetration into the model and the
appropriate restoring force are determined using that
tracked closest point. The haptic tracing process then
sends the tracked closest point back to the viewer for
use in the paint process.

4 Interface

The main portions of the paint interface are the
toolbar, the paint ball, the model painting space, and
the optional texture display square (Figure 4). All of
the painting functions are accessed through the haptic
interface.

Figure 4: The user interface: (left to right) the
texture display, the model painting space, the
paint ball, and the paint toolbar.

The haptic interface controls the 3D position of the
paint ball. If the painter scrapes the paint ball across a
color block on the toolbar, that color is slowly added
into the current color, allowing the painter to "pick up"
paint. Mixed colors can be saved into a few blank
boxes at the bottom of the tool bar and colors on the
model can be grabbed for reuse. Brush resizing is

accomplished by touching the brush area on the tool
bar and stretching or shrinking the paint ball radius.

Paint is added to the model by pushing the paint
ball against the model. Currently, we use a simple
color replacement scheme while adding paint --- more
complex mixing methods would be appropriate as
well.

5 Painting

Because we track the closest point on the model in
parametric space we can easily determine the related
texel in texture space to fill with color. The texture
space is just a uniform discretization of the parameter
space, so a linear mapping suffices to determine the
correct texel.

5.1 Adaptive brush sizing

We would like to use paintbrushes of an arbitrary
size in the 3D paint program. We cannot use constant
distance measures in the texture space to set the brush
size, or the brush will distort in the model space.

In order to fill a uniform brush in model space, we
need to map potential texels onto the model and then
measure their Euclidean distance from the Euclidean
center of the brush. The mapping from texture space to
model parameter space is a linear mapping; we then
find the point on the model by evaluating the surface
at that parametric point.

Surface evaluation on a NURBS surface can be a
relatively expensive operation. Fortunately, we have
invested time improving the performance of surface
evaluation for previous haptic rendering work [11,12].
However, the number of surface evaluations still
proved to be a bottleneck in our initial simple
approach of testing every texel in a large block for
Euclidean distance to the brush center.

Instead, we have developed an approach for finding
the perimeter of the brush in texture space and then
filling in all the contained texels with the brush color.
We trace the perimeter by moving out from the center
of the brush until the desired radius is reached, then
searching neighboring texels for the brush boundary.
The interior region is filled with color using a flood-
fill method. With this approach, the number of surface
evaluations grows linearly with the brush radius, better
than the quadratic growth of block testing. We were
able to maintain interactive painting rates even while
painting on large (1024 x 1024) texture maps and with
brush sizes containing several hundred texels.

6 Future work

Clearly, additional paint tools can be adapted from
2D paint systems to be used in the haptic paint

environment. Some of these tools may require
modifications to work in the 3D environment. We
have also started to explore different techniques for
efficiently filling the brush area in the texture map
with the goal of further increasing the performance of
the system.

7 Conclusion

Figure 1 demonstrates the effectiveness of using the
haptic 3D paint system. The textures on the model
were painted entirely using our system.

The main feature of the paint system is its
simplicity. It supports a natural style of painting
texture onto a model by mimicking the normal
painting process. By supporting direct painting onto
the model and by adaptively sizing the brush the user
does not have to be aware of the underlying surface
patches, of the underlying surface parameterization, or
of the mappings between textures and the model.

8 Acknowledgments

The authors would like to thank Bruce Gooch for
video editing and the Virtual Prototyping Group for
support. Lisa Durbeck generously let us use the
Phantom to make the example textures in this paper.
This work was supported by NSF grant MIP-9420352,
DARPA grant F33615-96-C-5621 and by the NSF and
DARPA STCCGSV grant (ASC-89-20219).

9 References

1 Heckbert, Paul, "Survey of Texture Mapping", IEEE CG
and Applications. Nov. 1986, pp. 56-57.

2 Catmull, Ed, A Subdivision Algorithm for Computer
Display of Curved Surfaces, PhD thesis, Dept. of CS,
University of Utah, Dec. 1974.

3 Blinn, James. "Simulation of Wrinkled Surfaces",
Computer Graphics, (SIGGRAPH ’78 Proc.), Vol. 12, No. 3,
Aug. 1978, pp. 286-292.

4 Blinn, James. Computer Display of Curved Surfaces, Dept.
of CS, Univ. of Utah, 1978.

5 Gardner, Geoffrey, "Visual Simulation of Clouds",
Computer Graphics, (SIGGRAPH ’85 Proc.), Vol. 19, No.3,
July 1985, pp. 297-306.

6 Bennis, Chakib et al, "Piecewise Surface Flattening for
Non-distorted Texture Mapping", Computer Graphics,
(SIGGRAPH ’91 Proceedings), Vol. 25, July 1991, pp. 237-
246.

7 Maillot, Jèrôme et al, "Interactive Texture Mapping",
Computer Graphics, (SIGGRAPH ’93 Proceedings), Vol. 27,
Aug. 1993, pp. 27-34.

8 Litwinowicz, Peter and Miller, Gavin, "Efficient
Techniques for Interactive Texture Placement", Computer
Graphics, (SIGGRAPH'94 Proceedings), Vol. 24, No. 4, July
1994, pp.119-122.

9 Hanrahan, Pat and Haeberli, Paul, "Direct WYSIWYG
Painting and Texturing on 3D Shapes", Computer Graphics,
(SIGGRAPH'90 Proceedings), Vol. 24, No. 4, August 1990,
pp.215-223.

10 Agrawala, Maneesh et al, "3D Painting on Scanned
Surfaces", 1995 Symposium on Interactive 3D Graphics,
Monterey, CA, pp.145-150.

11 Hollerbach, J.M et al, "Haptic interfacing for virtual
prototyping of mechanical CAD designs," ASME Design for
Manufacturing Symposium, (Sacramento, CA), Sept. 14-17,
1997.

12 Thompson II, T.V. et al, "Direct Haptic Rendering of
Sculptured Models," Proc. Symp. on Int. 3D Graphics, pp.
167-176, April 27-30, 1997.

13 Massie, Thomas H., "Design of a Three Degree of
Freedom Force-Reflecting Haptic Interface.", SB thesis,
MIT EECS Department. May, 1993.

14 Jacobsen, S.C. et al, "High performance, high dexterity,
force reflective teleoperator," Proc. 98th Conf. Remote
Systems Technology, Washington, D.C., Nov. 1990, pp. 180-
185.

15 Riesenfeld, R. et al, "Using the Oslo Algorithm as a
Basis for CAD/CAM Geometric Modelling," Proc. Nat.
Computer Graphics Association, 1991.

