4 Min Hashing

Last time we saw how to convert documents into sets. Then we discussed how to compare sets, specifically using the Jaccard similarity. Specifically, for two sets \(A = \{0, 1, 2, 5, 6\} \) and \(B = \{0, 2, 3, 5, 7, 9\} \). The Jaccard similarity is defined

\[
JS(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|\{0, 2, 5\}|}{|\{0, 1, 2, 3, 5, 6, 7, 9\}|} = \frac{3}{8} = 0.375.
\]

Although this gives us a single numeric score to compare similarity (or distance) it is not easy to compute, and will be especially cumbersome if the sets are quite large.

This leads us to a technique called min hashing that uses a randomized algorithm to quickly estimate the Jaccard similarity. Furthermore, we can show how accurate it is through the Chernoff-Hoeffding bound.

To achieve these results we consider a new abstract data type, a matrix. This format is incredibly useful conceptually, but often extremely wasteful if fully written out.

4.1 Matrix Representation

Here we see how to convert a series of sets (e.g. a set of sets) to be represented as a single matrix. Consider sets:

\[
S_1 = \{1, 2, 5\} \\
S_2 = \{3\} \\
S_3 = \{2, 3, 4, 6\} \\
S_4 = \{1, 4, 6\}
\]

For instance \(JS(S_1, S_3) = |\{2\}|/|\{1, 2, 3, 4, 5, 6\}| = 1/6. \)

We can represent these four sets as a single matrix

\[
\begin{array}{cccc}
\text{Element} & S_1 & S_2 & S_3 & S_4 \\
1 & 1 & 0 & 0 & 1 \\
2 & 1 & 0 & 1 & 0 \\
3 & 0 & 1 & 1 & 0 \\
4 & 0 & 0 & 1 & 1 \\
5 & 1 & 0 & 0 & 0 \\
6 & 0 & 0 & 1 & 1 \\
\end{array}
\]

represents matrix \(M = \begin{pmatrix}
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
\end{pmatrix} \).

That element in the \(i \)th row and the \(j \)th column determine if element \(i \) is in set \(S_j \). It is 1 if the element is in the set, and 0 otherwise. This captures exactly the same data set as the set representation, but may take much more space. If the matrix is sparse, meaning that most entries (e.g. \(> 90\% \) or maybe \(> 99\% \)... or more conceptually, as the matrix becomes \(r \times c \) the non-zero entries grows as roughly \(r + c \), but the space grows as \(r \cdot c \) then it wastes a lot of space. But still it is very useful to think about. There are also sparse matrix representations built into many languages such as Matlab which do not store all of the 0s, they just store the locations of the non-zeros.
4.2 Min Hashing

The next approach, called min hashing will need to evolve through several steps to become a useful trick. (Do not implement it this way – see the version below with actual hashing.)

Step 1: Randomly permute the items (by permuting the rows of the matrix).

<table>
<thead>
<tr>
<th>Element</th>
<th>S₁</th>
<th>S₂</th>
<th>S₃</th>
<th>S₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 2: Record the first 1 in each column, using a map function m. That is, given a permutation, applied to a set S, the function $m(S)$ records the element from S which appears earliest in this permutation.

$m(S₁) = 2$
$m(S₂) = 3$
$m(S₃) = 2$
$m(S₄) = 6$

Step 3: Estimate the Jaccard similarity $JS(Sᵢ, Sⱼ)$ as

$$\hat{JS}(Sᵢ, Sⱼ) = \begin{cases} 1 & m(Sᵢ) = m(Sⱼ) \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 4.2.1. $\mathbb{P}(m(Sᵢ) = m(Sⱼ)) = \mathbb{E}[\hat{JS}(Sᵢ, Sⱼ)] = JS(Sᵢ, Sⱼ)$.

Proof. There are three types of rows.

(Tx) There are x rows with 1 in both column
(Ty) There are y rows with 1 in one column and 0 in the other
(Tz) There are z rows with 0 in both column

The total number of rows is $x + y + z$. The Jaccard similarity is precisely $JS(Sᵢ, Sⱼ) = x/(x + y)$. (Note that usually $z \gg x, y$ (mostly empty) and we can ignore these.)

Let row r be the $\min\{m(Sᵢ), m(Sⱼ)\}$. It is either type (Tx) or (Ty), and it is (Tx) with probability exactly $x/(x + y)$, since the permutation is random. This is the only case that $m(Sᵢ) = m(Sⱼ)$, otherwise $Sᵢ$ or $Sⱼ$ has 1, but not both.

Thus this approach only gives 0 or 1, but has the right expectation. To get a better estimate, we need to repeat this several (k) times. Consider k random permutations $\{m₁, m₂, \ldots, mₖ\}$ and also k random variables $\{X₁, X₂, \ldots, Xₖ\}$ where

$$Xₖ = \begin{cases} 1 & \text{if } mₖ(Sᵢ) = mₖ(Sⱼ) \\ 0 & \text{otherwise.} \end{cases}$$

Now we can estimate $JS(Sᵢ, Sⱼ)$ as $\hat{JS}_k(Sᵢ, Sⱼ) = \frac{1}{k} \sum_{ℓ=1}^{k} Xₖ$, the average of the k simple random estimates.
So how large should we set k so that this gives us an accurate measure? Since it is a randomized algorithm, we will have an error tolerance $ε ∈ (0, 1)$ (e.g. we want $|JS(S_i, S_j) − JS_k(S_i, S_j)| ≤ ε$), and a probability of failure $δ$ (e.g. the probability we have more than $ε$ error). We will now use Theorem 2.5.2 (L2) where $M = \sum_{i=1}^{k} X_i$ and hence $E[M] = k \cdot JS(S_i, S_j)$. We have $0 ≤ X_i ≤ 1$ so each $Δ_i = 1$. Now we can write for some value $α$:

$$\Pr[|\hat{JS}_k(S_i, S_j) − JS(S_i, S_j)| ≥ \alpha/k] = \Pr[|k \cdot \hat{JS}_k(S_i, S_j) − k \cdot JS(S_i, S_j)| ≥ \alpha]$$

$$= \Pr[|M − E[M]| ≥ \alpha] ≤ 2 \exp \left(\frac{-2α^2}{k} \right) = 2 \exp(-2α^2/k).$$

Setting $α = \varepsilon k$ and $k = (1/(2ε^2)) \ln(2/δ)$ we obtain

$$\Pr[|\hat{JS}_k(S_i, S_j) − JS(S_i, S_j)| ≥ ε] ≤ 2 \exp(-2(ε^2 k^2)/k) = 2 \exp(-2ε^2 \frac{1}{2ε^2} \ln(2/δ)) = δ.$$

Or in other words, if we set $k = (1/2ε^2) \ln(2/δ)$, then the probability that our estimate $\hat{JS}_k(S_i, S_j)$ is within $ε$ of $JS(S_i, S_j)$ is at least $1 − δ$.

Say for instance we want error at most $ε = 0.05$ and can tolerate a failure 1% of the time ($δ = 0.01$), then we need $k = (1/(2 \cdot 0.05^2)) \ln(2/0.01) = 200 \ln(200) ≈ 1060$. Note that the modeling error of converting a structure into a set may be more than $ε = 0.05$, so this should be an acceptable loss in accuracy.

Top k. It is sometimes more efficient to use the top-k (for some small number $k > 1$) hash values for each hash function, than just the top one. For instance, see Cohen and Kaplan (Summarizing Data using Bottom-k Sketches, PODC 2007). This approach requires a bit more intricate analysis, as well as a bit more careful implementation.

4.2.1 Fast Min Hashing Algorithm

This is still too slow. We need to construct the full matrix, and we need to permute it k times. A faster way is the min hash algorithm.

Make one pass over the data. Let $n = |E|$. Maintain k random hash functions $\{h_1, h_2, \ldots, h_k\}$ chosen from a hash family at random so $h_i : E → [n]$ (one can use a larger range $n' > n$ where $n' = 2^t$ is a power of two). An initialize k values at $\{v_1, v_2, \ldots, v_k\}$ so $v_i = ∞$.

Algorithm 4.2.1 Min Hash on set S

```plaintext
for i ∈ S do
  for j = 1 to k do
    if (h_j(i) < v_j) then
      v_j ← h_j(i)
```

On output $m_j(S) = v_j$. The algorithm runs in $|S|k$ steps, for a set S of size $|S|$. Note this is independent of the size n of all possible elements E. And the output space of a single set is only $k = (1/2ε^2) \ln(2/δ)$ which is independent of the size of the original set. The space for N sets is only $O(Nk)$.

Finally, we can now estimate $JS(S, S')$ for two sets S and S' as

$$JS_k(S, S') = \frac{1}{k} \sum_{j=1}^{k} I(m_j(S) = m_j(S'))$$

where $I(γ) = 1$ if $γ = \text{TRUE}$ and 0 otherwise. This only takes $O(k)$ time, again independent of n or $|S|$ and $|S'|$.

Data Mining: Algorithms, Geometry, and Probability © Jeff M. Phillips, University of Utah