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ABSTRACT

Moran’s I is a statistic that measures spatial correlation of n spatial data points. It has

been widely used in identifying spatial patterns. In this thesis, a method that estimates

Moran’s I by sampling and the bounds of error of the estimate is described. A corrected

version of Moran’s I that reduces bias of the estimate when the associated value can only

measured with noise is proposed and the properties are proved analytically and demon-

strated by simulation.
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CHAPTER 1

INTRODUCTION
Moran’s I is a statistic that measures spatial correlation of n spatial data points P =

{p1, p2, . . . , pn} [1], [2]. Each point pi is associated with a value xi ∈ R. Let x̄ = 1
n ∑n

i=1 xi

be the mean of all xi values, and let z̃i = xi − x̄ be a centred value. Each pair of points

pi, pj ∈ P also have an associated similarity weight wi,j ∈ [0, 1]; we often represent all of

these pairs in a symmetric matrix W. For instance, wi,j may be 1 if two points pi, pj are

within a fixed distance (or the spatial regions they represent are adjacent) and 0 otherwise.

Or we may define wi,j = exp(−‖pi − pj‖2/2σ2) for spatial points pi, pj ∈ Rd. Then the

Moran’s I is defined as

Itrue =
1

∑n
i=1 ∑n

j=1 wi,j

∑n
i=1 ∑n

j=1 z̃iwi,j z̃j
1
n ∑n

i=1 z̃2
i

. (1.1)

Moran’s I statistic tests whether there are some relationships between location and associ-

ated values. A statistically significant positive statistic indicates that the associated values

of nearby locations are more clustered than randomly distributed. It have been widely

used to identify the spatial pattern of ACS estimates, facilitating the analysis of regional

convergence/inequality and corresponding policy and decision making. For example, it

was used to study the relationship between lithium concentration in drinking water and

suicide rate [3]. It was used in dialectology to measure the spatial variation of language [4].

It was also used to measure spatial genetic structure in plant populations[5]. Particularly,

it is very useful in social study. For example, it was used to investigate criminal rate [6].

However, when the observation is uncertain, the value of the statistic and inference are

no longer stable. No work to date has assessed the impacts of observation uncertainty on

spatial autocorrelation identication, nor developed new spatial autocorrelation statistics

that are robust to the input uncertainty. This research seeks to fill these gaps. Chapter

2 describes estimating Moran’s I by sampling and the bounds of error of the estimate.

Chapter 3 describes a corrected version of Moran’s I that reduces bias of the estimate when
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the value xi can only measured with noise.



CHAPTER 2

ESTIMATE MORAN’S I BY SAMPLING

2.1 Understanding the Error from Sampling
In this section we discuss implications of error in the estimate of Itrue when the data

is generated by randomly sampling from a source. First, we identify the model variance

implied by sampling and how this relates to the Gaussian distribution assumed above.

Next, we show how to estimate Itrue using only a random sample of pairs of data points;

an important consideration for very large datasets. Finally, we show that this estimate can

be improved by using importance sampling to select certain pairs with higher probability,

then adjusting their weight in the final estimation to make it unbiased.

2.1.1 Modeling Data from Sampling

Consider the case where S = {p1, p2, . . . , pn} is finite but large point set. The relation-

ships measured by wi,j is fixed and easy to calculate, but the value xi is hard to obtain.

For example, xi may be constructed as either an aggregate or average from a population

associated with pi. So it will be a saving of resources if we can estimate Moran’s I with

needed accuracy by sampling form S. Next we show that is doable.

First we define two sets A = {a(i, j) = z̃i z̃j} and B = {b(i) = z̃2
i }. Then we define two

new random variables: A represents the distribution of random sample from set A and B

represents the distribution of random sample from set B. Then using W = ∑n
i=1 ∑n

j=1 wi,j,

define

Zw =
1

W

n

∑
i=1

n

∑
j=1

z̃iwi,j z̃j =
1

W

n

∑
i=1

n

∑
j=1

wi,ja(i, j),

Z2 =
1
n

n

∑
i=1

z̃2
i =

1
n

n

∑
i=1

bi.

We can see that Zw is the weighted mean of the random variable A with weight given by

wi,j and Z2 is the mean of the random variable B. Also observe that Itrue =
Zw

Z2
. Note that

if all of the weights wi,j are known, then W is a known constant.
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We can then estimate Itrue in two steps. First, to estimate Z2 we simply sample z̃is uni-

formly and apply Chebyshev’s Inequality to get bounds. To estimate Zw we can uniformly

sample pairs points (i,j) and get the values of z̃i and z̃j as well as wi,j. However, Zw can

also be estimated as weighted mean of z̃i z̃j with weight given by wi,j. We can improve

performance of the estimation by importance sampling upon uniform sampling. Then we

can apply Chebyshev’s Inequality again to give bounds on this estimate.

2.1.2 Algorithm to estimate Zw

Now we give an algorithm to estimate Zw. Assuming that we have a fixed set of size

n for which we want to calculate the Moran’s I and that we have calculated the weight

wi,j and wi,. = ∑n
j=1. We denote the distribution with probability mass function (pmf)

P(X = i) = wi,. as F and the distribution with pmf P(X = j) = wi,j/wi,. as Fi. We want to

sample n1 pairs of points by importance sampling to estimate Zw. The Algorithm 1, below,

implements the importance sampling we want.

Algorithm 1: Importance sampling to estimate Zw

1: set S = 0
2: for i← 1 to n1 do
3: generate a random integer in i = [1, n] with a distribution F.
4: generate a random integer in j = [1, n] with a distribution Fi.
5: estimate z̃i and z̃j
6: S = S + z̃i z̃j
7: return S/n1

2.1.3 Importance Sampling of Pairs

We can improve upon the above result by applying importance sampling. We have the

importance sampling property:

Property 2.1 Suppose we want to find µ = E( f (X)) =
∫

D f (x) p (x) dx where p is a

probability density function on D ⊆ Rd and f is the integrand. We take p(x) = 0 for

all x /∈ D. If q is a positive probability density function on Rd, then µ = Ep( f (X)) =

Eq(
f (x) p (x)

q (x)
) whereEp(.) denotes expectation for X ∼ p and Eq(.) denotes expectation

for X ∼ q. When the distribution of X is discrete, simply change the integration to

summation and density function to mass function and the theorem still holds.
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Now we apply property 2.1 above to estimate Zw.

We have Zw = 1
W ∑n

i=1 ∑n
j=1 z̃iwi,j z̃j =

n2

W ∑n
i=1 ∑n

j=1 z̃iwi,j z̃j
1
n2 ≡ n2

W µ where µ = ∑n
i=1 ∑n

j=1 z̃iwi,j z̃j
1
n2

is the expectation of f (i, j) ≡ z̃iwi,j z̃j, where f (i, j) ∼ p and p(i, j) ≡ 1
n2 is a mass function.

Now let q(i, j) =
wi,j

W
and q(i, j) is also a mass function. Then by theorem 2.1, we have

Zw = n2

W µ = n2

W Eq(
f (i, j)p(i, j)

q(i, j)
) = n2

W Eq(
(z̃iwi,j z̃j)(

1
n2 )

wi,j

W

) = n2

W Eq((z̃i z̃j)(
W
n2 ))) = Eq((z̃i z̃j)).

Therefore the importance sampling estimate of Zw is Ẑw = 1
m ∑m

i=1(z̃i1z̃i2), where z̃i1 and z̃i2

are the two values of the sampled i′th pair and the probability of the i′th pair to be sampled

is
wi1,i2

W
.

2.1.4 Approximation Bounds

Next, we prove that Î estimated by sampling described above is close to Itrue with high

probability for large enough sample sizes. We will achieve this by proving that numerators

Ẑw and Zw are close, then showing the denominators Ẑ2 and Z2 are also close. Then we

will combine these facts together to provide an overall bound.

2.1.4.1 Chebyshev’s Inequality

We first represent Chebyshev’s Inequality that will be used in our proof.

• Chebyshev’s Inequality: if X is an arbitrary random variable and t > 0, then

Pr(|X− E(X)| ≥ t) ≤ Var(X)

t2 .

Now consider a set X1, X2, . . . , Xn of n uncorrelated random variables (that is, Cov(Xi, Xj) =

0) and their sum Sn = ∑n
i=1 Xi. Since Cov(Xi, Xj) = 0, we have Var(∑n

i=1 Xi) =

∑n
i=1 Var(Xi). Then for any t > 0, Chebyshev’s Inequality implies:

Pr(|Sn − E(Sn)| ≥ t) ≤ Var(Sn)

t2 =
∑n

i=1 Var(Xi)

t2 .

Furthermore, let σ2 =
1
n ∑n

i=1 Var(Xi) then Pr( 1
n |Sn − E(Sn)| ≥ d) ≤ σ2

nd2 .

2.1.4.2 Closeness in Ẑw.

Lemma 2.1.1. For any parameter t > 0, when n > C1
t2d then Pr[|Ẑw − Zw| > tZw] ≤ d, where C1

is a constant that is larger than Var(A)/Zw
2.
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Proof. We assume that Var(A) = VA, mean(A) = µA. To estimate Zw, we apply importance

sampling to get a sample of size n from A. We have proved that Ẑw = 1
n ∑m

i=1(Ai) is an

unbiased estimate of Zw. Also We have Var(Ẑw) = VA/n. Now we apply Chebyshev’s

Inequality to get bounds of estimates of Ẑw.

Pr(|Ẑw − Zw| ≥ tZw) ≤
Var(Ẑw)

t2Z2
w

=
VA

nt2Z2
w

.

So if n > VA
dt2Z2

w
then Pr(|Ẑw − Zw| ≥ tZw) ≤ d.

In a special case that we know that VA < C1Z2
w , then if n > C1

dt2 , then Pr[|Ẑw − Zw| >

tZw] ≤ d.

2.1.4.3 Closeness in Ẑ2.

Lemma 2.1.2. For any parameter t > 0, when n > C2
t2d then Pr[|Ẑ2 − Z2| > tZ2] ≤ d, where C2

is a constant that is larger than Var(B)/Z2
2.

Proof. We assume that Var(B) = VB and mean(B) = µB. To estimate Z2, we uniformly

sample a sample of size n from B. Obviously Ẑ2 = 1
n ∑m

i=1(Bi) is an unbiased estimate of

Z2.

Also We have Var(Ẑ2) = VB/n Now we apply Chebyshev’s Inequality to get bounds of

estimates of

Pr(|Ẑ2 − Z2| ≥ tZ2) ≤
Var(Ẑ2)

t2Z2
2

=
VB

nt2Z2
2

.

So if n > VB
dt2Z2

2
then Pr(|Ẑ2 − Z2| ≥ tZ2) ≤ d. In a special case that we know that

VB < C2Z2
2 , then if n > C2

dt2 then Pr[|Ẑ2 − Z2| > tZ2] ≤ d.

2.1.4.4 Putting them together

Finally we put these results about the numerator and denominator stability together.

Theorem 2.1.1. Consider a dataset P of size m where each value point has an associated value zi.

Define a random variable A(i) = zi1 zi2 where zi1 and zi2 are a pair of values and B(i) = z2
i1 . If we

apply importance sampling with q(i) = w(i) = wi1,i2to sample n1 pairs of points to estimate Zw

and uniformly obtain another sample of size n2 to estimate Z2, Then, for any parameter α ∈ (0, 1),

if n1 >
18C1

δα2 and n2 >
18C2

δα2 , with probability at least 1− δ, we have
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1− α ≤ Î
Itrue
≤ 1 + α.

Proof. Overall, when all the conditions mentioned in the proof above hold, which are n1 >

C1
dt2 and n2 > C2

dt2 , then

Pr(Ẑ2/Z2 ≤ 1− t or Ẑ2/Z2 ≥ 1 + t) = Pr(|Ẑ2 − Z2| ≥ tZ2) ≤ d

and

Pr(Ẑw/Zw ≤ 1− t or Ẑw/Zw ≥ 1 + t) = Pr(|Ẑw − Zw| ≥ tZw) ≤ d

hold and then

Pr((Ẑw/Zw)/(Ẑ2/Z2) < (1− t)/(1 + t) or (Ẑw/Zw)/(Ẑ2/Z2) < (1 + t)/(1− t)) ≤ (2d).

And since (Ẑw/Zw)/(Ẑ2/Z2) = Î/Itrue so

Pr( Î/Itrue < (1− t)/(1 + t) or Î/Itrue > (1 + t)/(1− t)) ≤ (2d).

So

Pr((1− t)/(1 + t) ≤ Î/Itrue ≤ (1 + t)/(1− t)) ≥ (1− 2d).

Now, we rewrite the conditions and inequality in terms of α and δ.

Let t =
α

2 + α
then

(1 + t)/(1− t) = (1 +
α

2 + α
)/(1− α

2 + α
)

= (2 + α + α)/(2 + α− α)

= (2 + 2α)/2

= (1 + α)

and

(1− t)/(1 + t) = (1− α

2 + α
)/(1 +

α

2 + α
)

= (2 + α− α)/(2 + α + α)

= 2/(2 + 2α)

= 1/(1 + α)

= 1− α/(1 + α)

> 1− α
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Also let d = 1
2 δ then

1− 2d = 1− δ

So

Pr(1− α ≤ Icorr/Itrue ≤ 1 + α) ≥ (1− δ).

Now plug t =
α

2 + α
and ε = 1

2 δ in to the conditions we mentioned in the proof of

Closeness in denominators and denominators. We get the conditions in terms of α and δ

and they are

• n1 > C1
( α

2+α )
2 1

2 δ
= 2(2+α)2C1

α2δ

• n2 > C2
( α

2+α )
2 1

2 δ
= 2(2+α)2C2

α2δ

Since 0 < α < 1, conditions below is looser than conditions above.

• n1 > 18C1
α2δ

• n2 > 18C2
α2δ

That finishes the proof of the theorem.

2.1.5 Simulation

A simulation study was performed to investigate how sample size of the sampling

algorithm affect the accuracy of Moran’s I estimation. The true attribute value xi for each

point pi on an 50 by 50 grid is generated using R package gstat. The weight matrix W is

defined so wi,j is 1 when pi and pj are adjacent on the grid, and 0 otherwise. True Moran’s I

was calculated using formula 1.1 as the reference. The sampling algorithms was applied to

the generated data for 100 times for each of tested sample sizes. The Moran’s I estimation

for different sample sizes are summarized by box plot on figure 2.1. It is clearly shown that

with sample size increases, the estimation of I approaches the true I.
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Figure 2.1. The effect of sample size on accuracy of Moran’s I estimation



CHAPTER 3

CORRECTED MORAN’S I

3.1 Corrected Moran’s I when there is noise
Very often, the true value associated with point pi (denoted z̃i) is not observed. Instead

what we observe is zi = z̃i + ε i, where ε i is an unknown noise term, and we assume

ε i ⊥ ε j (they are independent). We will also assume that ε i ∼ N(0, vi). It is now typically

for uncertain data to provide some information from which we can at least construct a

good estimate of this. When zi (instead of z̃i) is used to calculate Moran’s I, the estimated

Moran’s I will be smaller than the true one. This is similar to what happens in the cal-

culation of the correlation coefficient. Let β = β̃ + εβ and θ = θ̃ + εθ where β̃ and θ̃ are

the true values and β and θ are estimate of β̃ and θ̃, respectively, where εβ and εθ are the

associated measurement errors. Then the observed correlation corr(β, θ) is smaller than the

true correlation corr(β̃, θ̃). This phenomenon is called disattenuation and can be corrected

by the equation: corr(β̃, θ̃) = corr(β, θ)/
√

RβRθ where Rβ = (Var(β) − Var(εβ))/Var(β)

and Rθ = (Var(θ)− Var(εθ))/Var(θ).

Inspired by the correction of disattenuation in correlation coefficient, we propose to

correct the Moran’s I by

Icorr =
1

∑i ∑j ωi,j

∑i ∑j ziωi,jzj
1
n ∑i z2

i −∑i vi
. (3.1)

3.1.1 Approximation Bounds

Next, we prove that Icorr is close to Itrue with high probability for large enough dataset

sizes. We will achieve this by proving that numerators N ≡ ∑i ∑j ziωi,jzj and N0 ≡

∑i ∑j x̃iωi,j x̃j are close, then showing the denominators D ≡ 1
n ∑i z2

i − ∑i vi and D0 ≡
1
n ∑i z̃2

i are also close. Then we will combine these facts together to provide an overall
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bound. We assume that the noise is bounded such that vi ≤ v = c1D0 (c1 is a constant). By

definition, D0 is the variance of the true value among the locations, and v is the bound of

noise. So c1 can be seem as the ratio of noise to signal. Since rescaling the weight wij doesn’t

change Icorr, without losing generality, we can assume 0 ≤ ωi,j ≤ 1, and in this paper we

only consider the case that the weight matrix is sparse such that ∑i ωi,j = ∑j ωi,j < w ∀i

but not too sparse such that W = ∑i ∑j ωi,j > c2n.

We first list a few standard properties about random variables X and Y we will use.

(P1) Cov(X, Y) = E(XY)− E(X)E(Y)

(P2) If X ⊥ Y then E(XY) = E(X)E(Y).

that is, if X and Y are independent, then we can decompose the product of their

expected values.

(P3) If X ⊥ Y then Var(XY) = E(X)2Var(Y) + E(Y)2Var(X) + Var(X)Var(Y), and further

if E(X) = 0 and E(Y) = 0 then Var(XY) = Var(X)Var(Y).

(P4) Chebyshev’s Inequality: if X is an arbitrary random variable and t > 0, then

Pr(|X− E(X)| ≥ t) ≤ Var(X)

t2 .

Now consider a set X1, X2, . . . , Xn of n uncorrelated random variables (that is,Cov(Xi, Xj) =

0) and their sum Sn = ∑n
i=1 Xi. Since Cov(Xi, Xj) = 0, we have Var(∑n

i=1 Xi) =

∑n
i=1 Var(Xi). Then for any t > 0, Chebyshev’s Inequality implies:

Pr(|Sn − E(Sn)| ≥ t) ≤ Var(Sn)

t2 =
∑n

i=1 Var(Xi)

t2 .

Furthermore, let σ2 =
1
n ∑n

i=1 Var(Xi) then Pr( 1
n |Sn − E(Sn)| ≥ d) ≤ σ2

nd2 .

3.1.1.1 Closeness in numerators.

Lemma 3.1.1. For any parameter t > 0, when n > w(2+c1)c1
t2(Itruec2)2d then Pr[|N − N0| > tN0] ≤ d

Proof. We first expand the definition of N

N = ∑
i

∑
j

ziωi,jzj = ∑
i

∑
j
(z̃i + ε i)ωi,j(z̃j + ε j) = ∑

i
∑

j
(z̃i z̃j + z̃iε j + z̃jε i + ε iε j)wij.

Since E[ε i] = 0 and ε i ⊥ ε j, then E(z̃iε j) = E(z̃jε i) = E(ε iε j) = 0, hence E(N) = E(N0).
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Next we can argue that ε i and ε iε j are uncorrelated since

Cov(ε i, ε iε j) = E(ε iε iε j)− E(ε i)E(ε iε j) = E(ε2
i )E(ε j)− E(ε i)E(ε iε j) = 0− 0 = 0.

Moreover we have ε iεk and ε`ε j are uncorrelated for any i 6= k 6= j 6= ` because

Cov(ε iεk, ε iε j) = E(ε iεkε iε j)−E(ε iεk)E(ε iε j) = E(ε2
i )E(εk)E(ε j)−E(ε i)E(εk)E(ε iε j) = 0− 0 = 0.

So all the terms in N are uncorrelated from each other. Also Var(z̃iε j) = z̃2
i vi and Var(ε iε j) =

Var(ε i)Var(ε j) = vivj due to that ε i ⊥ ε j and E(ε i) = E(ε j) = 0.So Var(N) = ∑i ∑j(z̃2
i vj + z̃2

j vi + vivj)ω
2
ij

According to Chebyshev’s Inequality,

Pr(|N − N0| > tN0) ≤
∑i ∑j(z̃2

i vj + z̃2
j vi + vivj)ω

2
ij

t2N2
0

.

In a special case where vi ≤ v = c1D0 (c1 is a constant), 0 ≤ ωi,j ≤ 1, and the weight

matrix is sparse such that ∑i ωi,j = ∑j ωi,j < w ∀i but not too sparse such that ∑i ∑j ωi,j =

W > c2n then

Pr(|N − N0| > tN0) ≤
∑i ∑j(z̃2

i vj + z̃2
j vi + vivj)ω

2
ij

t2N2
0

≤
∑i ∑j(z̃2

i + z̃2
j + v)vωij

t2N2
0

=
(∑i ∑j z̃2

i ωij + ∑i ∑j z̃2
j ωij + ∑i ∑j vωij)v

t2N2
0

≤
(∑i z̃2

i w + ∑j z̃2
j w + ∑i vw)v

t2N2
0

=
(nD0w + nD0w + nvw)v

t2N2
0

=
(nD0w + nD0w + nc1D0w)c1D0

t2N2
0

=
nD2

0w(2 + c1)c1

t2N2
0

=
nD2

0w(2 + c1)c1

t2(ItrueD0W)2

=
nw(2 + c1)c1

t2(ItrueW)2

≤ nw(2 + c1)c1

t2(Itruec2n)2

=
nw(2 + c1)c1

t2(Itruec2n)2

=
w(2 + c1)c1

t2(Itruec2)2n
≡ p1
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In the case that n is a big number, p1 is a small number. Specifically, when n > w(2+c1)c1
t2(Itruec2)2d ,

then p1 < d

3.1.1.2 Closeness in denominators.

Lemma 3.1.2. For any parameter t > 0, when n > (4+2c1)c1
dt2 then Pr(|D− D0| > tD0) < d

Proof. Recall

D ≡ 1
n ∑

i
z2

i −∑
i

vi =
1
n ∑

i
((z̃i + ε i)

2 − vi) =
1
n ∑

i
(z̃2

i + 2z̃iε i + ε2
i − vi).

Moreover, since E(z̃iε i) = 0 and Var(z̃iε i) = z̃2
i vi and because ε i ∼ N(0, vi) then hence

ε2
i

vi
∼ χ2

1 and E(
ε2

i
vi
) = 1. This implies E(ε2

i − vi) = 0, that Var( ε2
i

vi
) = 2 and Var(ε i) = 2v2

i .

Also

Var(2z̃iε i + ε2
i ) = Var(2z̃iε i) + 2Cov(2z̃iε i, ε2

i ) + Var(ε2
i )

But

Cov(2z̃iε i, ε2
i ) = E(2z̃iε iε

2
i )−E(2z̃iε i)E(ε

2
i ) = 2z̃iE(ε

3
i )− 2z̃iE(ε i)E(ε

2
i ) = 2z̃i0− 2z̃i0E(ε2

i ) = 0

The reason that E(ε3
i ) = 0 is that ε i ∼ N(0, Vi) which is a distribution symmetric about 0.

So

Var(2z̃iε i + ε2
i ) = Var(2z̃iε i) + 2Cov(2z̃iε i, ε2

i ) + Var(ε2
i ) = 4z̃2

i vi + 2v2
i

and E(D) = E(D0) due to that E(z̃iε i) = 0 and E(ε2
i −Vi) = 0.

In summary, E(D) = E(D0) and Var(D) = 1
n2 ∑i(4z̃2

i vi + 2v2
i ). Now according to

Chebyshev’s Inequality,
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Pr(|D− D0| > tD0) ≤
1
n2 ∑i(4z̃2

i vi + 2v2
i )

t2D2
0

=
∑i(4z̃2

i vi + 2v2
i )

n2t2D2
0

≤ ∑i(4z̃2
i + 2v)v

n2t2D2
0

=
(4nD0 + 2nv)v

n2t2D2
0

=
(4nD0 + 2nc1D0)c1D0

n2t2D2
0

=
(4 + 2c1)c1

nt2

≡ p2

and when n is a big number p2 is small. In particular, when n > (4+2c1)c1
dt2 then p2 < d.

3.1.1.3 Putting these together.

Finally we put these results about the numerator and denominator stability together.

Theorem 3.1.1. Consider a dataset P of size n where each value zi = z̃i + ε i has independent

Gaussian noise ε i ∼ N(0, vi), that vi ≤ v = c1D0 (c1 is a constant), 0 ≤ ωi,j ≤ 1, and the weight

matrix is sparse such that ∑i ωi,j = ∑j ωi,j < w ∀i but not too sparse such that W = ∑i ∑j ωi,j >

c2n. Then, for any parameter α ∈ (0, 1), if n > max(18w · (2+c1)c1
(c2)2 · 1

(Itrue)2 · 1
α2 · 1

δ , 36(2 + c1)c1 ·
1
α2 · 1

δ ), with probability at least 1− δ, we have

1− α ≤ Icorr

Itrue
≤ 1 + α.

Proof. Overall, when all the conditions mentioned in the proof above hold, which are n >

w(2+c1)c1
t2(Itruec2)2d and n > (4+2c1)c1

dt2 , then

Pr(D/D0 ≤ 1− t or D/D0 ≥ 1 + t) = Pr(|D− D0| ≥ tD0) ≤ d

and

Pr(N/N0 ≤ 1− t or N/N0 ≥ 1 + t) = Pr(|N − N0| ≥ tN0) ≤ d

hold and then

Pr((N/N0)/(D/D0) < (1− t)/(1 + t) or (N/N0)/(D/D0) < (1 + t)/(1− t)) ≤ (2d).
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And since (N/N0)/(D/D0) = Icorr/Itrue so

Pr(Icorr/Itrue < (1− t)/(1 + t) or Icorr/Itrue > (1 + t)/(1− t)) ≤ (2d).

So

Pr((1− t)/(1 + t) ≤ Icorr/Itrue ≤ (1 + t)/(1− t)) ≥ (1− 2d).

Now, we rewrite the conditions and inequality in terms of α and δ.

Let t =
α

2 + α
then

(1 + t)/(1− t) = (1 +
α

2 + α
)/(1− α

2 + α
)

= (2 + α + α)/(2 + α− α)

= (2 + 2α)/2

= (1 + α)

and

(1− t)/(1 + t) = (1− α

2 + α
)/(1 +

α

2 + α
)

= (2 + α− α)/(2 + α + α)

= 2/(2 + 2α)

= 1/(1 + α)

= 1− α/(1 + α)

> 1− α

Also let d = 1
2 δ then

1− 2d = 1− δ

So

Pr(1− α ≤ Icorr/Itrue ≤ 1 + α) ≥ (1− δ).

Now plug t =
α

2 + α
and d = 1

2 δ in to the conditions we mentioned in the proof of

Closeness in denominators and denominators. We get the conditions in terms of α and δ

and they are

• n > w(2+c1)c1

( α
2+α )

2(Itruec2)2 1
2 δ

= 2w(2+α)2(2+c1)c1
α2(Itruec2)2δ
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• n > 2(2+c1)c1

( α
2+α )

2 1
2 δ

= 4(2+α)2(2+c1)c1
α2δ

Since 0 < α < 1,conditions below is looses than conditions above.

• n > 18w(2+c1)c1
α2(Itruec2)2δ

= 18w · (2+c1)c1
(c2)2 · 1

(Itrue)2 · 1
α2 · 1

δ

• n > 36(2+c1)c1
α2δ

= 36(2 + c1)c1 · 1
α2 · 1

δ

That finishes the proof of the theorem.

Now we convert the relative bound to additive bound.

Theorem 3.1.2. Consider a dataset P of size n where each value zi = z̃i + ε i has independent

Gaussian noise ε i ∼ N(0, vi), that vi ≤ v = c1D0(c1 is a constant), 0 ≤ ωi,j ≤ 1, and the weight

matrix is sparse such that ∑i ωi,j = ∑j ωi,j < w ∀i but not too sparse such that W = ∑i ∑j ωi,j >

c2n. Then, for any parameter β ∈ (0, 1), if n > max(18w · (2+c1)c1
(c2)2 · 1

β2 · 1
δ , 36(2 + c1)c1 · 1

β2 · 1
δ ),

with probability at least 1− δ, we have

Itrue − β ≤ Icorr ≤ Itrue + β.

Proof. According to theorem 1.1, when n > max(18w · (2+c1)c1
(c2)2 · 1

(Itrue)2 · 1
α2 · 1

δ , 36(2 + c1)c1 ·
1
α2 · 1

δ ), with probability at least 1− δ, we have

(E1)

1− α ≤ Icorr

Itrue
≤ 1 + α.

That is equivalent to

(E2)

Itrue − αItrue ≤ Icorr ≤ Itrue + αItrue.

Now let β = αItrue then we have α = β
Itrue

and E2 becomes

(E3)

Itrue − β ≤ Icorr ≤ Itrue + β.

Plug β = αItrue and α = β
Itrue

in n > max(18w · (2+c1)c1
(c2)2 · 1

(Itrue)2 · 1
α2 · 1

δ , 36(2 + c1)c1 · 1
α2 · 1

δ )

and because −1 ≤ Itrue ≤ 1, we can easily get that n > max(18w · (2+c1)c1
(c2)2 · 1

β2 · 1
δ , 36(2 +
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c1)c1 · 1
β2 · 1

δ ) is tighter than n > max(18w · (2+c1)c1
(c2)2 · 1

(Itrue)2 · 1
α2 · 1

δ , 36(2 + c1)c1 · 1
α2 · 1

δ ).

That finishes the proof.

3.1.2 Simulations

3.1.2.1 scenario 1

A simulation study was performed to investigate if the formula correct the estimate of

Moran’s I. The true attribute value xi for each point pi on an 20 by 20 grid is generated

using R package gstat. The weight matrix W is defined so wi,j is exp(−‖pi − pj‖2/2(s2)),

where ‖pi − pj‖ is the Euclidean distance between pi and pj and s is a pre-specified scale

constant. The observed attribute value yi is generated by adding a noise ε i to xi, and εi ∼

N(0, v) where v = f · var(x) and f varies from 0.2 to 1 in the simulation. The true Moran’s

I is calculated by applying formula 1.1 on xi, and the observed Moran’s I is calculated by

applying formula 1.1 on yi, and corrected Moran’s I is calculated by applying formula 3.1

on yi. The simulation is repeated for 100 times for setting of f and mean observed I and

corrected I are calculated and presented in table 3.1.

f 0.2 0.4 0.6 0.8 1
true I 0.630 0.630 0.630 0.630 0.630

mean observed I 0.523 0.447 0.392 0.351 0.314
mean corrected I 0.628 0.629 0.630 0.633 0.633

Table 3.1. Experiments for Gaussian noise

Conclusion: The proposed formula corrected the estimate of Moran’s I of Gausian dis-

tribution.

3.1.2.2 scenario 2

It is common that there are multiple source of variation. Suppose at site i at time point

t, there is a population Yi,t ∼ G(θi,t, Θi) where θi,t is the population mean at site i at time

point t and Θi is the other parameters of the distribution. We also suppose θi,t itself is also

a random variable and that θi,t ∼ N(θi, σi) where θi are long term mean of θi,t. Now we

consider the situation that G(θi,t, Θi) is Gaussian distribution, that is Yi,t ∼ N(θi,t, Θi), and

we are interested in the spatial correlation of θi among all the sites. We need to estimate
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θi. There are two source of variation of the estimation of θi. One is the sampling error, say

we can sample a sample of size ni at time point t to estimate θi,t, the other is the variation

along the time, say we can only do sampling at m time point. However, very often we

can make ni so big that the sampling error is ignorable. Then what we have are θi,t which

follows Gaussian distribution and the correction mentioned above can also get unbiased

estimation of true Moran’s I. A simulation is performed to demonstrate this. The true

attribute value xi for each point pi on an 20 by 20 grid is generated using R package gstat.

A noise ε i with known variance v1 is added to the true value. A sample of size n was drew

from Gaussian distribution N(xi + ε i, v2) from each site and mean mi of the samples were

calculated. Observed and corrected Moran’s I were calculated using these mi. This process

was performed for different values of n. The true Moran’s I was also calculated using xi.

The results are shown on Figure 3.1.

Figure 3.1. The effect of sample size on observed and corrected I in Gaussian distribution

Conclusion: The corrected Moran’s I estimate approaches the true value as the sample

size increases while the original version of Moran’s I is always biased even the sample size

is large .
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3.2 Application in Non-Gaussian Distribution
So far we assume that the observed attribute value yi follows Gaussian distribution.

Now we investigate if the correction we proposed can also be applied to Non-Gaussian

distribution, say Bernoulli distribution, by simulation. In this case the attribute values we

are interested in is the probability of event qi. In the simulation, qi are restricted in the

range [0.1, 0.5]. Trial number Ni in each location varies in the simulation. Event count

ni is generated follow binomial distribution with proportion qi and size Ni and observed

proportion q∗i is then calculated by dividing ni by Ni. The variance of q∗i is calculated as

vi = q∗i · (1− q∗i )/Ni. Using qi, q∗i and vi as input, true Moran’s I, observed Moran’s I and

corrected Moran’s I were calculated similar as above and presented on Figure 3.1.

Figure 3.2. The effect of sample size on observed and corrected I in Bernoulli distrubution

Conclusion: The proposed formula also correct the estimate of Moran’s I of Bernoulli

distribution.



CHAPTER 4

CONCLUSION

During the last decades, the speed of accumulating information has progressed beyond

people’s imagination. Information is not knowledge however. The first step to gain knowl-

edge from information is to recognize patterns of the information. One of the important

patterns is spatial correlation. Moran’s I is a commonly used statistic to assess spatial

correlation. We provided a sampling method to estimate this statistic and proved bounds

of the estimate. We also proposed a corrected formula to estimate Moran’s I when there

are noise on the attribute values. We proved closeness of the estimate to the true value and

demonstrated the closeness property by simulation in 2D space. The future direction can

be exploring the performance on the corrected formula on higher dimensional space.
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