Homework 3: Linear Regression and Gradient Descent

Instructions: Your answers are due at 2:45, before the beginning of class on the due date. You must turn in a pdf through canvas. I recommend using latex (http://www.cs.utah.edu/~jeffp/ teaching/latex/) for producing the assignment answers. If the answers are too hard to read you will lose points, entire questions may be given a 0 (e.g. sloppy pictures with your phone's camera are not ok, but very careful ones are)

Please make sure your name appears at the top of the page.
You may discuss the concepts with your classmates, but write up the answers entirely on your own. Be sure to show all the work involved in deriving your answers! If you just give a final answer without explanation, you may not receive credit for that question.

We will use a dataset found here: http://www.cs.utah.edu/~jeffp/teaching/FoDA/D3.csv There are many ways to import data in python. The pandas package seems to be the best one.

1. [50 points] Let the first column of the data set be the explanatory variable x , and let the fourth column be the dependent variable y . [That is: ignore columns 2 and 3 for now]
(a) [10 points] Run simple linear regression to predict y from x . Report the linear model you found. Predict the value of y for new x values 0.3 , for 0.5 , and for 0.8 .
(b) $[10$ points $]$ Use cross-validation to predict generalization error, with error of a single data point (x, y) from a model M as $(M(\mathrm{x})-\mathrm{y})^{2}$. Describe how you did this, and which data was used for what.
(c) [20 points] On the same data, run polynomial regression for $p=2,3,4,5$. Report polynomial models for each. With each of these models, predict the value of y for a new x values of 0.3 , for 0.5 , and for 0.8 .
(d) [10 points] Cross-validate to choose the best model. Describe how you did this, and which data was used for what.
2. [25 points] Now let the first three columns of the data set be separate explanatory variables $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$. Again let the fourth column be the dependent variable y .

- Run linear regression simultaneously using all three explanatory variables. Report the linear model you found. Predict the value of y for new ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$) values $(0.3,0.4,0.1)$, for $(0.5,0.2,0.4)$, and for $(0.8,0.2,0.7)$.
- Use cross-validation to predict generalization error, with error of a single data point (x1, $\mathrm{x} 2, \mathrm{x} 3, \mathrm{y}$) from a model M as $(M(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3)-\mathrm{y})^{2}$. Describe how you did this, and which data was used for what.

3. [25 points] Consider two functions

$$
f_{1}(x, y)=(x-5)^{2}+(y+2)^{2} \quad f_{2}(x, y)=(1-(y-4))^{2}+35\left((x+6)-(y-4)^{2}\right)^{2}
$$

Starting with $(x, y)=(0,0)$ run the gradient descent algorithm for each function. Run for T iterations, and report the function value at the end of each step.
(a) First, run with a fixed learning rate of $\gamma=0.5$.
(b) Second, run with any variant of gradient descent you want. Try to get the smallest function value after T steps.

For f_{1} you are allowed only $T=10$ steps. For f_{2} you are allowed $T=100$ steps.
[$+\mathbf{5}$ points] If any students do significantly better than the rest of the class on f_{2} in part (b), we will award up to 5 extra credit points.

