Sample Spaces, Events, Probability

CS 3130/ECE 3530:
Probability and Statistics for Engineers

Jan 12, 2023

Sets

Definition

A set is a collection of unique objects.

Sets

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Sets

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Examples:

$$
A=\{3,8,31\}
$$

Sets

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Examples:

$$
\begin{aligned}
& A=\{3,8,31\} \\
& B=\{\text { apple, pear, orange, grape }\}
\end{aligned}
$$

Sets

Definition

A set is a collection of unique objects.

Here "objects" can be concrete things (people in class, schools in PAC-12), or abstract things (numbers, colors).

Examples:
$A=\{3,8,31\}$
$B=\{$ apple, pear, orange, grape $\}$
Not a valid set definition: $C=\{1,2,3,4,2\}$

Sets

- Order in a set does not matter!

$$
\{1,2,3\}=\{3,1,2\}=\{1,3,2\}
$$

Sets

- Order in a set does not matter!

$$
\{1,2,3\}=\{3,1,2\}=\{1,3,2\}
$$

- When x is an element of A, we denote this by:

$$
x \in A .
$$

Sets

- Order in a set does not matter!

$$
\{1,2,3\}=\{3,1,2\}=\{1,3,2\}
$$

- When x is an element of A, we denote this by:

$$
x \in A .
$$

- If x is not in a set A, we denote this as:

$$
x \notin A .
$$

Sets

- Order in a set does not matter!

$$
\{1,2,3\}=\{3,1,2\}=\{1,3,2\}
$$

- When x is an element of A, we denote this by:

$$
x \in A .
$$

- If x is not in a set A, we denote this as:

$$
x \notin A .
$$

- The "empty" or "null" set has no elements:

$$
\emptyset=\{ \}
$$

Some Important Sets

- Integers:

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

Some Important Sets

- Integers:

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- Natural Numbers:

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

Some Important Sets

- Integers:

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- Natural Numbers:

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

- Real Numbers:
$\mathbb{R}=$ "any number that can be written in decimal form"

Some Important Sets

- Integers:

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

- Natural Numbers:

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

- Real Numbers:
$\mathbb{R}=$ "any number that can be written in decimal form"

$$
5 \in \mathbb{R}, \quad 17.42 \in \mathbb{R}, \quad \pi=3.14159 \ldots \in \mathbb{R}
$$

Building Sets Using Conditionals

Building Sets Using Conditionals

- Alternate way to define natural numbers:

$$
\mathbb{N}=\{x \in \mathbb{Z}: x \geq 0\}
$$

Building Sets Using Conditionals

- Alternate way to define natural numbers:

$$
\mathbb{N}=\{x \in \mathbb{Z}: x \geq 0\}
$$

- Set of even integers:

$$
\{x \in \mathbb{Z}: x \text { is divisible by } 2\}
$$

Building Sets Using Conditionals

- Alternate way to define natural numbers:

$$
\mathbb{N}=\{x \in \mathbb{Z}: x \geq 0\}
$$

- Set of even integers:

$$
\{x \in \mathbb{Z}: x \text { is divisible by } 2\}
$$

- Rationals:

$$
\mathbb{Q}=\{p / q: p, q \in \mathbb{Z}, q \neq 0\}
$$

Subsets

Definition

A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Subsets

Definition
 A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

Subsets

Definition

A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

$$
\cdot\{1,9\} \subseteq\{1,3,9,11\}
$$

Subsets

Definition

A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

$$
\begin{aligned}
& \text { - }\{1,9\} \subseteq\{1,3,9,11\} \\
& -\mathbb{Q} \subseteq \mathbb{R}
\end{aligned}
$$

Subsets

Definition

A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

- $\{1,9\} \subseteq\{1,3,9,11\}$
- $\mathbb{Q} \subseteq \mathbb{R}$
- \{apple, pear $\} \nsubseteq\{$ apple, orange, banana $\}$

Subsets

Definition

A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

- $\{1,9\} \subseteq\{1,3,9,11\}$
- $\mathbb{Q} \subseteq \mathbb{R}$
- \{apple, pear $\} \nsubseteq\{$ apple, orange, banana $\}$
- $\emptyset \subseteq A$ for any set A

Subsets

Definition

A set A is a subset of another set B if every element of A is also an element of B, and we denote this as $A \subseteq B$.

Examples:

- $\{1,9\} \subseteq\{1,3,9,11\}$
- $\mathbb{Q} \subseteq \mathbb{R}$
- \{apple, pear $\} \nsubseteq\{$ apple, orange, banana $\}$
- $\emptyset \subseteq A$ for any set A
- $A \subseteq A$ for any set A (but $A \not \subset A$)

Sample Spaces

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω.

Sample Spaces

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω.

Examples:

- Coin flip: $\Omega=\{H, T\}$

Sample Spaces

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω.

Examples:

- Coin flip: $\Omega=\{H, T\}$
- Roll a 6-sided die: $\Omega=\{1,2,3,4,5,6\}$

Sample Spaces

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω.

Examples:

- Coin flip: $\Omega=\{H, T\}$
- Roll a 6-sided die: $\Omega=\{1,2,3,4,5,6\}$
- Pick a ball from a bucket of red/black balls:
$\Omega=\{R, B\}$

Sample Spaces

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω.

Examples:

- Coin flip: $\Omega=\{H, T\}$
- Roll a 6-sided die: $\Omega=\{1,2,3,4,5,6\}$
- Pick a ball from a bucket of red/black balls:
$\Omega=\{R, B\}$
- Tossing 2 coins?

Sample Spaces

Definition

A sample space is the set of all possible outcomes of an experiment. We'll denote a sample space as Ω.

Examples:

- Coin flip: $\Omega=\{H, T\}$
- Roll a 6-sided die: $\Omega=\{1,2,3,4,5,6\}$
- Pick a ball from a bucket of red/black balls:
$\Omega=\{R, B\}$
- Tossing 2 coins?
- Shuffling deck of 52 cards?

Events

Definition

An event is a subset of a sample space.

Events

Definition

An event is a subset of a sample space.

Examples:

- You roll a die and get an even number:

$$
\{2,4,6\} \subseteq\{1,2,3,4,5,6\}
$$

Events

Definition

An event is a subset of a sample space.

Examples:

- You roll a die and get an even number:

$$
\{2,4,6\} \subseteq\{1,2,3,4,5,6\}
$$

- You flip a coin and it comes up "heads":

$$
\{H\} \subseteq\{H, T\}
$$

Events

Definition

An event is a subset of a sample space.

Examples:

- You roll a die and get an even number:

$$
\{2,4,6\} \subseteq\{1,2,3,4,5,6\}
$$

- You flip a coin and it comes up "heads":

$$
\{H\} \subseteq\{H, T\}
$$

- Your code takes longer than 5 seconds to run:

$$
(5, \infty) \subseteq \mathbb{R}
$$

Set Operations: Union

Definition

The union of two sets A and B, denoted $A \cup B$ is the set of all elements in either A or B (or both).

Set Operations: Union

Definition

The union of two sets A and B, denoted $A \cup B$ is the set of all elements in either A or B (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).

Set Operations: Union

Definition

The union of two sets A and B, denoted $A \cup B$ is the set of all elements in either A or B (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).

Example:
$A=\{1,3,5\} \quad$ "an odd roll"
$B=\{1,2,3\} \quad$ "a roll of 3 or less"

Set Operations: Union

Definition

The union of two sets A and B, denoted $A \cup B$ is the set of all elements in either A or B (or both).

When A and B are events, $A \cup B$ means that event A or event B happens (or both).

Example:
$A=\{1,3,5\} \quad$ "an odd roll"
$B=\{1,2,3\} \quad$ "a roll of 3 or less"
$A \cup B=\{1,2,3,5\}$

Set Operations: Intersection

Definition

The intersection of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

Set Operations: Intersection

Definition

The intersection of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Set Operations: Intersection

Definition

The intersection of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:
$A=\{1,3,5\} \quad$ "an odd roll"
$B=\{1,2,3\} \quad$ "a roll of 3 or less"

Set Operations: Intersection

Definition

The intersection of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:
$A=\{1,3,5\} \quad$ "an odd roll"
$B=\{1,2,3\} \quad$ "a roll of 3 or less"
$A \cap B=\{1,3\}$

Set Operations: Intersection

Definition

The intersection of two sets A and B, denoted $A \cap B$ is the set of all elements in both A and B.

When A and B are events, $A \cap B$ means that both event A and event B happen.

Example:
$A=\{1,3,5\} \quad$ "an odd roll"
$B=\{1,2,3\} \quad$ "a roll of 3 or less"
$A \cap B=\{1,3\}$
Note: If $A \cap B=\emptyset$, we say A and B are disjoint.

Set Operations: Complement

Definition

The complement of a set $A \subseteq \Omega$, denoted A^{c}, is the set of all elements in Ω that are not in A.

Set Operations: Complement

Definition

The complement of a set $A \subseteq \Omega$, denoted A^{c}, is the set of all elements in Ω that are not in A.

When A is an event, A^{c} means that the event A does not happen.

Set Operations: Complement

Definition

The complement of a set $A \subseteq \Omega$, denoted A^{c}, is the set of all elements in Ω that are not in A.

When A is an event, A^{c} means that the event A does not happen.

Example:
$A=\{1,3,5\} \quad$ "an odd roll"

Set Operations: Complement

Definition

The complement of a set $A \subseteq \Omega$, denoted A^{c}, is the set of all elements in Ω that are not in A.

When A is an event, A^{c} means that the event A does not happen.

Example:
$A=\{1,3,5\} \quad$ "an odd roll"
$A^{c}=\{2,4,6\} \quad$ "an even roll"

Set Operations: Difference

Definition

The difference of a set $A \subseteq \Omega$ and a set $B \subseteq \Omega$, denoted $A-B$, is the set of all elements in Ω that are in A and are not in B.

Example:
$A=\{3,4,5,6\}$
$B=\{3,5\}$
$A-B=\{4,6\}$
Note: $A-B=A \cap B^{c}$

DeMorgan's Law

Complement of union or intersection:

$$
\begin{aligned}
& (A \cup B)^{c}=A^{c} \cap B^{c} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

DeMorgan's Law

Complement of union or intersection:

$$
\begin{aligned}
& (A \cup B)^{c}=A^{c} \cap B^{c} \\
& (A \cap B)^{c}=A^{c} \cup B^{c}
\end{aligned}
$$

What is the English translation for both sides of the equations above?

Exercises

Check whether the following statements are true or false. (Hint: you might use Venn diagrams.)

- $A-B \subseteq A$
- $(A-B)^{c}=A^{c} \cup B$
- $A \cup B \subseteq B$
- $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$

Probability

Definition

A probability function on a finite sample space Ω assigns every event $A \subseteq \Omega$ a number in $[0,1]$, such that

1. $P(\Omega)=1$
2. $P(A \cup B)=P(A)+P(B)$ when $A \cap B=\emptyset$
$P(A)$ is the probability that event A occurs.

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.
If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$
P(A)=\frac{|A|}{|\Omega|}
$$

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.
If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$
P(A)=\frac{|A|}{|\Omega|}
$$

Example: Rolling a 6-sided die

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.
If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$
P(A)=\frac{|A|}{|\Omega|}
$$

Example: Rolling a 6 -sided die

- $P(\{1\})=1 / 6$

Equally Likely Outcomes

The number of elements in a set A is denoted $|A|$.
If Ω has a finite number of elements, and each is equally likely, then the probability function is given by

$$
P(A)=\frac{|A|}{|\Omega|}
$$

Example: Rolling a 6 -sided die

- $P(\{1\})=1 / 6$
- $P(\{1,2,3\})=1 / 2$

Repeated Experiments

If we do two runs of an experiment with sample space Ω, then we get a new experiment with sample space

$$
\Omega \times \Omega=\{(x, y): x \in \Omega, y \in \Omega\}
$$

Repeated Experiments

If we do two runs of an experiment with sample space Ω, then we get a new experiment with sample space

$$
\Omega \times \Omega=\{(x, y): x \in \Omega, y \in \Omega\}
$$

The element $(x, y) \in \Omega \times \Omega$ is called an ordered pair.

Repeated Experiments

If we do two runs of an experiment with sample space Ω, then we get a new experiment with sample space

$$
\Omega \times \Omega=\{(x, y): x \in \Omega, y \in \Omega\}
$$

The element $(x, y) \in \Omega \times \Omega$ is called an ordered pair.
Properties:
Order matters: $(1,2) \neq(2,1)$
Repeats are possible: $(1,1) \in \mathbb{N} \times \mathbb{N}$

More Repeats

Repeating an experiment n times gives the sample space

$$
\begin{aligned}
\Omega^{n} & =\Omega \times \cdots \times \Omega(n \text { times }) \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \Omega \text { for all } i\right\}
\end{aligned}
$$

More Repeats

Repeating an experiment n times gives the sample space

$$
\begin{aligned}
\Omega^{n} & =\Omega \times \cdots \times \Omega(n \text { times }) \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \Omega \text { for all } i\right\}
\end{aligned}
$$

The element $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called an n-tuple.

More Repeats

Repeating an experiment n times gives the sample space

$$
\begin{aligned}
\Omega^{n} & =\Omega \times \cdots \times \Omega(n \text { times }) \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{i} \in \Omega \text { for all } i\right\}
\end{aligned}
$$

The element $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is called an n-tuple.
If $|\Omega|=k$, then $\left|\Omega^{n}\right|=k^{n}$.

Probability Rules

Probability Rules

Complement of an event A :

$$
P\left(A^{c}\right)=1-P(A)
$$

Probability Rules

Complement of an event A :

$$
P\left(A^{c}\right)=1-P(A)
$$

Union of two overlapping events $A \cap B \neq \emptyset$:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Exercise

You are picking a number out of a hat, which contains the numbers 1 through 100. What are the following events and their probabilities?

- The number has a single digit
- The number has two digits
- The number is a multiple of 4
- The number is not a multiple of 4
- The sum of the number's digits is 5

Permutations

A permutation is an ordering of an n-tuple. For instance, the n-tuple $(1,2,3)$ has the following permutations:

$$
\begin{aligned}
& (1,2,3),(1,3,2),(2,1,3) \\
& (2,3,1),(3,1,2),(3,2,1)
\end{aligned}
$$

Permutations

A permutation is an ordering of an n-tuple. For instance, the n-tuple $(1,2,3)$ has the following permutations:

$$
\begin{aligned}
& (1,2,3),(1,3,2),(2,1,3) \\
& (2,3,1),(3,1,2),(3,2,1)
\end{aligned}
$$

The number of unique orderings of an n-tuple is n factorial:

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 2
$$

Permutations

A permutation is an ordering of an n-tuple. For instance, the n-tuple $(1,2,3)$ has the following permutations:

$$
\begin{aligned}
& (1,2,3),(1,3,2),(2,1,3) \\
& (2,3,1),(3,1,2),(3,2,1)
\end{aligned}
$$

The number of unique orderings of an n-tuple is n factorial:

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 2
$$

How many ways can you rearrange ($1,2,3,4$)?

