Notes: Independence

CS 3130/ECE 3530: Probability and Statistics for Engineers
January 24, 2023

Independence:

An event A is independent of an event B when

$$
P(A \mid B)=P(A)
$$

In English: "the probability of A does not depend on whether B happens." If A and B are not independent, we say they are dependent.

Let's break down this equation using the definition of conditional probability:

$$
\begin{array}{llr}
& P(A \mid B)=P(A) & \text { Definition of } A \text { and } B \text { independent } \\
\Leftrightarrow & \frac{P(A \cap B)}{P(B)}=P(A) & \text { Definition of conditional prob. } \\
\Leftrightarrow & P(A \cap B)=P(A) P(B) & \text { Multiply both sides by } P(B)
\end{array}
$$

So, we see an equivalent definition of A and B being independent is that their joint probability is the product of their individual probabilities. Continuing on, we see

$$
\begin{array}{llr}
& P(A \cap B)=P(A) P(B) & \text { Definition of } A \text { and } B \text { independent } \\
\Leftrightarrow & \frac{P(A \cap B)}{P(A)}=P(B) & \text { Divide both sides by } P(A) \\
\Leftrightarrow & P(B \mid A)=P(B) & \text { Definition of conditional prob. }
\end{array}
$$

This tells us that independence is a symmetric property: $P(A \mid B)=P(A)$ is equivalent to $P(B \mid A)=P(B)$.

In-Class Problem: A fair die is thrown twice. A is the event sum of values is 5. And B is the event that at least one throw is a 2. Calculate $P(A \mid B)$. Are events A and B independent?

In-Class Problem: You have two urns, one with 4 black balls and 3 white balls, the other with 2 black balls and 2 white balls. You pick one urn at random and then select a ball from the urn. Is the event that I pick urn 1 independent of the event that I pick a white ball? What if I changed the second urn to have 8 black balls and 6 white balls?

In-Class Problem: You have a system with a main power supply and auxiliary power supply. The main power supply has a 10% chance of failure. If the main power supply is running, the auxiliary power supply also has a 10% chance of failure. But if the main supply fails, the auxiliary supply is more likely to be overloaded and has a 15% chance to fail. Is the auxiliary supply failing independent of main supply failing?

Looking back at our English translation of independence, we would expect (intuitively) that the probability of A would be the same if B happens or if B does not happen, that is, if B^{c} happens. Let's check if this is true:

$$
\begin{array}{llr}
& P(A \cap B)=P(A) P(B) & \text { Definition of } A \text { and } B \text { independent } \\
\Leftrightarrow & P\left(A-B^{c}\right)=P(A) P(B) & \text { Definition of set minus } \\
\Leftrightarrow & P(A)-P\left(A \cap B^{c}\right)=P(A) P(B) & \text { Difference rule } \\
\Leftrightarrow & P(A)-P\left(A \cap B^{c}\right)=P(A)\left(1-P\left(B^{c}\right)\right) & \text { Complement rule } \\
\Leftrightarrow & P\left(A \cap B^{c}\right)=P(A) P\left(B^{c}\right) & \text { Subtract } P(A) \text { from both sides and multiply by }-1
\end{array}
$$

This final line is just the definition that A and B^{c} are independent. To summarize, we have four different (and equivalent) definitions of independence:

Definitions of Independence

The events A and B are independent if any of the following equivalent conditions are true:

1. $P(A \mid B)=P(A)$
2. $P(B \mid A)=P(B)$
3. $P(A \cap B)=P(A) P(B)$
4. Replace B with B^{c} in 1-3, that is:

$$
P\left(A \mid B^{c}\right)=P(A) \quad \text { or } \quad P\left(B^{c} \mid A\right)=P\left(B^{c}\right) \quad \text { or } \quad P\left(A \cap B^{c}\right)=P(A) P\left(B^{c}\right)
$$

