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Expectation of Joint Random Variables. When we have two random variables X,Y described jointly, we
can take the expectation of functions of both random variables, g(X,Y ). This is defined how you think it
would be.

For discrete:
E[g(X,Y )] =

∑
i

∑
j

g(ai, bj)P (X = ai, Y = bj)

For continuous:
E[g(X,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dx dy

Linearity of expectation revisited. We’ve already stated expectation was linear; now we show why. Let
g(X,Y ) = rX + sY , where r, s are constants. Plugging this into the formulas above, we can see that
E[rX + sY ] = rE[X] + sE[Y ]. Here we run through the discrete case (continuous case works exactly the
same):

E[rX + sY ] =
∑
i

∑
j

(rai + sbj)P (X = ai, Y = bj)

= r
∑
i

∑
j

aiP (X = ai, Y = bj) + s
∑
i

∑
j

bjP (X = ai, Y = bj)

= r
∑
i

ai

∑
j

P (X = ai, Y = bj)

+ s
∑
j

bj

(∑
i

P (X = ai, Y = bj)

)

= r
∑
i

aiP (X = ai) + s
∑
j

bjP (Y = bj)

= rE[X] + sE[Y ]

Covariance. The covariance of two random variables X,Y is defined as

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])].

Notice the similarity to the variance definition. In fact, Cov(X,X) = Var(X). Covariance is a measure
of how related X and Y are. If Cov(X,Y ) is positive, it means that “X and Y tend to go in the same
direction”. If Cov(X,Y ) is negative, it means that “X and Y tend to go in opposite directions.” As an
example, let Y = X . Now X and Y really go in the same direction! In this case Cov(X,Y ) = Var(X),
which is always positive. Now consider the case that Y = −X . So, X and Y are really going in opposite
directions. You can check that Cov(X,Y ) = −Var(X), which is always negative.
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Just like variance, we have an alternate definition for covariance:

Cov(X,Y ) = E[XY ]− E[X]E[Y ].

Exercise: Prove these two formulas for Cov(X,Y ) are equal.

So, E[X + Y ] = E[X] + E[Y ] holds for expectation. Does it also hold for variance? In other words, does
Var(X + Y ) = Var(X) + Var(Y )?

Var(X + Y ) = E[(X + Y )2]− E[X + Y ]2

= E[X2 + 2XY + Y 2]− (E[X] + E[Y ])2

= E[X2] + 2E[XY ] + E[Y 2]− E[X]2 − 2E[X]E[Y ]− E[Y ]2

= (E[X2]− E[X]2) + (E[Y 2]− E[Y ]2) + 2(E[XY ]− E[X]E[Y ])

= Var(X) + Var(Y ) + 2(E[XY ]− E[X]E[Y ])

= Var(X) + Var(Y ) + 2Cov(X,Y )

So, Var(X + Y ) = Var(X) + Var(Y ) if and only if Cov(X,Y ) = 0.

Notation: Remember we had the notation σ2X = Var(X). We will also use the notation σX,Y = Cov(X,Y ).

Important Fact: If X and Y are independent, then Cov(X,Y ) = 0 (see book for proof). This matches our
intuition that independence means that X and Y are not related and that Cov(X,Y ) is a numerical measure
of how related X and Y are.

Tricky Important Fact: If Cov(X,Y ) = 0, this does not necessarily mean that X and Y are independent!

Correlation. One problem with covariance is that it scales with the random variables X and Y . That is,
Cov(rX, sY ) = rsCov(X,Y ). (This follows directly from the linearity of expectation.) Therefore, if we
change the units of X and Y , we will scale their covariance. This makes it really difficult to know how
strongly two random variables are based on how large their covariance is. For example, let’s think about
X and Y variables that are given in meters. If we were to rewrite them in terms of centimeters, then each
variable will scale by 100, and the covariance will scale by 1002 = 10,000. However, these are really just
the same random variables, and their larger covariance does not mean they are more strongly related to each
other.

To overcome this problem, the correlation is defined to remove these scale factors:

ρ(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

=
σX,Y

σXσY

Notice that scaling cancels out in the numerator and denominator, so ρ(rX, sY ) = ρ(X,Y ). So, correlation
is invariant to the units in which we write X and Y .

Bivariate Gaussian Distribution. One of the most important examples of a continuous joint distribution is
the bivariate Gaussian distribution. Let’s begin with understanding what it looks like when we combine two
indepdendent Gaussian random variables X ∼ N(µx, σx) and Y ∼ N(µy, σy). Because of independence,
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the joint pdf is given by

f(x, y) = f(x)f(y) =
1√
2πσx

exp

(
−(x− µx)2

2σ2x

)
1√
2πσy

exp

(
−(y − µy)2

2σ2y

)
=

1

2πσxσy
exp

(
−1

2

[
(x− µx)2

2σ2x
+

(y − µy)2

2σ2y

])
Now, if we allow X and Y to be correlated with ρ = ρ(X,Y ), we get a more general form of the bivariate
Gaussian pdf:

f(x, y) =
1

2πσxσy
√
1− ρ2

exp

(
− 1

2(1− ρ2)

[
(x− µx)2

2σ2x
+

(y − µy)2

2σ2y
− 2ρ(x− µx)(y − µy)

σxσy

])
See the R source code that we covered in class for some plots of what these joint pdf’s look like.

Summary of important formulas:

Covariance:

Cov(X,Y ) = E[XY ]− E[X] E[Y ]

Correlation:

ρ(X,Y ) =
Cov(X,Y )√
Var(X)Var(Y )

Variance of Addition:

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )
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