Prob/Stats LOZ
Conditional Probability

$$
\text { Jan 19, } 2023
$$

S. ts

Sample Space $\Omega^{\text {everosthines }}$ interest Subsets $A \leqslant \Omega$
$\frac{\operatorname{Pr}(A)=\frac{|A|}{|\Omega|} \begin{array}{l}\text { if all } x \in \Omega \\ \text { equally } \\ \text { intersection } A \cap B\end{array} \text { bi ty } A \text { and } B}{}$ are true union $A \cup B \quad A \cong B$ aestrue (or b. th) complement $A^{\prime} \quad A$ is not true.

Probability Rule

$$
A, B \subseteq \Omega
$$

Inclusion - Exclusion:

$$
\begin{aligned}
& =0.8 \\
& \text { Not legal } \\
& P_{0}(A)=0.2 \\
& P_{8}(A \cap B)=0.3
\end{aligned}
$$

Rule $P_{c}(\angle 0 D)=P_{0}(C)+P_{0.3}(\Delta)$ if $\angle \Delta D=\phi$

Complement Rule

$$
\operatorname{Pr}\left(A^{C}\right)=1-\operatorname{Pr}(A)
$$

Difference Rule

$$
\operatorname{Pr}(A-B)=\operatorname{Pr}(A)-\operatorname{Pr}(A \cap B)
$$

$$
\begin{aligned}
& \frac{\text { Conditional Probability }}{\text { events } A, B} \\
& \operatorname{Pr}(A) B)
\end{aligned}
$$

probability of A, if we know that' B is true

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

$$
\begin{aligned}
& \operatorname{Pr}(A \mid B) \\
& =\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)} \\
& =\frac{0.1}{0.5} \\
& =\frac{1}{5}=0.2
\end{aligned}
$$

$$
\begin{array}{ll}
P_{c}(B)=0.5 & \\
P_{c}(A)=0.3 & P_{c}(A \cap B)=0.1
\end{array}
$$

Brain Teaber 2 coins, fair $B=$ at least one coin heads

$$
\Omega_{B}=\{H T, T H, H H\}
$$

$$
\begin{aligned}
& A=\begin{array}{l}
\text { secund coin heads } \\
H H H\}
\end{array} \\
& P_{<}(A \mid B)=\frac{1\{(-H, H)}{(\{H, \pi H, H H\})}=\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Multiplication Rule } \\
& \text { events } A, B \\
& \operatorname{Pr}(A \cap B)=\underline{\operatorname{Pr}(A \mid B)} \cdot \operatorname{Pr}(B) \\
& \operatorname{Pr}(B) \cdot \operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{(\operatorname{Pr}(B))} \cdot \operatorname{Pe}(B)
\end{aligned}
$$

Tree Diagram : two-stage problem a
2 Boxes contain 5 balls $\{1,2,3,4,5\}$
(2) (4)

Step choose 1 box (w/ equal pood)
Step 2 choose I ball from hox.
? Prob 1 choose (2)?

Sampling without Replacement
I box 10 green balls
10 Fed balls
draw 2 bolls (who replace
Probability of 2 red bolls?
$R 1$ - event that ball 1 red
$R^{2}=$ event thar l $b-l l$ z red

$$
\begin{aligned}
& R_{r}(R \mid \wedge R 2)=\operatorname{Pr}(R 2 \mid R 1) \cdot R_{r}(R 1) \\
& \frac{9}{19} \cdot \frac{9}{2}=\frac{9}{38}= \\
& R_{r}(R 2 \mid R 1)=\frac{9}{19}
\end{aligned}
$$

Prohs of 3 rid balls wro replacened 10 sid , logicen

$$
\begin{aligned}
& R 1, R 2, R 3 \\
& \operatorname{Pr}\left(R 1 \wedge R_{2}\right)=\frac{9}{38} \\
& \left.\operatorname{Pr}((R 1 \wedge R 2) \cap R 3)=\operatorname{Pr}\left(R_{3}\right) R \backslash \cap R 2\right)=\frac{8}{18} \\
& =\frac{9}{38} \cdot \frac{4}{9}-\frac{4}{38}=\frac{2}{19} \frac{8}{18}=\frac{4}{9}
\end{aligned}
$$

