
Asmt 5: Regression
Turn in through Canvas by 5pm:

Monday, April 11
100 points

Overview
In this assignment you will explore regression techniques on high-dimensional data.

You will use a few data sets for this assignment:

• http://www.cs.utah.edu/˜jeffp/teaching/cs5140/A5/A.dat
• http://www.cs.utah.edu/˜jeffp/teaching/cs5140/A5/X.dat
• http://www.cs.utah.edu/˜jeffp/teaching/cs5140/A5/Y.dat
• http://www.cs.utah.edu/˜jeffp/teaching/cs5140/A5/M.dat
• http://www.cs.utah.edu/˜jeffp/teaching/cs5140/A5/W.dat

and a file stub:

• http://www.cs.utah.edu/˜jeffp/teaching/cs5140/A5/FD.m

These data sets are in matrix format and can be loaded into MATLAB or OCTAVE. By calling
load filename (for instance load X.dat)
it will put in memory the data in the file, for instance in the above example the matrix X. You can then
display this matrix by typing
X

As usual, it is highly recommended that you use LaTeX for this assignment. If you do not, you may
lose points if your assignment is difficult to read or hard to follow. Find a sample form in this directory:
http://www.cs.utah.edu/˜jeffp/teaching/latex/

1 Singular Value Decomposition (20 points)
First we will compute the SVD of the matrix A we have loaded
[U,S,V] = svd(A)

Then take the top k components of A for values of k = 1 through k = 10 using
Uk = U(:,1:k)
Sk = S(1:k,1:k)
Vk = V(:,1:k)
Ak = Uk*Sk*Vk’

A (10 points): Compute and report the L2 norm of the difference between A and Ak for each value of k
using
norm(A-Ak,2)

B (5 points): Find the smallest value k so that the L2 norm of A-Ak is less than 10% that of A; k might
or might not be larger than 10.

C (5 points): Treat the matrix as 1125 points in 30 dimensions. Plot the points in 2 dimensions in the way
that minimizes the sum of residuals squared.
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2 Frequent Directions (40 points)
Use the stub file FD.m to create a function for the Frequent Directions algorithm (Algorithm 15.2.1). We
will consider running this code on matrix A.

A (15 points): We can measure the error max‖x‖=1 |‖Ax‖2 − ‖Bx‖2| as norm(A’*A - B’*B, 2).
How large does l need to be for the above error to be at most ‖A‖2F /10? How does this compare to the
theoretical bound (e.g. for k = 0).

Note: you can calculate ‖A‖2F as norm(A, ’fro’)ˆ2.

B (25 points): Frequent Directions should also satisfy another bound based on its Frobenius norm. We
can compute AΠBk

using Bk = B(1:k,:) and then calculating A * pinv(Bk) * Bk. How large
does l need to be to achieve

‖A−AΠBk
‖2F ≤ 1.1 · ‖A−Ak‖2F ;

for each of the 7 values of value k in the set {1, 2, 3, 4, 5, 6, 7}. Answer both by running your algorithm and
reporting the theoretical bound provided in the notes. (e.g., you should report 7 pairs of values, an empirical
and theoretical bound for each value k)

3 Linear Regression (40 points)
We will find coefficients C (was a1, . . . , ad in notes, but changed to avoid confusion with matrix A in Q1)
to estimate X*C ≈ Y, using the provided datasets X and Y. We will compare two approaches least squares
and ridge regression.

Least Squares: Set C = inverse(X’ * X)*X’*Y

Ridge Regression: Set Cs = inverse(X’*X + sˆ2*eye(12))*X’*Y

A (20 points): Solve for the coefficients C (or Cs) using Least Squares and Ridge Regression with
s = {0.1, 0.3, 0.5, 1.0, 2.0} (i.e. s will take on one of those 5 values each time you try, say obtaining C05
for s = 0.5). For each set of coefficients, report the error in the estimate Ŷ of Y as norm(Y - X*C,2).

B (20 points): Create three row-subsets of X and Y

• X1 = X(1:66,:) and Y1 = Y(1:66)

• X2 = X(34:100,:) and Y2 = Y(34:100)

• X3 = [X(1:33,:); X(67:100,:)] and Y3 = [Y(1:33); Y(67:100)]

Repeat the above procedure on these subsets and cross-validate the solution on the remainder of X and
Y. Specifically, learn the coefficients C using, say, X1 and Y1 and then measure norm(Y(67:100) -
X(67:100,:)*C,2).

Which approach works best (averaging the results from the three subsets): Least Squares, or for which
value of s using Ridge Regression?

4 BONUS (3 points)
Consider a linear equation W = M*Swhere M is a measurement matrix filled with random values {−1, 0,+1}
(although now that they are there, they are no longer random), and W is the output of the sparse signal S
when measured by M.

Use Orthogonal Matching Pursuit (as described in the notes) to recover the non-zero entries from S.
Record the order in which you find each entry and the residual vector after each step.
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