Data Mining CS 5140 / CS 6140

Jeff M. Phillips

January 11, 2016

Data Mining

What is Data Mining?

- Finding structure in data?
- Machine learning on large data?
- Unsupervised learning?
- Large scale computational statistics?

Data Mining

What is Data Mining?

- Finding structure in data?
- Machine learning on large data?
- Unsupervised learning?
- Large scale computational statistics?
- How to think about data analytics.

Data Mining

What is Data Mining?

- Finding structure in data?
- Machine learning on large data?
- Unsupervised learning?
- Large scale computational statistics?
- How to think about data analytics.

- Principals of converting from messy raw data to abstract representations.
- ▶ Algorithms of how to analyze data in abstract representations.
- ▶ Addressing challenges in scalability, error, and modeling.

Modeling versus Efficiency

Two Intertwined (and often competing) Objectives:

- Model Data Correctly
- Process Data Efficiently

Machine Learning Next Fall

CS 5350 Machine Learning CS 6350 Machine Learning Vivek Srikumar

Machine Learning Next Fall

CS 5350 Machine Learning CS 6350 Machine Learning Vivek Srikumar

Classification: Given data labeled $\{TRUE = +\}$ or $\{FALSE = -\}$, given new data, guess a label. More continuous optimization (DM more discrete)

Every university teaches data mining differently!

Every university teaches data mining differently!

What flavor is offered in this class:

- ► Focus on techniques for *very* large scale data
- ▶ Broad coverage ... with recent developments
- Formally and generally presented (proof sketches)
- ... but useful in practice (e.g. internet companies)
- Probabilistic algorithms: connections to CS and Stat

Every university teaches data mining differently!

What flavor is offered in this class:

- ► Focus on techniques for *very* large scale data
- ▶ Broad coverage ... with recent developments
- Formally and generally presented (proof sketches)
- ... but useful in practice (e.g. internet companies)
- Probabilistic algorithms: connections to CS and Stat
- no specific software tools / programming languages

Every university teaches data mining differently!

What flavor is offered in this class:

- Focus on techniques for very large scale data
- ▶ Broad coverage ... with recent developments
- Formally and generally presented (proof sketches)
- ... but useful in practice (e.g. internet companies)
- Probabilistic algorithms: connections to CS and Stat
- no specific software tools / programming languages

Maths: Linear Algebra, Probability, High-dimensional geometry

Outline

Statistical Principals:

▶ 1. Understanding random effects

Data and Distances:

- 2. Similarity (find duplicates and similar items)
- 3. Clustering (aggregate close items)

Structure in Data:

- 3. Clustering (aggregate close items)
- ▶ 4. **Regression** (linearity of (high-d) data)
- 5. Noisy Data (anomalies in data)

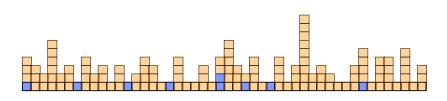
Controlling for Noise and Uncertainty:

- 5. Noisy Data (anomalies in data)
- ▶ 6. Link Analysis (prominent structure in large graphs)

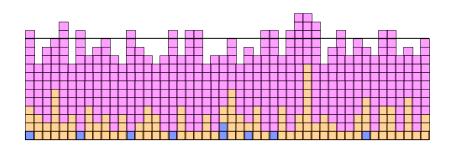
- When do items collide?
- When do you see all items?
- When is the distribution almost uniform?

- When do items collide?
- When do you see all items?
- When is the distribution almost uniform?

- When do items collide?
- When do you see all items?
- When is the distribution almost uniform?

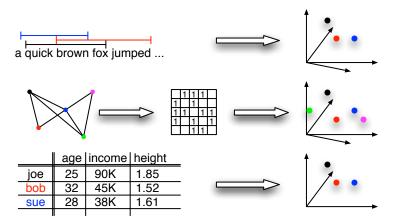


- When do items collide?
- When do you see all items?
- When is the distribution almost uniform?



Raw Data to Abstract Representations

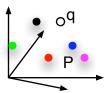
How to measure similarity between data? Key idea: data → point



Similarity

Given a large set of data P. Given new point q, is q in P?

Given a large set of data P. Given new point q, what is *closest* point in P to q?



Computational Geometry This Spring

CS 6160 Computational Geometry
Suresh Venkatasubramanian
Advanced Algorithms, geometric inputs, high-dimensional data, random processes

Clustering

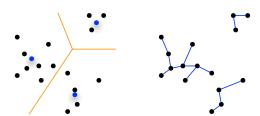
How to find groups of similar data.

- do we need a representative?
- can groups overlap?
- what is structure of data/distance?

Clustering

How to find groups of similar data.

- do we need a representative?
- can groups overlap?
- what is structure of data/distance?
- ▶ **Hierarchical clustering** : When to combine groups?
- ▶ *k*-means clustering : *k*-median, *k*-center, *k*-means++
- ► **Graph clustering** : modularity, spectral



Algorithms & Approximation This Spring

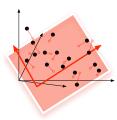
CS 6968 Algorithms & Approximation
Aditya Bhaskara
Advanced Algorithms, foundations of Spectral clustering, etc

Clustering Class Next Fall

CS 6955 Clustering
Suresh Venkatasubramanian
full semester on area we spend 3 lectures

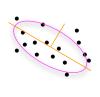
Regression

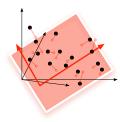
Consider a data set $P \in \mathbb{R}^d$, where d is BIG! Want to find representation of P in some \mathbb{R}^k $\mu(P) \to Q \in \mathbb{R}^k$ so $\|p_i - p_j\| \approx \|q_i - q_j\|$ $Q \in \mathbb{R}^k$ should capture most data in P



Regression

Consider a data set $P \in \mathbb{R}^d$, where d is BIG! Want to find representation of P in some \mathbb{R}^k $\mu(P) \to Q \in \mathbb{R}^k$ so $\|p_i - p_j\| \approx \|q_i - q_j\|$ $Q \in \mathbb{R}^k$ should capture most data in P



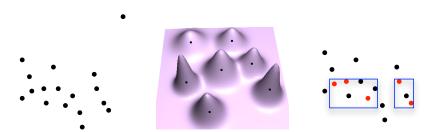


- $ightharpoonup L_2$ **Regression** + **PCA** : Common easy approach
- ▶ Multidimensional Scaling : Fits in \mathbb{R}^k with k small
- Matrix Sketching: Random Projections, Sampling, FD
- $ightharpoonup L_1$ Regression: "Better", Orthogonal Matching Pursuit
- ► Info Recovery : Compressed Sensing

Noisy Data

What to do when data is noisy?

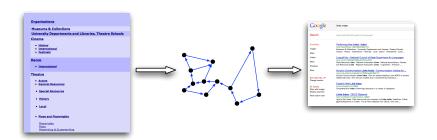
- ▶ Identify it : Find and remove outliers
- ▶ Model it : It may be real, affect answer
- ► Exploit it : Differential privacy (ethics in data)



Link Analysis

How does Google Search work? Converts webpage links into directed graph.

- Markov Chains : Models movement in a graph
- ▶ PageRank : How to convert graph into important nodes
- ▶ MapReduce : How to scale up PageRank
- ▶ **Communities** : Other important nodes in graphs

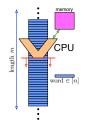


Summaries

Reducing *massive* data to small space.

Want to retain as much as possible (not specific structure) error guarantees

- OnePass Sampling : Reservoir Sampling
- ightharpoonup MinCount Hash: Sketching data, ightharpoonup abstract features
- Density Approximation : Quantiles
- Matrix Sketching : Preprocessing complex data
- Spanners : graph approximations



Themes

What are course goals?

- Intuition for data analytics
- How to model data (convert to abstract data types)
- How to process data efficiently (balance models with algorithms)

Themes

What are course goals?

- Intuition for data analytics
- How to model data (convert to abstract data types)
- How to process data efficiently (balance models with algorithms)

Work Plan:

- 2-3 weeks each topic.
 - Overview classic techniques
 - Focus on modeling / efficiency tradeoff
 - Special topics
 - ▶ Short homework for each (analysis + with data) (45% grade)
- ▶ 2 Tests (10% grade)
- Course Project (45% grade).
 - Focus on specific data set
 - Deep exploration with technique
 - Ongoing refinement of presentation + approach

On Homeworks

Managed through Canvas (should be up)

- No restriction on programming language.
- ▶ Some designed for matlab, others better in python or C++.
- Programming assignments with not too many specifications.
- Bonus Questions!

Data Group

Data Group Meeting
Thursdays @ 12:15-1:30 in MEB 3147 (LCR)

CS 7941 Data Reading Group requires one presentation if taken for credit

http://datagroup.cs.utah.edu