
12 Count-Min Sketch and Apriori Algorithm
(and Bloom Filters)

Many streaming algorithms use random hashing functions to compress data. They basically randomly map
some data items on top of each other. This leads to some error, but if one is careful, the large important
items show through. The unimportant items get distributed randomly, and essentially add a layer of noise.
Because it is random, this noise can be bounded.

An added benefit of the use of hash functions is the obliviousness. The algorithm is completely indepen-
dent of the order or content of the data. This means its easy change items later if there was a mistake, or
sketch different parts of data separately, and then combine them together later. Or if data is reordered due to
race conditions, it has no effect on the output.

Next we also consider a variant of the frequent items problem: the frequent itemset problem, where we
seek to find items that commonly occur together. Again, we will see instance where important and common
itemsets show through above the noise.

This fits into the classic problem of association rule mining. The basic problem is posed as follows: We
have a large set of m tuples {T1, T2, . . . , Tm}, each tuple Tj = {tj,1, tj,2, . . . , tj,k} has a small number (not
all the same k) of items from a domain [n]. Think of the items as products in a grocery store and the tuples
as things bought in the same purchase. Then the goal is to find times which frequently co-occur together.
Think of what items to people frequently buy together: a famous example is “diapers” and “beer” found in
real data.

Again, like finding frequent items (heavy hitters), we assume m and n is very large (maybe not quite so
large as before), but we don’t want to check all pairs

(
n
2

)
≈ n2/2 against all m tuples since that would take

roughly n2m/2 time and be way too long. Moreover, m does not fit in memory, so we only want to scan
over it, in one pass (or a small number of passes).

12.1 Count-Min Sketch
In contrast to the Misra-Gries algorithm covered last lecture, we describe a completely different way to solve
the HEAVY-HITTER problem. It is called the Count-Min Sketch [Cormode + Muthukrishnan 2005] [5].

Start with t independent (random) hash functions {h1, . . . , ht} where each hh : [n]→ [k].
Now we store a 2d array of counters for t = log(1/δ) and k = 2/ε:

h1 C1,1 C1,2 . . . C1,k

h2 C2,1 C2,2 . . . C2,k

.
ht Ct,1 Ct,2 . . . Ct,k

Algorithm 12.1.1 Count-Min(A)
Set all Ci,j = 0
for i = 1 to m do

for j = 1 to t do
Cj,hj(ai) = Cj,hj(ai) + 1

1

After running Algorithm 12.1.1 on a stream A, then on a query q ∈ [n] we can return

f̂q = min
j∈[t]

Cj,hj(q).

This is why it is called a count-min sketch.

Analysis: Clearly fq ≤ f̂q since each counter has everything for q, but may also have other stuff (on hash
collisions).

Next we claim that f̂q ≤ fq +W for some over count value W . So how large is W ?
Consider just one hash function hi. It adds to W when there is a collision hi(q) = hi(j). This happens

with probability 1/k.
So we can create a random variable Yi,j that represents the overcount caused on hi for q because of

element j ∈ [n]. That is, for each instance of j, it increments W by 1 with probability 1/k, and 0 otherwise.
Each instance of j has the same value hi(j), so we need to sum up all these counts. Thus

• Yi,j =

{
fj with probability 1/k

0 otherwise.
• E[Yi,j] = fj/k.

Then let Xi be another random variable defined

• Xi =
∑

j∈[n],j 6=q Yi,j , and
• E[Xi] = E[

∑
j 6=q Yi,j] =

∑
j 6=q fj/k = F1/k = εF1/2.

Now we recall the Markov Inequality. For a random variable X and a value α > 0, then Pr[|X| ≥ α] ≤
E[|X|]/α. Since Xi > 0, then |Xi| = Xi, and set α = εF1. And note E[|X|]/α = (εF1/2)/(εF1) = 1/2.
It follows that

Pr[Xi ≥ εF1] ≤ 1/2.

But this was for just one hash function hi. Now we extend this to t independent hash functions:

Pr[f̂q − fq ≥ εF1] = Pr[min
i
Xi ≥ εF1] = Pr[∀i∈[t](Xi ≥ εF1)]

=
∏
i∈[t]

Pr[Xi ≥ εF1] ≤ 1/2t = δ,

since t = log(1/δ).
So that gives us a PAC bound. The Count-Min Sketch for any q has

fq ≤ f̂q ≤ fq + εF1

where the first inequality always holds, and the second holds with probability at least 1− δ.

Space. Since there are kt counters, and each require logm space, then the total counter space is kt logm.
But we also need to store t hash functions, these can be made to take log n space each. Then since
t = log(1/δ) and k = 2/ε it follows the overall total space is t(k logm + log n) = ((2/ε) logm +
log n) log(1/δ).

Turnstile Model: There is a variation of streaming algorithms where each element ai ∈ A can either add
one or subtract one from corpus (like a turnstile at the entrance of a football game), but each count must
remain positive. This Count-Min has the same guarantees in the turnstile model, but Misra-Gries does not.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah

12.2 Count Sketch
A predecessor of the Count-Min Sketch is the so-called Count Sketch [4]. Its structure is very similar to the
Count-Min Sketch, it again maintains a 2d array of counters, but now with for t = log(2/δ) and k = 4/ε2:

h1 C1,1 C1,2 . . . C1,k

h2 C2,1 C2,2 . . . C2,k

.
ht Ct,1 Ct,2 . . . Ct,k

In addition to the t hash functions hj : [n] → [k] it maintains t sign hash functions sj : [n] → {−1,+1}.
Then each hashed-to counter is incremented by sj(ai). So it might add 1 or subtract 1.

Algorithm 12.2.1 Count-Min Sketch(A)
Set all Ci,j = 0
for i = 1 to m do

for j = 1 to t do
Cj,hj(ai) = Cj,hj(ai) + sj(ai)

To query this sketch, it takes the median of all values, instead of the minimum.

f̂q = medianj∈[t]{Cj,hj
(q) · sj(q)}.

Unlike the biased Count-Min Sketch, the other items hashed to the same counter as the query are unbiased.
Half the time the values are added, and half the time they are subtracted. So then the median of all rows
provides a better estimate. This insures the following bound with probability at least 1− δ for all q ∈ [n]:

|fq − f̂q| ≤ εF2.

Note this required k = O(1/ε2) instead of O(1/ε), but usually the bound based on F2 =
√∑

j f
2
j is

much smaller than F1 =
∑

j fj , especially for skewed distributions. We will discuss so-called heavy-tailed
distributions later in the class.

12.3 A-Priori Algorithm
We now describe the A-Priori Algorithm for finding frequent item sets, by Agrawal + Srikant [1]. The key
idea is that any itemset that occurs frequently together must have each item (or any subset) occur at least as
frequently.

First Pass. We first make one pass on all tuples, and keep a count for all n items. A hash table can be
used. We set a threshold ε and only keep items that occur at least εm times (that is in at least ε percent of
the tuples). For any frequent itemset that occurs in at least 100ε% of the tuples, must have each item also
occur in at least 100ε% of the tuples.

A reasonable choice of ε might be 0.01, so we only care about itemsets that occur in 1% of the tuples.
Consider that there are only n1 items above this threshold. For instance if the maximum tuple size is kmax

then we know n1 ≤ kmax/ε. For kmax = 80, and ε = 0.01, then n1 ≤ 8000, easily small enough to fit in
memory. Note this is independent of the n or m.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah

Second Pass. We now make a second pass over all tuples. On this pass we search for frequent pairs of
items, specifically, those items which occur in at least an ε-fraction of all tuples. Both items must have
been found in the first pass. So we need to consider only

(
n1

2

)
≈ n21/2 pairs of counters for these pairs of

elements.
After the pass, again we can then discard all pairs which occur less than an ε-fraction of all tuples. This

remaining set is likely far less than n21/2.
These remaining pairs are already quite interesting! They record all pairs that co-occur in more than an

ε-fraction of purchases, and of course include those pairs which occur together even more frequently.

Further Passes. On the ith pass we can find sets of i items that occur together frequently (above an ε-
threshold). For instance, on the third pass we only need to consider triples were all sub-pairs occur at least
an ε-fraction of times themselves. These triples can be found as follows:

Sort all pairs (p, q) by their smaller indexed item (w.l.o.g. let this be p). Then for each smaller indexed
item p, consider all completions of this pair q (e.g. a triple (p, q, r)). We only need to consider triples with
(p, q, r) where p < q < r. Now for each pair (q, r), check if the pair (p, r) also remains. Only triples
(p, q, r) which pass all of these tests are given counters in the third pass.

This can be generalized to checking only k conditions in the kth pass, and the remaining triples form a
lattice.

12.3.1 Example
Consider the following dataset where I want to find all itemsets that occur in at least 1/3 of all tuples (at
least 4 times):

T1 = {1, 2, 3, 4, 5}
T2 = {2, 6, 7, 9}
T3 = {1, 3, 5, 6}
T4 = {2, 6, 9}
T5 = {7, 8}
T6 = {1, 2, 6}
T7 = {0, 3, 5, 6}
T8 = {0, 2, 4}
T9 = {2, 4}
T10 = {6, 7, 9}
T11 = {3, 6, 9}
T12 = {6, 7, 8}

After the first pass 1 have the following counters:

0 1 2 3 4 5 6 7 8 9

2 3 5 4 3 3 8 4 2 4

So only n1 = 5 items survive {2, 3, 6, 7, 9}.
In pass 2 we consider

(
n1

2

)
= 10 pairs: {(2, 3), (2, 6), (2, 7), (2, 9), (3, 6), (3, 7), (3, 9), (6, 7), (6, 9), (7, 9)}.

And we find the following counts:

(2, 3) (2, 6) (2, 7) (2, 9) (3, 6) (3, 7) (3, 9) (6, 7) (6,9) (7, 9)

1 3 1 2 3 0 1 3 4 2

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah

We find that the only itemset pair that occurs in at least 1/3 of all baskets is (6, 9).
Thus there can be no itemset triple (or larger grouping) which occurs in all 1/3 of all tuples since then all

of its pairs would need to be in 1/3 of all baskets, but there is only one such pair that satisfies that property.
We can now examine the association rules. And see that the count of item 6 is quite large 8, and is much

bigger than that of item 9 which is only 4. Since there are 4 pairs (6, 9), then every time 9 occurs, 6 also
occurs.

Improvements. We can do better than keeping a counter for each item. If we know that n1 will be at most
a certain value (based on kmax and ε), then we only need that many counters, and we can use Misra-Gries
to find all of these items. Although we may also find some other items, so its advised to use maybe 3n1
counters in Misra-Gries.

Other techniques have been developed to improve on this using Bloom Filters.

12.4 Bloom Filters
The goal of a Bloom Filter [2] is to maintain a subset S ⊂ [n] in small space. It must maintain all items, but
may allow some items to appear in the set even if they are not. That is, it allows false positives, but not false
negatives.

It maintains an arrayB ofm bits. Each is initialized to 0. It uses k (random) hash functions {h1, h2, . . . , hk} ∈
H. It then runs streaming Algorithm 12.4.1 on S.

Algorithm 12.4.1 Bloom(S)
for x ∈ S do

for j = 1 to k do
Set B[hj(x)] = 1

Then on a query to see if y ∈ S, it returns YES only if for all j ∈ [k] that B[hj(y)] = 1. Otherwise it
returns NO.

So any item which was put in B it sets all associated hash values as 1, so on a query it will always return
YES (no false negatives).

However, it may return YES for an item even if it does not appear in the set. It does not even need to have
the exact same hash values from another item in the set, each hash collision could occur because a different
item.

Analysis: We consider the case with |S| = n items, where we maintain m bits in B, and use k hash
functions.

1− 1/m Probability a bit not set to 1 by a single hash function

(1− 1/m)k Probability a bit not set to 1 by k hash functions

(1− 1/m)kn On inserting n elements, probability a bit is 0 (?)

1− (1− 1/m)kn On inserting n elements, probability a bit is 1

(1− (1− 1/m)kn)k Probability a false positive (using k hash functions)

≈ (1− e−kn/m)k

The “right” value of k is about k ≈ (m/n) ln 2.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah

(?) This step is not quite right, although it is not too far off. It assumes independence of which bits are
being set. Unfortunately, in most presentations of Bloom filters (and some peer-reviewed research papers)
this is presented as the right analysis, but it is not. But it gives a pretty good illustration of how it works.
The correct analysis is much more complicated [3].

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah

Bibliography

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings 20th International Conference on Very Large Data Bases, 1994.

[2] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the
ACM, 13:422–426, 1970.

[3] Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin, Jason Morrison, Michiel
Smid, and Yihui Tang. On the false-positive rate of Bloom filters. Journal of Information Priocessing
Letters, 108:210–213, 2008.

[4] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In
ICALP, 2002.

[5] Graham Cormode and S. Muthukrishnan. An improved data stream summary: The count-min sketch
and its applications. Journal of Algorithms, 55:58–75, 2006.

7

