
19 Noise in Data

If there was no noise in data, then data mining would be too easy, and a mainly solved topic.
What is noise in data? There are several main classes of noise, and modeling these can be as important as

modeling the structure in data.

• Spurious readings. These are data points that could be anywhere, and are sometimes ridiculously far
from where the real data should have been. With small data sets, these are often pruned by hand. With
large sensed datasets, these need to be automatically dealt with. In high dimensions they are often
impossible to physically “see.”

• Measurement error. This is a small amount of error that can occur on all data points and in every
dimension. It can occur because a sensor is not accurate enough, a rounding or approximation error
occurs before the data reaches you, or a truncation error in a conversion to an abstract data type. This
type of data noise may have little effect on the structure you are trying to measure, but can violate
noiseless assumptions and should be understood.

• Background data. These data are from something other than what you are trying to measure. This
could be unlabeled data (like unrated movies on Netflix) or people who don’t have a disease you are
trying to monitor. The problem is that it sometimes gets mixed in, and is then indistinguishable from
the actual data of the phenomenon you are trying to monitor.

We will deal with this noise in 4 ways. First cross validation that helps one choose parameters, and also
shows the influence of noise. Second is in identifying and maybe removing outliers, and is discussed later.
Third is directly considering uncertainty in data, and modeling its effect on the output. Fourth is developing
robust estimators to make the prediction impervious to a moderate amount of noise.

19.1 Cross Validation
Many algorithms we discuss have a parameter. Probably all algorithms that deal effectively with noise
have some parameter. The k in k-means clustering, the degree of a polynomial in polynomial linear
regression, the number of singular values to use in PCA, the regularization parameter s in Lasso. How
should we choose this parameter?

We discussed many techniques. They key principal we emphasized was to reduce the problem to a simple
and robust enough one that we could eye-ball it, e.g. the “elbow technique.” Then we could hand choose
the right parameter. If this seems un-satisfying, a more automated way is cross-validation.

The basic idea is simple: Divide P (randomly) into two sets Q,R ⊂ P so Q ∩ R = ∅ and Q ∪ R = P .
Let Q be the training set, and R be the test set.

Then we run our algorithm to build a model onQ with parameter α: M(Q,α), and then evaluate the error
LR(M(Q,α)) on R.

For instance, lets say the problem is to find a robust linear regression A using Tikhinov Regularization
minimizing the loss function:

LP (A,α) = ‖Py − PXA‖2 + α‖A‖2.

We solve A(Q,α) = (QT
XQX + α2)−1QT

XQy and then evaluate LR(A(Q,α), 0). We can then search for
the minimum value of LR(A(Q,α), 0) as a function of α. This gives us a good choice of α.

The idea behind this is that P is drawn from some underlying distribution µ, which we don’t have access
to. So we need to pretend we could draw more points from the true µ. Instead of creating points out of the

1

vapor, we use some points R from P . But it is cheating to also train on these points so we need to keep the
training set Q and test set R separate.

Leave One Out Cross-Validation. The above simple test set / training set problems gives too much em-
phasis to the arbitrary split of R and Q. A less arbitrary way is to always let the test set R be a single point
p. This way we are essentially using as much data as possible to train Qp = P \ p, and still getting a test.
We can then repeat this for each point p ∈ P , and take the α which is best on average.

This can be too expensive (it requires |P | constructions of our model). So sometimes we leave some k
(perhaps = |P |/10) points out each time and get |P |/k different training / test set splits where each p is
tested once.

Or we can take out some k number of test points at random and repeat this t times, for a sufficiently large
t.

Testing on the Training Set (or the full set) can lead to over-fitting where a model too complex is found,
but seems to fit the data really well.

Evaluating Generalization. Sometimes the goal is not to optimize a parameter (say k), but to just evaluate
how well a model fits the data. Again, doing this on the test data R may give a biased answers, so one can
train a model on R and then test on Q.

In the same way, if one uses R to train a model, and Q to select a parameter (say k), then it is not fair to
also evaluate the algorithm on Q. So in these cases, one should divide the initial set into three subsets R, Q,
and S so they are all disjoint. Then one can train on R, fit parameters on Q, and finally evaluate on S. This
is now common place for many online contests (e.g. the Netflix challenge, or Kaggle); in these settings,
often R is given in raw, they provide a server that can evaluate algorithms (say once a day) on Q, and then
at the end of the contest score all contestants using S.

It is important to note that even this three-way split can be abused. If one queries the test data S too many
times, then one can effectively learn it. Then it is also possible to overfit. In evaluating your experimental
model, you should only use S once. In Kaggle, it is often limited to once a day – but by creating multiple
accounts, you can sometimes (illegally) get around this.

Bootstrapping. A downside of Leave-One-Out (LOO) cross validation (and even worse with its more
efficient variants) is that it reduces the size of the test set P artificially. If we have |P | data points, we should
be able to use all of them. Moreover with LOO (which only decreases to |P | − 1 points), we can only
perform |P | trials to average over. Perhaps we would like to do more to improve out estimate.

Bootstrapping (Efron 1979) chooses a set Q ⊂ P with replacement of size |P |. So it has exactly the
same size as P itself. Then it trains on Q to get M(Q) and then also test on Q as L(M(Q), Q) to get an
estimate of the error.

It then repeats this several times (maybe 1000 of 10,000 times) with new Q, each chosen independently
with replacement from P .

This not only can be used for cross-validation, but is even more powerful (and designed for) understanding
the effect of the noise in the data (with respect to how it is chosen from an imaginary µ) on the model M .

For instance, one may find that the mean (as M) has much more variance than the median (as M) and be
inclined to use the median instead of the mean.

19.2 Outliers
In general, outliers are the cause of, and solution to, all of data mining’s problems. That is, any problem
in data mining people have, they can try to blame it on outliers. And they can claim that if they were to
remove the outliers the problem would go away. That is, when data is “nice” (there are no outliers) then the

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah

structure we are trying to find should be obvious. It turns out the solution to the outlier problem is at the
same time simple and complicated.

Here we will discuss two general approaches for dealing with outliers:

• Find and remove outliers
• Density-based Approaches

19.2.1 Removal of Outliers
The basic technique to identify outliers is very straightforward, and in general should not be deviated from:

1. Build a model M of dataset P
2. For each point p ∈ P find the residual rp = d(M(p), p), where M(p) is the best representation of p

in the model M .
3. If rp is too large, then p is an outlier.

Although this seems simple and fundamental, we needed to wait until this part of the class to define this
properly.

• We have seen a variety of techniques for building models M (clusters, regression).
• We have seen various distances that could make sense as d(M(p), p), and their trade-offs.
• We understand the difficulties of choosing a cut-off for what constitutes “too large.”

It should also be clear that there is not one “right” way of deciding any of these steps. Should we do
clustering or linear regression or polynomial regression? Should we look at vertical projection distance, use
L1 or L2 distance? Should we remove the furthest k points, or the furthest 3% of points?

Consider a set P that is drawn from a standard 1-dimensional Gaussian distribution. We could model this
as a single cluster using the mean as a center. The the residual is the distance to the center. Now which
points are outliers? Lets compare them against standard deviations?

• If we remove all points at 1 standard deviation: we remove about 1/3 of all points.
• If we remove all points at 2 standard deviations: we remove about 1/20 of all points.
• If we remove all points at 3 standard deviations: we remove about 1/300 of all points.
• If we remove all points at 4 standard deviations: we remove about 1/16000 of all points.

So what is the right answer? ...
Well, there is no “right” answer. If we fit the model with the right center, then why did we care about
outliers in the first place; we still mined the right structure M ! (Perhaps you say M(p) should not be the
mean, but some measure of how well it “fits” the Gaussian, but even in this approach you will reach a similar
conclusion.)

Another question is: does the process “converge”? ...
If we remove the outliers from P , and then repeat, do we still find more outliers? Say we always remove
the 10 points with highest residuals. Then we can repeat this |P |/10 rounds until there are no points left. So
you must have a way to determine if you should stop.

Down-weighting. One alternative to completely removing outliers is to just down-weight them. That is,
when say finding the mean in k-means clustering, give inlier points a weight of 1 (as normal) and outlier
points a weight of say 1/2 or 1/10. This number may depend on the residual.

A more formal way of doing this can be through the use of a kernel (such as a Gaussian kernel), or some
other similarity. Where points are weighted based on their similarity to the model M . Given a model M ,
points are reweighted, then the model is recomputed, and points are reweighted, and so on ...

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah

19.2.2 Density-Based Approach
The idea is: (1) regular points have dense neighborhoods, and (2) outlier points have non-dense neighbor-
hoods. Using the distance to the closest point is not robust, so we can use the distance to the kth closest
point as measure of density. But what is k? Alternatively, we can measure density by counting points inside
of a radius r ball, or more robustly using the value of a kernel density estimate (using kernel with standard
deviation r). But this requires a value r?

So this techniques needs a value k or r, and then another threshold to determine what is in, and what is
out. Sometimes the value k or r is apparent from the applications, and we can use an “elbow” technique for
determining outliers.

But more seriously, this assumes that the density should be uniform throughout a data set. The “edge”
will always have less density.

Reverse Nearest Neighbors: Given a point set P for each point p ∈ P we can calculate its nearest
neighbor q (or more robustly its kth nearest neighbor). Then for q we can calculate its nearest neighbors r
in P (or its kth nearest neighbor). Now if d(p, q) ≈ d(q, r) then p is probably not an outlier.

This approach adapts to the density in different regions of the point set. It is also expensive to compute.
And density (or relative density) may not tell you how far a point is from a model.

Heavy-Tailed Distributions: These types of distributions, which appear more and more frequently at
internet scale, serve as a warning towards certain density filters for outliers.

Consider Zipf’s Law: the frequency of data is proportional to its rank.
Let X be a multiset so each x ∈ X has x = i ∈ [u]. For instance all words in a book. Then fi = |{x ∈

X | x = i}|/|X|. Now sort fi so fi ≥ fi+1, then according to Zipf’s law: fi ≈ c(1/i) for some constant c.
For instance, in the Brown corpus, an enormous text corpus the three most common words are “the” at

7% (fthe = 0.07); “of” at 3.5% (fof = 0.035); and “and” at 2.8% (fand = 0.028). So the constant is roughly
0.07.

This also commonly happens when looking at customers at large internet companies. Amazon was built
in some sense on the heavy tail.

• The top 10,000 books can be sold at physical book stores.

• The top 1 million books can be sold through Amazon., since they only need to sell say 1000 of them
in the entire country to break even. They still stock these in their central warehouse.

• The top 100 million books can now still be sold by Amazon, but at a higher price; they can print them
to order, or sell them on Kindle.

This is easy to see with books (and hence Amazon was built that way), but this happens with all sorts of
internet products: movies, search results, advertising, food.

This has various screwy effects on a lot of the algorithms we study. And, to repeat, this rarely is seen at
small scale, this only really comes into the picture in large rich data sets. Here are some of the screwy things
that can happen:

• When doing SVD, there is no sharp drop in the singular values (which is very common with small
datasets).

• If 30% of words in a book occur less than 0.0001% of the time (say occur at most twice), then can
we just ignore them. Many LDA (text topic modeling softwares) do this, but should they really throw
away 30% of data. A subset of NLP-researchers think this puts an artificial cap on what LDA can do
for text.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah

• We can find different structure at different scales, e.g. hierarchical PCA. Perhaps, each principal
component is actually a series of 15 clusters (that happen to line up), and each of the clusters should
have a component that points in a different direction. Think of classification of customers, or structure
of human body (from atom, to protein, to cell, to organ, to being). Sometimes the components interact
in ways that were not apparent at a large scale, so a pure hierarchy is never quite correct.

19.3 Uncertain Data
Sometimes a data set P is presented to a user with known uncertainty in it. Perhaps the way it was sensed
indicates some distribution µi on the true value of each point i ∈ P . Or perhaps each object pi ∈ P is
sensed multiple times so we have a representation pi = {pi,1, pi,2, . . . , pi,k}. Thus each “point” p ∈ P is
actually represented as several (lets say k) different possible points. The common practice is then to treat pi
as a probability distribution µi where

µi : Pr[pi = x] =

{
1/k if x = pi,j ∈ pi
0 otherwise.

Lets be clear on the difference between this model and the cross-validation/bootstrapping model. Here
we trust that each point exists, but it is drawn from an individual distribution µi (these are often assumed
independent, but can have covariance). In the cross-validation model, we assume that all points are drawn
from a single distribution µ.

So how should we understand this uncertainty? Instead of a single model, we should have a distribution
of models. This is most easily seen with a single point model, such as the mean, for one-dimensional data.
In this can be seen as a distribution fP on the point that is the mean. In particular, let fP : R → R+

represent the probability that its input is the mean. This is a bit hard to understand since when each µi
is continuous (like a Gaussian) then all values fP (x) = 0. It is easier to think of the cumulative density
function FP (x) =

∫ x
z=−∞ fP (x)dx.

Calculating FP exactly can be quite challenging, but it is easy to approximate. We say g is an ε-
quantization of FP if for all x ∈ R we have |g(x) − FP (x)| ≤ ε. We can create such a function g as
Algorithm 19.3.1. This generated an ε-quantization with probability at least 1 − δ; Since each mj is a
random sample from fP , we can apply a Chernoff-Hoeffding bound.

Algorithm 19.3.1 Monte Carlo (ε, δ)-Quantization
for j = 1 to t = O((1/ε)2 log(1/δ)) do

for all pi ∈ P do
Choose some qi,j ∼ µi.

Let Qj = {q1,j , q2,j , . . . , qn,j}.
Calculate estimator mj from Qj .

Let M = {m1, . . . ,mt}.
Return g(x) = |{mj ∈M | mj ≤ x}|/t.

This representation of g is actually quite easy to work with since it is a step function defined by t =
O((1/ε)2 log(1/δ)) points. This value t is independent of |P |, the estimator (as long as it is a one-
dimensional point), and all µi! However, t can be quite large if ε is small. For instance if ε = 0.01
(allowing 1% error), and δ = 0.001, then t = 30,000.

We can compress g with the same error bounds by sorting the points M and taking only one out of every
t/s in the sorted order where s = 1/ε. Now the size is much smaller, where for ε = 0.01 only s = 100
points are needed.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah

A challenging open problem of the data is to extend this sort of approximate representation of uncertain
output distributions for more complicated models and estimators.

19.4 Robust Estimators
If you can’t beat them, embrace them.

The main problem with other approaches to handling noise/outliers is that in order to find a model M to
build residuals {rp = ‖p−M(p)‖ | p ∈ P} on determine outliers {p ∈ P | rp > τ}, is that it needs a good
model M . But if we already have a good model M , then why do we can about outliers?

So here we discuss properties of techniques that build a model M and are resistant, or robust, to outliers.
Given a model M(P), its breakdown point is an upper bound of the fraction of points in P that can be
moved to∞ and forM(P) not to also move infinitely far from where it started. For instance for single point
estimators in the 1 dimension, the mean has a break-down point of 1/n, while the median has a breakdown
point of 1/2. An estimator with a large breakdown point is said to be a robust estimator.

In general, most estimators that minimize the sum of square errors (like PCA, least squares, k-means, and
the mean) are not robust, and thus are susceptible to outliers.

Techniques that minimize the sum of errors (like least absolute differences, Theil-Sen estimators, k-
median clustering, and the median) are robust, and are thus not as sensitive to outliers. Notice an analog to
PCA is not there. This is an open research question of what the best answer is, as far as I know.

However, many of the L1-regularization techniques (like Lasso) have the easy-to-solve aspects of least
squares, but also simulate some of the robustness properties.

CS 6140 Data Mining; Spring 2016 Instructor: Jeff M. Phillips, University of Utah

