
22 Page Rank

At its simplest, a search engine is an inverted index. For each search term (say pie) there is a pointer to a
list of webpages about pie. If the search has two terms, if they are a popular pairing (say apple pie)
then there may be a dedicated list. If not, then we need to take both lists and return their intersection.

But, a search engine only returns 10 items (and some higher on the page than others). Which ones on the
list should it return?

22.1 Webpage Similarity
The first answer to this question, and the one that built companies like Altavista, Lycos, Infoseek, was to
define a webpage similarity function. Given a key word, webpages would automatically be ranked by their
similarity to that keyword. The more similar webpages would be ranked higher by the search engine.

As soon as there were popular search engines, webpages tried to figure out how to optimize for them.
Sometimes, search engines actually helped with this (header tags in html).

A simple example of a similarity function is cosine similarity between the keywords searched and the set
of words on the webpage.

• How could this be fooled? .... (term spam)

Repeat the word pie 1000 times at the bottom of the page. Change the color of the text to the background
color of the page, make it really small.

OK. So the search engines change their similarity function. Needs to be include pie, but not repeat it too
many times. Maybe needs to include other words which typically occur with the word pie, such as apple,
pan, hot, delicious, recipe.

• How could this be fooled?

(Find the top several ranked pages, copy their source at the bottom of your page.)

Crawlers. How did the search engines find these webpages in the first place? There were programs called
crawlers that followed the trail of links between pages. Start at www.pie.com, collect data on that page,
then follow a link to another webpage, and repeat. Many of these were run in parallel from many starting
points ... and still are.

OK. So a key word is also important for a webpage if there is a hyperlink from another webpage with the
word pie as the word you click on to get to this webpage.

• How could this be fooled?

(Create a bunch of dummy webpages (“spam farm”) that only link to your webpage).
It was a constant battle, not just for speed, but also for modeling. A true “wild west” anything goes

culture!

Indexes. A competing approach was an index, for example Yahoo! or LookSmart. They personally
collected and organized links to webpages they thought were important (or webpages that they were paid
to list). These sites were more reliable (except sometimes for paid links), but not quite as easy to use.
LookSmart died, but Yahoo! is still in business partially under this model, but after creating a bunch of their
own content; the (personalized) Yahoo! front page is still one of the most visited sites on the web.
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22.2 PageRank
Then along came PageRank, and the game changed entirely. It was based on simple idea (and a clever
execution):

IDEA 1: Pages are important if they are linked to by other important pages.

This sounds like a chicken and egg problem, but seems very natural.
Say page p1 has text T1 and links to p2. Also page p2 has text T2. If the search term pie is in T1 ∩ T2

then this makes p1 a good choice. Even better if pie is in the hyperlink pointing from p2 to p1.
But if p1 is hard to get to, it is not important, then this is still not that important of a piece of information.

But this can still be tricked by “spam farms”.

IDEA 2: A page is important if a “random surfer” were likely to find it.

The internet is a big directed graphG = (V,E). Each v ∈ V is a webpage. Each directed edged e = (vi, vj)
is a link from page v1 to page v2.

A random surfer starts on some page, clicks a random link on that page, and then goes to the next page.
This continues (just like a crawler).

This process defines a Markov chain! Converged to distribution q∗ = P ∗q gives the important q∗[v] of a
webpage v ∈ V . That is, the importance of a webpage v is defined as q∗[v].

Now, the ranking of page v is defined as

S(v,term) = magic(q∗[v], text(v), text(e(v′, v), q∗[v′])).

So there is still some proprietary magic here, but it involves the importance of the page q∗[v], the text on the
page text(v), and the hyperlink text pointing to the page (e(v′, v) weighted by the importance q∗[v′] of the
page v′ pointing to v.

For instance, if both Yahoo! index and LookSmart index (which may have high importance) point to your
webpage with a link that says pie, then this would probably have increased your rank on Google with the
search term pie.

Computing q∗. So how do we compute q∗?
Running many random walks (e.g. MCMC) like web crawlers is inefficient. Those are optimized for cover-
age, and will take a while to converge. MCMC samples from the Markov chain, but does not do a good job
of touching everything.

Should we compute P ∗ = Pn for some large n (and then simply run q∗ = P ∗q for any q)?
No, this takes a lot of space! There are already m (millions and millions) of webpages, and P ∗ is m ×m
and dense. P is sparse, but P 7 is already dense (its a small world, you can get from almost any webpage to
any other in 7 steps).

So we compute qi and then update it to qi+1 = Pqi, and repeat for some large enough i (usually 50 is
good, especially if we have a good starting spot, the q∗ from last run).

22.3 Anatomy of Web
So is this enough? Is the web graph ergodic? ... No.
It may not be connected. It has transient nodes (lonely webpages that nobody links to). It is unlikely to be
cyclic (one self loop prevents this).
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• The web graph has one pretty strongly connected component (SCC). Here all pages can surf to all
other pages.

• Some pages link to the SCC, but is not linked from SCC.

• Some pages (call them OUT) are linked from the SCC, but do not link back (quite rude!).

• There are disconnected parts (but relatively few in comparison).

Is this ergodic? No.
All the probability accumulated in OUT, or other deadends. It is like the “Hotel California,” you can

check-in, but you can never leave. These parts of the web are known (in some circles) as spider traps, since
the web crawlers (get it? something that “crawls” the “web” is a spider), get stuck there.

So what is the solution (and your solution if you are browsing randomly and reach a page with no out
edges?). ... Jump to a random page.

Taxation (or Teleportation). In PageRank, each transition step has a β probability of jumping to a random
page (typically β = 0.15 – you go about 7 webpages deep, and then jump someplace random). The graph
is now totally connected, has no transient nodes, and cannot be cyclic, it is ergodic. Also as a side benefit,
it has no spider traps, and mixes much faster.

However, now P is dense. But we can actually let Q be a m ×m matrix with 1/m in each entry. Then
set qi+1 = ((1− β)P + βQ)qi, which can be implemented efficiently since Q can be stored implicitly.

22.3.1 Spam Farms
But PageRank is not impervious to spam farms. It is possible to create a large number of webpages, and
link to them from all over the web (comment sections on blogs – they only need crawlers to use the link, not
people, etc).
How can we use these webpages to fool PageRank?

• Create a few target pages (which we want Google to rank highly).

• Have all corrupted pages send links to target pages (or proxy page, then target.)

• Have a few targets link to each other.
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The corrupted pages accumulated taxation (or other traffic), and direct this to the target pages. Once it
reaches the target pages, it only leaves β fraction of the time.

So how does Google defeat spam farms?
Search for structure, then blackball it (don’t rank it). But the structure can be modified a bit and still work.
It is still an on going battle.

TrustRank. Some pages are more or less trustworthy:

• MORE: Wikipedia, .edu domains, .mil and .gov domains. Main Amazon pages (without comments),
and VERY high PageRank pages.
• LESS: blogs, twitter, any pages with comments

Pages with more trust weight get teleported to more frequently, and taxed less heavily.
We can also try to classify pages as spam as follows. Create regular page rank r(v) and a TrustRank t(v)

for a page v. Then if s(v) = (r(v) − t(v))/r(v) is small or negative, then is NOT spam. If s is large, then
likely spam.

Recently (2015) Google proposed using a measure of truth to rank webpages. What could go wrong?

Personalized PageRank. Idea: each user j has preference of which pages they find important, by a unit
basis vector hj . This can be estimated based on past search results, or can be set to the user. These can then
be jumped to more frequently on distribution step, denoted as

qi+1 = ((1− β)P + βhj)qi.

Let the converged to vector q(hj)
∗ be the personalized PageRank vector.

However, doing this for each user is very expensive. PageRank was great in that it denoted the global
importance of webpages, and then could be combined with rankings based on the query. So it just needed
to be computed once for everyone. So how can we speed this up?

• we restrict hj to be from a hub set H of vectors (e.g. trusted basic www.cs.utah.edu, not
www.cs.utah.edu/˜jeffp/teaching/cs5140.html).

• Construct an orthogonal basis over H (maybe a partial one with PCA over everyones {hj}j vectors),
to get a set of basis vectors B = [b1, b2, . . . , bk] in the column space of H .

• Run personalized page rank with each

qi+1 = ((1− β)P + βb`)qi.

to get a personalized PageRank vector that the above Markov Chain converges to q∗,`. There are
actually some tricks to compute all of these at once.

• Then each individual’s person hj can be written as hj =
∑k

`=1 α
(j)
` b` using the basis B. We can then

report

q
(hj)
∗ =

k∑
`=1

α
(j)
` q∗,`.

Some pretty cool theory shows this gives the right result (up to the accuracy of the PCA if it was used
on H). There maybe some subtleties of the reconstruction I am leaving out due to the approximation
based on the use of H . (See (Jeh+Widom @ WWW 2003) for more info)
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