
5 Locality Sensitive Hashing

In the last few lectures we saw how to convert from a document full of words or characters to a set, and then
to a matrix, and then to a k-dimensional vector. And from the final vector we could approximate the Jaccard
distance between two documents.

However, now we face a new challenge. We have many many documents (say n documents) and we want
to find the ones that are close. But we don’t want to calculate

(
n
2

)
≈ n2/2 distances to determine which

ones are really similar.
In particular, consider we have n = 1,000,000 items and we want to ask two questions:

(Q1): Which items are similar?

(Q2): Given a query item, which others are similar to the query?

For (Q1) we don’t want to check all roughly n2 distance (no matter how fast each computation is), and for
(Q2) we don’t want to check all n items. In both cases we somehow want to figure out which ones might be
close and the check those.

Consider n points in the plane R2. How can we quickly answer these questions:

• Hierarchical models (range trees, kd-trees, B-trees) don’t work well in high dimensions. We will
return to these in L7.

• Lay down a Grid: Close points should be in same grid cell. But some can always lay across the
boundary (no matter how close). Some may be further than 1 grid cell, but still close. And in high
dimensions, the number of neighboring grid cells grows exponentially. One option is to randomly
shift (and rotate) and try again.

The second idea is close to a technique called Locality Sensitive Hashing (or LSH) which we will explore.

5.1 Properties of Locality Sensitive Hashing
We start with the goal of constructing a locality-preserving hash function h with the following properties
(think of a random grid). Do not confuse this with a (random) hash function discussed in L2. The locality
needs to be with respect to a distance function d(·, ·). In particular, if h is (γ, φ, α, β)-sensitive with respect
to d then it has the following properties:

• Pr[h(a) = h(b)] > α if d(a, b) < γ

• Pr[h(a) = h(b)] < β if d(a, b) > φ

For this to make sense we need α > β for γ < φ. Ideally we want α− β to be large and φ− γ to be small.
Then we can repeat this with more random hash functions to amplify the effect, according to a Chernoff-
Hoeffding bound. This will effectively make α−β larger for any fixed φ−γ gap, and will work for all such
φ− γ simultaneously.
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5.1.1 Minhashing as LSH

Minhashing is an instance of LSH (and perhaps the first such realized instance). Recall we had t hash
functions {h1, h2, . . . , ht} where each hi : [n]→ [n] (at random).

Documents: D1 D2 D3 D4 . . . Dn

h1 1 2 4 0 . . . 1
h2 2 0 1 3 . . . 2
h3 5 3 3 0 . . . 1
. . . . . . . . . . . . . . . . . . . . .
ht 1 2 3 0 . . . 1

Where

JSt(D1, D2) = E[(1/t) · ( # rows hi(D1) = hi(D2))]

and in general JS(a, b) = Pr[h(a) = h(b)].
Then for some similarity threshold 1 − JS(a, b) = d(a, b) = τ we can set τ = γ = φ and the have

α = 1− τ and β = τ .
This scheme will work for any similarity such that s(a, b) = Pr[h(a) = h(b)].

5.2 Banding for LSH
But how do we use LSH to answer questions Q1 and Q2?

• If we only check the items that always fall into the same bin, then with more hash functions eventually
almost nothing will be in the same bin (acts like a t-dimensional grid).

• If we check items that for any hash fall into the same bin, then with more hash functions, eventually
almost all items will be checked.

If the first approach is “Papa” bear’s LSH, and the second approach is “Mama” bear’s, then we will need
a “Baby” bear approach. Baby bear likes banding.

Suppose we have a budget of t hash functions. We are going to use b < t in Papa bear’s approach and
r = t/b in Mama bear’s approach (Baby bear takes after both of her parents after all ¨̂ ). Here b is the
number of hashes in a band, and r is the number of rows of bands.

Recall that s = JS(D1, D2) is the probability that D1 and D2 have a hash collision. Then we have

sb = probability all hashes collide in 1 band

(1− sb) = probability not all collide in 1 band

(1− sb)r = probability that in no bands do all hashes collide

f(s) = 1− (1− sb)r = probability all hashes collide in at least 1 band

We can plot f (as seen in Figure 5.2) as an S-curve where on the x-axis s = JS(D1, D2) and the y-axis
represents the probability that the pair D1, D2 is a candidate to check the true distance. In this example we
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Figure 5.1: Probability that the distance d(D1, D2) is checked in a LSH scheme with r = 3 bands with
b = 5 hashes each, as a function of s = JS(D1, D2).

have t = 15 and r = 3 and b = 5.

f(0.1) = 0.005

f(0.2) = 0.04

f(0.3) = 0.13

f(0.4) = 0.28

f(0.5) = 0.48

f(0.6) = 0.70

f(0.7) = 0.88

f(0.8) = 0.97

f(0.9) = 0.998

Choice of r and b. Usually there is a budget of t hash function one is willing to use. Perhaps it is
t = (1/2ε2) ln(2/δ). Then how does one divvy them up among r and b?

The threshold τ where f has the steepest slope is about τ ≈ (1/r)1/b. So given a similarity s that we
want to use as a cut-off (e.g. τ = s = α = 1−β) we can solve for b = t/r in τ = (b/t)1/b to (very roughly)
yield b ≈ − logτ (t).

If there is no budget on r and b, as they increase, the S curve gets sharper.

5.3 LSH for Euclidean Distance
We so far operated on a specific distance and similarity for min hashing (more on other distances in L6).
This extends to many other distances including, most famously the Euclidean distance between two vectors

v, u ∈ Rk so dE(u, v) = ‖u− v‖ =
√∑k

i=1(vi − ui)2. This is most useful when k is quite large.
The hash h is defined as follows.
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1. First take a random unit vector u ∈ Rd. A unit vector u satisfies that ‖u‖ = 1, that is dE(u, 0) = 1.
We will see how to generate a random unit vector below.

2. Project a, b ∈ P ⊂ Rk onto u:

au = 〈a, u〉 =
k∑
i=1

ai · ui

This is contractive so ‖au − bu‖ ≤ ‖a− b‖.

3. Create bins of size γ on u (now in R1). The index of the bin a falls into is h(a).

If ‖a − b‖ < γ/2 then Pr[h(a) = h(b)] ≥ 1/2. If ‖a − b‖ > 2γ = φ then Pr[h(a) = h(b)] < 2/3. So
this is (γ/2, 2γ, 1/2, 1/3)-sensitive.

To see the second claim (with 2γ) we see that for a collision we need cos(a− b, u) < π/3 (out of [0, π]).
Otherwise ‖a− b‖ > 2‖au − bu‖ and thus they must be in different bins.

We can also take h(a) = 〈a, u〉 mod (tγ). For large enough t, the probability of collision in different
bins is low enough that this can be effective.

5.3.1 Random Unit Vector
The easiest way to generate a random unit vector is through Gaussian random variables. A d-dimensional
uniform Gaussian distribution is defined:

G(x) =
1

(2π)d/2
e−‖x‖

2
2/2.

If we have two uniform random numbers u1, u2 ∈ [0, 1] then we can generate two independent 1-dimensional
Gaussian random variables as (using the Box-Muller transform):

y1 =
√
−2 ln(u1) cos(2πu2)

y2 =
√
−2 ln(u1) sin(2πu2).

A uniform Gaussian has the (amazing!) property that all coordinates (in any orthogonal basis) are inde-
pendent of each other. Thus to generated a point x ∈ Rd from a d-dimensional Gaussian, for each coordinate
i we assign it the value of an independent 1-dimensional Gaussian random variable.

5.3.2 p-Stable Random Variables and LSH for `p-Norms
A distribution µ over R is p-stable (for p ≥ 0) if the following holds. Let d + 1 random variables X0

and {X1, . . . , Xd} all have the distribution µ. Then considering any d real values {v1, . . . , vd}, the random
variable

∑
i viXi has the same distribution as (

∑
i |vi|p)1/pX0.

Intuitively, this allows us to replace a sum of random variables with a single random variables by adjusting
coefficients carefully. But actually, it is the composition of the coefficients that is interesting.
p-stable distributions are know for p ∈ (0, 2]. Special cases are

• For p = 2, then the Gaussian distribution g(x) = 1√
2π

exp(−x2/2) is 2-stable.

• For p = 1, then the Cauchy distribution c(x) = 1
π

1
1+x2

is 1-stable.

In particular, for p = 2 and a vector v = (v1, v2, . . . , vd) where we want to estimate ‖v‖2 = (
∑

i v
2
i )

1/2,
we can consider each coordinate vi individually as an estimate by using a p-stable random variable. That
is we can estimate ‖v‖2 by choosing d + 1 random Gaussian vectors g0 and g1, . . . , gd, and calculating
(1/g0)

∑
i givi = (1/g0)〈g, v〉, where g = (g1, . . . , gd) ... a normalized version of our projection operator.

Using the Cauchy random variables c0 and c1, . . . , cd in place of the Gaussian ones allows us to estimate
‖v‖1 =

∑
i |vi| as (1/c0)〈c, v〉 with c = (c1, . . . cd).
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