
8 Hierarchical Clustering

This marks the beginning of the clustering section. The basic idea is to take a set X of items and somehow
partition X into subsets, so each subset has similar items. Obviously, it would be great if we could be more
specific, but that would end up omitting some particular form of clustering.

Clustering is an extremely broad and ill-defined topic. There are many many variants; we will not try to
cover all of them. Instead we will focus on three broad classes of algorithms, and try to touch on some new
developments.

Shouldn’t we be spending more emphasis on clustering? Perhaps not. Of all of the studies that have
emerged, one theme has rung consistently:

When data is easily cluster-able, most clustering algorithms work quickly and well.
When is not easily cluster-able, then no algorithm will find good clusters.

8.1 Hard Clustering Formulation
Lets specify our clustering goal a bit more. Start with a set X ⊂ M (say M = Rd), and a metric d :
M×M→ R+.

A cluster S is a subset of X . A clustering is a partition C(X) = {S1, S2, . . . , Sk} where

(C1) each Si ⊂ X ,

(C2) each pair Si ∩ Sj = ∅ (this is relaxed in soft clustering), and

(C3)
⋃k

i=1 Si = P .

Then the goal is two-fold:

width: For each S ∈ C(X) for all x, x′ ∈ S then d(x, x′) is small.

split: For each Si, Sj ∈ C(X), for all (most) xi ∈ Si and xj ∈ Sj (and i 6= j) then d(xi, xj) is large.

Overall, the goal is for “split” / “width” to be large.
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Figure 8.1: Example of clustering C(X) = {S1, S2, S3}.
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8.2 Hierarchical/Agglomerative Clustering
The first type of clustering we study is hierarchical. The basic algorithm is:

If two points (clusters) are close (or close enough), put them in the same cluster.

A bit more formally, we can write this as an algorithm.

Algorithm 8.2.1 Hierarchical Clustering
Each xi ∈ X is a separate cluster Si.
while Two clusters are close enough do

Find the closest two clusters Si, Sj
Merge Si and S2 into a single cluster

It remains to define close enough and closest. These both basically require a distance between clusters.
There are several options:

• distance between center of clusters. What does center mean?

– the mean (average) point.
– the center-point (like a high-dimensional median)
– center of the MEB (minimum enclosing ball)
– some (random) representative point

• distance between closest pair of points

• distance between furthest pair of points

• average distance between all pairs of points in different clusters

• radius of minimum enclosing ball of joined cluster

• smallest average distance between points in a cluster and center in the other

Among all clusters, there are often ties. Often break ties arbitrarily, but these choices can dramatically
change the resulting clusters.

Finally we need to define close enough; this indicates some sort of threshold. There are again several
options:

• If information is known about the data, perhaps some absolute value τ can be given.

• If the { diameter, or radius of MEB, or average distance from center point} is beneath some threshold.
This fixes the scale of a cluster, which could be good or bad.

• If the density is beneath some threshold; where density is # points/volume or # points / radiusd

• If the joined (both clusters) density increases too much from single cluster density.
Variations of this are called the “elbow” technique.

• When the number of clusters is k (for some magical value k).
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8.2.1 Hierarchy
We can keep track of the order clusters are merged and build a hierarchy of clusterings. This can be useful
structure beyond an opaque single partition of the data. This also means we do not need to (initially) choose
when to stop. We can keep merging until there is only 1 cluster remaining. Then we can choose to “chop
off the top of the tree” later.
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The most famous example of this are phylogenic trees.

8.2.2 Efficiency
Lets use as an example where the distance between clusters is the distance between the centroids, and we
stop when there is one cluster. For n points, this takes about n3 time steps.

In each we make one merge, so there are n − 1 = O(n) rounds. In each round with m clusters, we may
need to check

(
m
2

)
pairs, to find the closest pair. Whenm < n/2 (which if half of all rounds), then this takes

about n2/4 = O(n2) time each round. It then takes only at most n time to recompute the centroid. So the
total cost is about (n− 1) · n2/4 = O(n3).

We can reduce this to O(n2 log n). We maintain a priority queue of the
(
m
2

)
= O(n2) distances. Each

update takes the closest distance in O(log n) time, but then affects O(n) distances in the queue. These take
O(n log n) time total to update. Centroids can also be updated in O(1) time (by storing the count and center
point - they can be merged by taking the weighted average). So each round takes O(n log n) time, and the
total process takes O(n2 log n) time.

But this is still pretty slow (as we will see compared to other techniques).
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