16 Matrix Sketching

The singular value decomposition (SVD) can be interpreted as finding the most dominant directions in an $(n \times d)$ matrix A (or n points in \mathbb{R}^{d}). Typically $n>d$. It is typically easy to call built in version of the SVD in many programming laanguages

$$
[U, S, V]=\operatorname{svd}(A)
$$

where $U=\left[u_{1}, \ldots, u_{n}\right], S=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{d}\right)$, and $V=\left[v_{1}, \ldots, v_{d}\right]$. Then $A=U S V^{T}$ and in particular $A=\sum_{j=1}^{d} \sigma_{j} u_{j} v_{j}^{T}$. To approximate A we just use the first k components to find $A_{k}=\sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{T}=$ $U_{k} S_{k} V_{k}^{T}$ where $U_{k}=\left[u_{1}, \ldots, u_{k}\right], S_{k}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right)$, and $V_{k}=\left[v_{1}, \ldots, v_{k}\right]^{T}$. Then the vectors v_{j} (starting with smaller indexes) provide the best subspace representation of A.

But, although SVD has been heavily optimized on data sets that fit in memory (via LAPACK, found in Matlab, and just about every other language), it can sometimes be improved. The traditional SVD takes $O\left(\min \left\{n d^{2}, d^{2} n\right\}\right)$ time to compute, which can be prohibitive for large n and/or d. Here we highlight two of these ways:

- to provide better interpretability of each v_{j}.
- to be more efficient on enormous scale, in a stream, or in distributed settings.

16.1 Row Sampling

The goal is to approximate A up to the accuracy of A_{k}. But in A_{k} the directions v_{i} are linear combinations of features.

- What is a linear combination of genes?
- What is a linear combination of typical grocery purchases?

Instead our goal is to choose V so that the columns of V are also columns of A.
For each row of $a_{i} \in A$, set $w_{i}=\left\|a_{i}\right\|^{2}$. Then select $t=(k / \varepsilon)^{2} \cdot \log (1 / \delta)$ rows of A, each proportional to w_{i}. Let R be the "stacking" of these rows.

These t rows will jointly act in place of V_{k}^{T}. However since V was orthogonal, then the columns $v_{i}, v_{j} \in$ V_{k} were orthogonal. This is not the case for R, we need to orthogonalize R. Let $\Pi_{R}=R^{T}\left(R R^{T}\right)^{-1} R$ be the projection matrix for R, so that $A_{R}=A \Pi_{R}$ describes the projection of A onto the subspace of the directions spanned by R. Now

$$
\left\|A-A \Pi_{R}\right\|_{F} \leq\left\|A-A_{k}\right\|_{F}+\varepsilon\|A\|_{F}
$$

with probability at least $1-\delta$ [4].

- Why did we not just choose the t rows of A with the largest w_{j} values?

Some may point along the same "direction" and would be repetitive. This should remind you of the choice to run k-means++ versus the Gonzalez algorithm for greedy point-assignment clustering.

- Why did we not factor out the directions we already picked?

We could, but this allows us to run this in a streaming setting. (See next approach)

- But $A \Pi_{R}$ could be rank t, can we get it rank $k \ll t$?

Yes, you can take its best rank k approximation $\left[\Pi_{R} A\right]_{k}$ and about the same bounds hold, you may need to increase t slightly.

- Can we get a better error bound?

Yes. First take SVD $[U, S, V]=\operatorname{svd}(A)$ and let U_{k} be the top k left singular vectors. Let $U_{k}(i)$ be the i th row of U_{k}. Now the leverage score of data point a_{i} is $\ell_{i}=\left\|U_{k}(i)\right\|^{2}$. Using the leverage scores as weights $w_{i}=\ell_{i}$ allows one to achieve stronger bounds [2]

$$
\left\|A-A \Pi_{R}\right\|_{F} \leq(1+\varepsilon)\left\|A-A_{k}\right\|_{F}
$$

But this requires us to first take the SVD (or other time-consuming procedures), so its is harder to do in a stream; although some new approaches are addressing this [3]. In many cases, this approaches do not seem to provide tangible benefits over the faster $\left\|a_{i}\right\|^{2}$-weighted sampling.
There exist more complicated and slower approaches which achieve the same bound with smaller k [1].

- Can we also sample columns this way?

Yes. All tricks can be run on A^{T} the same way (in fact most of the literature talks about sampling columns instead of rows). And, both approaches can be combined. This is known as the CURdecomposition of A.

A significant downside of these row sampling approaches is that the $\left(1 / \varepsilon^{2}\right)$ coefficient can be quite large for a small error tolerance. If $\varepsilon=0.01$, meaning 1% error, then this part of the coefficient alone is 10,000 . In practice, the results may be better, but for guarantees, this may only work on very enormous matrices.

16.2 Frequent Directions

Another efficient solution is provided by using a Misra-Gries trick. It is called Frequent Directions [8, 6].
We will consider a matrix A one row (one point a_{i}) at a time. We will maintain a matrix B that is $\ell \times d$, that is it only has ℓ rows (directions). We maintain that one row is always empty (has all 0 s) at the end of each round (this will always be the last row B_{ℓ}).

We initialize with the first $2 \ell-1$ rows a_{i} of A as B, again with the last row B_{ℓ} left as all zeros. Then on each new row, we put a_{i} in the empty row of B. We set $[U, S, V]=\operatorname{svd}(B)$. Now examine $S=$ $\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{\ell}\right)$, which is a length ℓ diagonal matrix. If $\sigma_{\ell}=0$ (then a_{i} is in the subspace of B), do nothing. Otherwise subtract $\delta=\sigma_{\ell}^{2}$ from each (squared) entry in S, that is $\sigma_{j}^{\prime}=\sqrt{\max \left\{0, \sigma_{j}^{2}-\delta\right\}}$ and in general $S^{\prime}=\operatorname{diag}\left(\sqrt{\sigma_{1}^{2}-\delta}, \sqrt{\sigma_{2}^{2}-\delta}, \ldots, \sqrt{\sigma_{\ell-1}^{2}-\delta}, 0, \ldots, 0\right)$.

Now we set $B=S^{\prime} V^{T}$. Notice, that since S^{\prime} only has non-zero elements in the first $\ell-1$ entries on the diagonal, then B is at most rank $\ell-1$ and we can then treat V and B as if the ℓ th row does not exist.

```
Algorithm 16.2.1 Frequent Directions
    Set \(B\) all zeros \((2 \ell \times d)\) matrix.
    for rows (i.e. points) \(a_{i} \in A\) do
        Insert \(a_{i}\) into a zero-valued row of \(B\)
        if ( \(B\) has no zero-valued rows) then
            \([U, S, V]=\operatorname{svd}(B)\)
            Set \(\delta_{i}=\sigma_{\ell}^{2} \quad\) \# the \(\ell\) th entry of \(S\)
            Set \(S^{\prime}=\operatorname{diag}\left(\sqrt{\sigma_{1}^{2}-\delta}, \sqrt{\sigma_{2}^{2}-\delta}, \ldots, \sqrt{\sigma_{\ell-1}^{2}-\delta}, 0, \ldots, 0\right)\).
            Set \(B=S^{\prime} V^{T} \quad \#\) the last rows of \(B\) will again be all zeros
    return \(B\)
```

The result of Algorithm 16.2.1 is a matrix B such that for any (direction) unit vector $x \in \mathbb{R}^{d}$

$$
0 \leq\|A x\|^{2}-\|B x\|^{2} \leq\left\|A-A_{k}\right\|_{F}^{2} /(\ell-k)
$$

and $[7,6]$

$$
\left\|A-A \Pi_{B_{k}}\right\|_{F}^{2} \leq \frac{\ell}{\ell-k}\left\|A-A_{k}\right\|_{F}^{2}
$$

for any $k<\ell$, including when $k=0$. So setting $\ell=1 / \varepsilon$, then in any direction in \mathbb{R}^{d}, the squared mass in that direction is preserved up to $\varepsilon\|A\|_{F}^{2}$ (that is, ε times the total squared mass) using the first bound. And in the second bound if we set $\ell=\lceil k / \varepsilon+k\rceil$ then we have $\left\|A-A \Pi_{B_{k}}\right\|_{F}^{2} \leq(1+\varepsilon)\left\|A-A_{k}\right\|_{F}^{2}$. Recall that $\|A\|_{F}=\sqrt{\sum_{a_{i} \in A}\left\|a_{i}\right\|^{2}}$.

- Why does this work?

Just like with Misra-Greis [9], when some mass is deleted from one counter it is deleted from all ℓ counters, and none can be negative. So here when one direction has its (squared) mass decreased, at least ℓ directions (with non-zero squared mass) are decreased by the same amount. So no direction can have more than $1 / \ell$ fraction of the total squared mass $\|A\|_{F}^{2}$ decreased from it.
Finally, since squared mass can be summed independently along any set of orthogonal directions, we can subtract each of them without affecting others; see [6] for more details, spelled out in a few lines of linear algebra.

- Why do we use the svd?

The SVD defines the true axis of the ellipse associated with the norm of B at each step. If we shrink along an basis (or even a set of non-orthogonal vectors) we will warp the ball, and we will not be able to ensure that each direction of B shrinks in squared norm by at most δ_{i}.

- Did we need to use the svd? (its expensive, right)?

The cost is amortized. We only call the svd once every ℓ steps, so at most $O(n / \ell)$ times. Since each call takes $O\left(d \ell^{2}\right)$ time, the total cost is $O(n d \ell)$, or only ℓ times as long as reading the matrix.
It is also possible to call approximate versions of the SVD [5]. This allows allows versions which have runtime depending on the number of non-zeros in the input matrix. This makes a big difference for very sparse word count or recommendation system matrices.

- What happened to U in the svd output?

The matrix U just related the main directions to each of the n points (rows) in A. But we don't want to keep around the space for this. In this application, we only care about the directions or subspace that best represents the points; e.g. PCA only cares about the right singular vectors.

Bibliography

[1] Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. SIAM Review, (315-334), 56. arXiv:0808.0163.
[2] Christos Boutsidis, Michael W Mahoney, and Petros Drineas. An improved approximation algorithm for the column subset selection problem. In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 968-977. Society for Industrial and Applied Mathematics, 2009.
[3] Michael B. Cohen, Cameron Musco, and Christopher Musco. Ridge leverage scores for low-rank approximation. Technical report, arXiv:1511.07263, 2015.
[4] Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding low-rank approximations. In Foundations of Computer Science, 1998. Proceedings. 39th Annual Symposium on. IEEE, 1998.
[5] Mina Ghashami, Edo Liberty, and Jeff M. Phillips. Efficient frequent directions algorithm for sparse matrices. Technical report, arXiv:1602.00412, 2016.
[6] Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions: Simple and deterministic matrix sketching. Technical report, arXiv:1501.01711, 2015.
[7] Mina Ghashami and Jeff M. Phillips. Relative errors for deterministic low-rank matrix approximations. In ACM-SIAM 25th Symposium on Discrete Algorithms, 2014.
[8] Edo Liberty. Simple and deterministic matrix sketching. In Proceedings 19th ACM Conference on Knowledge Discovery and Data Mining, 2013.
[9] J. Misra and D. Gries. Finding repeated elements. Sc. Comp. Prog., 2:143-152, 1982.

