
2 Statistical Principles

This lecture will serve two main goals. First we will introduce and the tool of random hash functions.
Second we introduce a randomized/probabilistic view of algorithms and data analysis. This will include
revisiting ideas about concentration of measure, and also probably approximate correct (PAC) error bounds.

We will study these properties through three phenomenon of random processes:

• Birthday Paradox: To measure the expected collision of random events.

A random group of 23 people has about a 50% chance of having a pair with the same birthday.

• Coupon Collectors: To measure the expectation for seeing all possible outcomes of a discrete
random variable.

Consider a lottery where on each trial you receive one of n possible coupons at random. It takes in
expectation about n(0.577 + lnn) trials to collect them all.

• Central Limit Theorem: To bound the leakage from the expected value of repeated random trials.

Consider drawing ages (in 0 to 125) from an unknown distribution of people, how far is the sample
average from the true average age.

From another perspective, these describe the effects of random variation. The first describes collision
events, the second covering events, and the third concentration events.

2.0.1 Independent and Identically Distributed
What is data? A simplified view is a set X = {x1, x2, . . . , xn}, and in particular where each xi ∼ D(θ);
that is each item is iid from some (probably unknown) distribution D(θ). The abbreviation iid means
independently and identically distributed. In this context this means each xi is (identical) drawn from the
same distribution (in this caseD(θ)) and (independent) that the value of xi is not affected by any other value
xj (for i 6= j).

This will not hold for all data sets. But its not uncommon for some aspect of the data to fit this model, or
at least be close enough to this model. And for many problems without such an assumption, its impossible
to try to recover the true underlying phenomenon that is the data mining objective. This is represented by
the parameter(s) θ of the distribution D(θ).

In other settings, we will create an (randomized) algorithm that generates data which precisely follows
this pattern (we can do this, since we design the algorithm!). Such an algorithm design is beneficial since
we know a lot about iid data, this is the focus of most of the the classical part of the field of statistics!

In both cases, this is indicative of the very powerful ”big data” paradigm:

Create a complex/accurate estimate by combining many small and simple observations.

Model. For the setting of this lecture there is a common model of random elements drawn from a discrete
universe. The universe has n possible objects; we represent this as [n] and let i ∈ [n] represent one element
(indexed by i from {1, 2, 3, . . . , n}) in this universe. The n objects may be IP addresses, days of the year,
words in a dictionary, but for notational and implementation simplicity, we can always have each element
(IP address, day, word) map to a distinct integer iwhere 0 < i ≤ n. Then we study the properties of drawing
k items uniformly at random from [n] with replacement.
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2.1 (Random) Hash Functions
A key tool, perhaps the tool, in probabilistic algorithms is a hash function. There are two main types of hash
functions. The second (which we define in Lecture 6) is locality-preserving. But often one wants a hash
functions which is uncorrelated, like in a hash table data structure.

A random hash function h ∈ H maps from one set A to another B (usually B = [m]) so that conditioned
on the random choice h ∈ H, the location h(x) ∈ B for any x ∈ A is equally likely. And for any two (or
more strongly, but harder to achieve, all) x 6= x′ ∈ A the h(x) and h(x′) are independent (conditioned on
the random choice of h ∈ H). For a fixed h ∈ H, the map h(x) is deterministic, so no matter how many
times we call h on argument x, it always returns the same result. The full independence requirement is often
hard to achieve in theory, but in practice this difference is usually safe to ignore. For the purposes of this
class, most built-in hash functions should work sufficiently well.

Assume we want to construct a hash function h : Σk → [m] where m is a power of two (so we
can represent it as log2m bits) and Σk is a string of k of characters (lets say a string of numbers Σ =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}). So x ∈ Σk can also be interpreted as a k-digit number.

1. SHA-1: See http://en.wikipedia.org/wiki/SHA-1
This secure hash function takes in a string of bits so Σ = {0, 1} and k is the number of bits (but many
front ends exists that can let Σ be all ASCII characters), and deterministically outputs a set of 160
bits, so m = 2160.

If one desired a smaller value of m, one can simply use any consistent subset of the bits. To create a
family of hash functions H parameterized by some seed a (the salt), one can simply concatenate a to
all inputs, to obtain a hash ha ∈ H. So ha(x) = SHA-1(concat(a, x)).

Functionality for this (or other similar hash functions) should be built in or available as standard
packages for many programming languages. These built in functions often can take in strings and
other various inputs which are then internally converted to bits.

2. Multiplicative Hashing: ha(x) = bm · frac(x ∗ a)c
a is a real number (it should be large with binary representation a good mix of 0s and 1s), frac(·)
takes the fractional part of a number, e.g. frac(15.234) = 0.234, and b·c takes the integer part of
a number, rounding down so b15.234c = 15. Can sometimes be more efficiently implemented as
(xa/2q) mod m where q is essentially replacing the frac(·) operation and determining the number
of bits precision.

If you want something simple and fast to implement yourself, this is a fine choice. In this case the
randomness is the choice of a. Once that is chosen (randomly), then the function ha(·) is deterministic.

3. Modular Hashing: h(x) = x mod m
(This is not recommended, but is a common first approach. It is listed here to advise against it. )

This roughly evenly distributes a number x to [m], but numbers that are both the same mod m
always hash to the same location. One can alleviate this problem by using a random large prime
m′ < m. This will leave bin {m′ + 1,m′ + 1, . . . ,m− 1,m} always empty, but has less regularity.

2.2 Birthday Paradox
First, let us consider the famous situation of birthdays. Lets make formal the setting. Consider a room of k
people, chosen at random from the population, and assume each person is equally likely to have any birthday
(excluding February 29th), so there are n = 365 possible birthdays.
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The probability that any two (i.e. k = 2) people (ALICE and BOB) have the same birthday is 1/n =
1/365 ≈ 0.003. The birthday of ALICE could be anything, but once it is known by ALICE, then BOB has
probability 1/365 of matching it.

To measure that at least one pair of people have the same birthday, it is easier to measure the probability
that no pair is the same. For k = 2 the answer is 1− 1/n and for n = 365 that is about 0.997.

For a general number k (say k = 23) there are
(
k
2

)
= k · (k−1)/2 (read as k choose 2) pairs. For k = 23,

then
(
23
2

)
= 253. Note that

(
k
2

)
= Θ(k2).

We need for each of these events that the birthdays do not match. Assuming independence we have

(1− 1/n)(
k
2) or 0.997253 = 0.467.

And the probability there is a match is thus 1 minus this number

1− (1− 1/n)(
k
2) or 1− 0.997253 = 0.532,

just over 50%.

What are the problems with this?

• First, the birthdays may not be independently distributed. More people are born in spring. There may
be non-negligible occurrence of twins.

Sometimes this is really a problem, but often it is negligible. Other times this analysis will describe
an algorithm we create, and we can control independence.

• Second, what happens when k = n+1, then we should always have some pair with the same birthday.
But for k = 366 and n = 365 then

1− (1− 1/n)(
k
2) = 1− (364/365)(

366
2 ) = 1− (0.997)66795 = 1− 7× 10−88 < 1.

Yes, it is very small, but it is less than 1, and hence must be wrong.

Really, the probability should be

1−
(
n− 1

n

)
·
(
n− 2

n

)
·
(
n− 3

n

)
· . . . = 1−

k−1∏
i=1

(
n− i
n

)
.
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Inductively, in the first round (the second person (i = 2) there is a (n − 1)/n chance of having no
collision. If this is true, we can go to the next round, where there are then two distinct items seen, and
so the third person has (n − 2)/n chance of having a distinct birthday. In general, inductively, after
the ith round, there is an (n− i)/n chance of no collision (if there were no collisions already), since
there are i distinct events already witnessed.

As a simple sanity check, in the (n+ 1)th term (n−n)/(n) = 0/n = 0; thus the probability of some
collision of birthdays is 1− 0 = 1.

Take away message.

• There are collisions in random data!

• More precisely, if you have n equi-probability random events, then expect after about k =
√

2n events
to get a collision. Note

√
2 · 365 ≈ 27, a bit more than 23.

Note that (1 + α
t )t ≈ eα for large enough t. So setting k =

√
2n then

1− (1− 1/n)(
k
2) ≈ 1− (1− 1/n)n ≈ 1− e−1 ≈ .63

This is not exactly 1/2, and we used a bunch of ≈ tricks, but it shows roughly what happens.

• This is fairly accurate, but has noticeable variance. Note for n = 365 and k = 18 then

1− (1− 1/n)(
k
2) = 1− (364/365)153 ≈ .34

and when k = 28 then
1− (1− 1/n)(

k
2) = 1− (364/365)378 ≈ .64.

This means that if you keep adding (random) people to the room, the first matching of birthdays
happens 30% (= 64% − 34%) of the time between the 18th and 28th person. When k = 50 people
are in the room, then

1− (1− 1/n)(
k
2) = 1− (364/365)1225 ≈ .965,

and so only about 3.5% percent of the time are there no pair with the same birthday.

2.3 Coupon Collectors
Lets now formalize the famous coupon lottery. There are n types of coupons, and we participate in a series
of independent trials, and on each trial we have equal probability (1/n) of getting each coupon. We want to
collect all toys available in a McDonald’s Happy Meal. How many trials (k) should we expect to partake in
before we collect all coupons?

Let ri be the expected number of trials we need to take before receiving exactly i distinct coupons. Let
r0 = 0, and set ti = ri − ri−1 to measure the expected number of trials between getting i − 1 distinct
coupons and i distinct coupons.

Clearly, r1 = t1 = 1, and it has no variance. Our first trials always yields a new coupon.
Then the expected number of trials to get all coupons is T =

∑n
i=1 ti.

To measure ti we will define pi as the probability that we get a new coupon after already having i − 1
distinct coupons. Thus ti = 1/pi. And pi = (n− i+ 1)/n.

We are now ready for some algebra:

T =

n∑
i=1

ti =

n∑
i=1

n

n− i+ 1
= n

n∑
i=1

1

i
.

CS 6140 Data Mining; Spring 2017 Instructor: Jeff M. Phillips, University of Utah



Now we just need to bound the quantity
∑n

i=1(1/i). This is known at the nth Harmonic Number Hn. It
is known that Hn = γ + lnn+ o(1/n) where ln(·) is the natural log (that is ln e = 1) and γ ≈ 0.577 is the
Euler-Masheroni constant. Thus we need, in expectation,

k = T = nHn ≈ n(γ + lnn)

trials to obtain all distinct coupons.

Extensions.

• What if some coupons are more likely than others. McDonalds offers three toys: Alvin, Simon, and
Theodore, and for every 10 toys, there are 6 Alvins, 3 Simons, and 1 Theodore. How many trials do
we expect before we collect them all?

In this case, there are n = 3 probabilities {p1 = 6/10, p2 = 3/10, p3 = 1/10} so that
∑n

i=1 pi = 1.

The analysis and tight bounds here is a bit more complicated, but the key insight is that it is dominated
by the smallest probability event. Let p∗ = mini pi. Then we need about

k ≈
(

1

p∗

)
(γ + lnn)

random trials to obtain all coupons.

• These properties can be generalized to a family of events from a continuous domain. Here there can
be events with arbitrarily small probability of occurring, and so the number of trials we need to get all
events becomes arbitrarily large (following the above non-uniform analysis). So typically we set some
probability ε ∈ [0, 1]. (Typically we consider ε as something like {0.01, 0.001} so 1/ε something like
{100, 1000}. Now we want to consider any set of events with combined probability greater than ε.
(We can’t consider all such subsets, but we can restrict to all, say, contiguous sets – intervals if the
events have a natural ordering). Then we need

k ≈ 1

ε
log

1

ε

random trials to have at least one random trial in any subset with probability at least ε. Such a set is
called an ε-net.
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Take away message.

• It takes about n lnn trials to get all items at random from a set of size n, not n. That is we need an
extra about lnn factor to probabilistically guarantee we hit all events.

• When probabilities are not equal, it is the smallest probability item that dominates everything!

• To hit all (nicely shaped) regions of size εn we need about (1/ε) log(1/ε) samples, even if they can
be covered by 1/ε items.

2.4 Probably Approximately Correct (PAC)
The above discussions are starting to hint at a probability approximate correct (PAC) bound. There are
random events that produce an estimate X̂ (which is a random variable) that is probably close to its expected
value µ = E[X̂].

The tricky part of about describing this is that we don’t want to say X̂ is always close to µ. Because it is
a random process, sometimes things go (horribly!) wrong. So we want to provide a term δ ∈ (0, 1) which
is a probability of failure. Sometimes (with say δ = 0.01 probability of failure, or 1% of the time) X̄ is not
close to µ.

Moreover, we also don’t want to talk about the probability that X̄ = µ. Since this may occur with very
small probability (we need exactly the right number of happy means, maybe 1000 to collect all 100 or so
coupons). Rather we would like to allow some error threshold, using a parameter ε > 0.

So we need two parameters to describe the error δ (probably) and ε (approximate). Ultimately most
bounds look of the form:

Pr[|X̂ − µ| ≥ ε] ≤ δ.

That is, the probability that X̂ (which is some random variable, often a sum of iid random variables) is
further than ε to its expected value µ, is at most δ. Or equivalently (perhaps more optimistically)

Pr[|X̂ − µ| < ε] > 1− δ.

I like to think of ε as the error tolerance and δ as the probability of failure i.e., that we exceed the error
tolerance. However, often these bounds will allow us to write the required sample size n in terms of ε and
δ. This allows us to trade these two terms off for any fixed known n; we can allow less error tolerance if we
are willing to allow more probability of failure, and vice-versa.

2.5 Central Limit Theorem and Chernoff-Hoeffding Bound
When dealing with modern big data sets, a very common theme is reducing the set through a random
process. These generally work by making “many simple estimates” of the full data set, and then judging
them as a whole. Perhaps magically, these “many simple estimates” can provide a very accurate and small
representation of the large data set. In statistics, this phenomenon is usually referred to as the Central Limit
Theorem. The key tool in showing how many of these simple estimates are needed for a fixed accuracy
trade-off, and formulating the Central Limit Theorem as a PAC bound, is the Chernoff-Hoeffding inequality.

We consider a specific form of the Chernoff-Hoeffding inequality. It is not the strongest form of the
bound, but is for many applications asymptotically equivalent, and it also fairly straight-forward to use. It is
more similar to the form of Azuma’s inequality which deals with Martingales that have more complicated
dependence structure.
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Theorem 2.5.1. Consider a set of r independent identically distributed (iid) random variables {X1, . . . , Xr}
such that −∆ ≤ Xi ≤ ∆ for each i ∈ [r]. Let A = 1

r

∑r
i=1Xi (average of Xis). Then for any α > 0

Pr[|A− E[A]| > α] ≤ 2 exp

(
−rα2

2∆2

)
.

This requires us to know two things about the random variables. First, we should know the expected
value of E[Xi] for all Xi; since they are iid, its the same for all of them. Second, we need to know an upper
bound ∆ on the range of these random variables. For instance, if its someones age, we can probably bound
∆ = 125 since no one is older than 125 years old, and all ages are positive so 0 > −∆ = −125. This tells
us how far we can reasonably expect our sample estimate A of the average age in a set to be from the true
average. Thus, we may not even need to know E[A], the true expected age, but just want to know how likely
it is that we are very far from it.

For instance, if we find A = 30, and r = 1000, then the probability that E[A] ∈ [20, 40] (so α = 10) is at
most 2 exp(−1000 · 102/(2 · 1252)) ≈ 0.08. So (at most) about 8% of the time we would have an estimate
not within 10 years. (Note, this sounds very pessimistic, since it could contain the high variance case where
p fraction of the the person is 125 and (1 − p) fraction they are −125. Its important to try to get a tight
estimate on the actual range of deviation.

More general form. This is a slightly more general form that I often find very useful as well.

Theorem 2.5.2. Consider a set of r independent random variables {X1, . . . , Xr}. If we know ai ≤ Xi ≤ bi,
then let ∆i = bi − ai. Let M =

∑r
i=1Xi. Then for any α > 0

Pr[|M − E[M ]| > α] ≤ 2 exp

(
−2α2∑r
i=1 ∆2

i

)
.

For the same problem above, since we can use now each ∆i = 125 reveals a probability of at most
0.0000055 that the estimate is not within 10 years of the true value.

Hashing. These bounds map back to the hashing problem, to understand the case when all of the buckets
have roughly the same number of items that fall in them. This requires roughly k = (1/ε2) log(1/δ) to be
hashed so that each bucket is within εk/n of all other buckets, with probability at least 1− δ.
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