
23 MapReduce and Distributed File Systems

MapReduce is the system synonymous with a revolution in large-scale programming with simple (appearing)
system. Other systems include Hadoop, Spark, and many others more specialized ones.

Big Data. MapReduce is a system for very large data with certain properties. Think logs of all uses, or the
web. There are two key properties:

• The data is enormous. At least several terabytes ... could be much much more. It does not fit on one
single machine, it may require 100 or 1000 or more machines.

• The data is (fairly) static, in fact it would take a long time just to read the data (let alone write it).
When it is updated it is typically only appended. Even rarer is data deleted.

This type of data is also synonymous with the data science revolution (although that often occurs at
smaller scales). Instead of the scientific method where one

(1) proposes a hypothesis → (2) gathers data → (3) checks whether the data supports the hypothesis,

in data science one
(1) searches an existing corpus of large data for structure.

This “structure” is the hypothesis and its validation. Instead of trial and error, it is data mining to the rescue!
Here we address the most common system infrastructure, MapReduce, to support such process on truly

large datasets.

23.1 Distributed File System
Before understanding MapReduce, it is critical to understand the infrastructure that it is built on. Specifically
a distributed key-value store file system. In MapReduce, and inside Google, it is called the Google File
System (or GFS). In the open source version Hadoop, it is called the Hadoop File System (HDFS). Although
these ideas were not completely new, they are outlasting MapReduce itself.

Item level. The data is typically stored in key-value pairs. This is very limiting (from a structure/DB point
of view), but is yet a very general data format. Each data element is given a key, and an associated set of
values. Examples:

• key = log id value = actual log

• key = web address value = html or out-going links

• key = document id in set value = list of words

• key = word in corpus value = how often it appears or list of pages on which it appears.

The key is a unique (or to some resolution) identifier of the object, and then the value can store anything.
Sometimes there will be an assumed format to the value. Sometimes there are many key-value pairs that
have the same key; this allows the information associated with they key to be stored in multiple places, and
updated without touching the original data.

Note, in high contrast to a traditional database system, we have eschewed locality. As we will see, we
will “bring the computation to the data,” to make up for this.

1



Block level. One could then imagine just filling up tons of hard drives with key-value pairs. However, this
is unwieldy. Rather, the items are stored in blocks of medium size. A typically HDFS block size is 64 MB
(but can be set differently).

Each block has a replication factor, a typical value is 3 (although 2 is not unheard of). This means it is
stored 3 times.

So each file (terabytes) is broken down into blocks (of size 64 MB) and then replicated some number (say
3) times. Then each such block is stored on a separate compute node. The replicas are always stored on
separate nodes, and especially neighboring blocks are tried to be stored on separate nodes.

This might seem strange: the principal of “locality” says that similar data should be stored nearby! (e.g.
sorting, search trees). So why do this?

• Resiliency: If one node dies, then the other versions can be used in place (and re-replicated the 3rd
version).

• Redundancy: If one node is slow, then another with same data can be used in place.

• Heterogeneity: The format is flexible. Usually 64 MB is enough for some degree of locality. Also,
by forcing nodes to carry assorted data, the computation on each node will tend to look more uniform
(but still not always).

23.2 How does MapReduce Work
Now that data is stored in key-value pairs in some distributed file system, we are going to kind of ignore
this. Just think of what you want to do with each individual item, that is each key-value pair.

1: Mapping: Typically, the initial format of the key-value pair is very rough. The data is just stored, but
not processed much yet, and in any particular order. It may contain many irrelevant parts of information (for
the current task). So the mapping phase is in charge of getting it into the right format. Keep in mind, this
data set is very large, so it is stored once, but may be used for many many different purposes.

The mapping phase takes a file, and converts into another set of key-value pairs. The values generally
contain the data of current interest, and the keys are used to obtain locality in the next part.

2: Shuffling: Output of Map is typically (roughly) as large as the original data, so it also cannot all fit on
one machine. The shuffle step puts all key-value pairs with the same key on one machine (if they can all
fit). The data is redistributed and mixed up, kind of what it would look like in the mapping of card positions
when shuffling a deck of cards...

It is sometimes called sort since this can be done by sorting all keys, and putting them in sorted order
on another set of machines (e.g. smallest in order on first machine, next smallest on next machine, and so
forth – the actually implementation is more robust than this in several ways, but conceptually this is useful).
Sometimes it is useful to have nearby keys on the same machine (in addition to ones with the same values).

3: Reducing: The reduce step takes the data that has been aggregated by keys and does something useful
(application specific). This data is now all in the same location – we have locality.

1.5: Combine (optional): The key-value pair way of organizing data can be verbose. If from the same
block many values have the same key, then they will all be sent to the same Reduce node. So the Combine
step aggregates them into a single key-value pair before the Shuffle step.

This can make streaming on the Mapper more tricky.

CS 6140 Data Mining; Spring 2017 Instructor: Jeff M. Phillips, University of Utah



23.2.1 Implementation Notes
This system is designed to be extremely scalable (much of this is done behind the scenes), and to be ex-
tremely easy to use. The user only needs to write the Mapping and the Reduce step. The system takes care
of the rest. And these code snippets are often extremely short.

Often the map and reduce phase are streaming in that they only make one pass over the data. The Map
phase just scans the files once, and the reduce phase takes the key-value pairs in a stream (not necessarily
in sorted key order) and produces an output. However, this assumes it has enough storage to maintain
something for each key.

One of the powers of MapReduce that it inherits from the Distributed File System is that it is resilient.
There is one master node that keeps track of everything (by occasionally pinging nodes). If one node goes
down, then the master node finds all other nodes with the same blocks and asks them to do the work the
down node was supposed to do. Again, this is all behind the scenes to the user.

23.2.2 Rounds
Sometimes it will be useful to use the output of one round of MapReduce as the input to another round.
This is often considered acceptable if it uses a constant number of rounds, log n may be too many. (If
n = 1, 000, 000, 000, then log2 n ≈ 30 may be too much).

In Hadoop, there may be a several minute delay between rounds (due to Java VM issues, and since it
writes all data from disk, and then re-reads it in the next round – for resiliency issues). New systems
(most noteably Spark) have been introduced recently to specifically address this issue. They get around this
rewrite-to-disk-each-round by being able to recover the content of a crashed machine by reconstructing it
from the memory of all active machines (this uses some complicated bookkeeping schemes, that were quite
non-trivial to get correct.)

Last reducer. In general, the algorithms take as long as the last reducer takes to finish; the next round
does not start until all reducers finish. Sometimes many things map to the same key, and then this takes
much longer. This effect is known as the curse of the last reducer.

In some cases, MapReduce implementations can overcome this by seeing if a reducer is slow (just since
the machine semi-crashed) and splitting its load to already finished machines. But if one key has a huge
fraction of the data, then that part cannot be split (e.g. see “the” in word count). Often this requires intelligent
algorithmic design.

23.3 Examples
Lets go through several classic MapReduce examples:

23.3.1 Word Count
Consider as input an enormous text corpus (for instance all of English Wikipedia) stored in our DFS. The
goal is to count how many times each word is used.

Map: For each word: w make key-value pair 〈w, 1〉

Reduce: For all words w have
〈w, v1〉, 〈w, v2〉, 〈w, v3〉

output
〈w,
∑
i

vi〉.

CS 6140 Data Mining; Spring 2017 Instructor: Jeff M. Phillips, University of Utah



The combiner can optionally perform the same thing as the reducer, but just on the words from one block.
The reduce can still add the results. This helps enormously for instance when on many corpuses of data the
word “the” occurs 7% of the time (which is a huge reducer if there are 100 or more machines). And text
already follows Zipf’s law and is heavy-tailed. Light-tailed distributions could be even worse.

23.3.2 Inverted Index
Again consider a text corpus (all pages of English Wikipedia). Build an index, so each word has a list of
pages it is in. In a search engine, most queries are preprocessed this way – only for very rare/obscure queries
would they compute something on the fly.

Map: For each word w: make key-value pair 〈w, p〉 where p is the page that is currently being processed.

Reduce: For all words w have

〈w, p1〉, 〈w, p2〉, 〈w, p3〉

output

〈w,
⋃
i

pi〉.

We could modify the reduce operation to sort all of these pages
⋃

i pi (say based on a score related to
pagerank) so that the most important ones are first.

23.3.3 Phrases
Again consider a text corpus (all pages of English Wikipedia). Build an index, but now on k-grams of length
3, and only those that occur on exactly one page.

Map: For each 3-gram g (consecutive set of 3 words), make key-value pair 〈g, p〉 where p is the page that
is currently being processed.

Combine: For all 3-grams g have

〈g, p〉, 〈g, p〉, . . .

output (so only one copy)

〈g, p〉.

Reduce: For all shingle g have

〈g, v1〉, 〈g, v2〉, . . . 〈g, vk〉

output could be empty, or is a gram-page pair. Specifically, if k = 1, then output

〈w,
⋃
i

vi〉 = 〈w,w1〉,

otherwise output nothing since it does not occur (by default) or occurs on more than one page.

CS 6140 Data Mining; Spring 2017 Instructor: Jeff M. Phillips, University of Utah



23.4 PageRank on MapReduce
The Internet is stored as a big matrix M (size n× n). Specifically the column-normalized adjacency matrix
where each column represents a webpage and where it links to are the non-zero entries.
M is sparse. Even as n grows, each webpage probably on average only links to about 20 other webpages.

Over 99.99% of entries in M are M [a, b] = 0.
We define another matrix

P = βM + (1− β)B
where B[a, b] = 1/n and typically β = 0.85 or so.

Recall that we want to calculate the PageRank vector using Markov Chain theory. The PageRank of a
page a is q∗[a] where q∗ = P tq as t → ∞. Here we can usually use t = 50 or 75. This describes the
importance of a webpage from a random surfer’s perspective.

Problems: The matrix M is sparse and can be stored (on many machines at Google). Its size is roughly
20n, where n is on the order of 1 billion. But the matrix P is dense (since B is dense). So of course P t is
also dense. Since n is about 1 billion, it is too big to store.

But qi is only size n, and we need to store this. So we can just iterate as qi+1 = Pqi and then we only
need to store P implicitly as M and B.

qi+1 = βMqi + (1− β)1/n
And repeat this step t times.

Still, n is very big, so we cannot store M or qi on any one machine. This could be terabytes of data. And
when working with many machines, some will crash!
MapReduce to the rescue.

23.4.1 PageRank on MapReduce : v1
Here is a first attempt. BreakM into k vertical stripesM = [M1 M2 . . . Mk] so eachMj fits on a machine.
Break q into qT = [q1 q2 . . . qk] (a horizontal split), again so each qj fits on a machine with Mj . (This can
be assumed how the data is stored, or can be done in a earlier round of MapReduce if not. )

Now in each round:

• Mapper: j → (key= j′ ∈ [k] ; value = row r of Mj ∗ qj)
• Reducer: adds values for each key i to get qi+1[j] ∗ β + (1− β)/n.

Note that the output of each mapper is an entire vector qi+1 (or at least part needs to be added together
with other components to obtain qi+1), of length n. This follows since each stripe Mj has n/k full columns.
Is this feasible?
... Yes, since qi+1 only has as many non-zero entries as Mj .

However, we are not getting that much out of the combiner phase. We will see next how this can be
improved.

23.4.2 PageRank on MapReduce : v2
Let ` =

√
k and tile M into `× ` blocks

M =


M1,1 M1,2 . . . M1,`

M2,1 M2,2 . . . M2,`

. . . . . . . . . . . .
M`,1 M`,2 . . . M`,`


• Mapper: Each of k machines gets one block Mi,j and gets sent qi for i ∈ [`].
• Reducer: On each row i′ adds Mi,jqi to q[i′]. Then does q+[i′] = q[i′]β + (1− β)/n.

CS 6140 Data Mining; Spring 2017 Instructor: Jeff M. Phillips, University of Utah



slight problems still... Each qi (for i ∈ [`]) is stored in ` =
√
k places.

Thrashing on Mi,j . It may fit on disk, but not in memory. Solution: blocking on Mi,j so it fits in disk, but
its sub-blocks {Bs}s fit in memory. Now only need to read each Bs once, but read/write q and q+ for each
block (this takes up less space). But this is becoming less of a problem as MapReduce type machines have
more and more memory.

23.4.3 Example

M =


0 1/2 0 0

1/3 0 1 1/2
1/3 0 0 1/2
1/3 1/2 0 0


Stripes:

M1 =


0

1/3
1/3
1/3

 M2 =


1/2
0
0

1/2

 M3 =


0
1
0
0

 M4 =


0

1/2
1/2
0


These are stored as

(
1 : (1/3, 2), (1/3, 3), (1/3, 4)

)
,
(
2 : (1/2, 1)(1/2, 4)

)
,
(
3 : (1, 3)

)
, and

(
4 : (1/3, 1), (1/2, 2)

)
.

Blocks:

M1,1 =

[
0 1/2

1/3 0

]
M1,2 =

[
0 0
1 1/2

]
M2,1 =

[
1/3 0
1/3 1/2

]
M2,2 =

[
0 1/2
0 0

]
These are stored as

(
1 : (1/2, 2)

)
,
(
2 : (1/3, 1)

)
, as

(
2 : (1, 3), (1/2, 4)

)
, as

(
3 : (1/3, 1)

)
,
(
4 :

(1/3, 1), (1/2, 2)
)
, and as

(
3 : (1/2, 4)

)
.

Note that some blocks have no effect on the some vector elements they are responsible for. M2,2 has no
effect on q+[3] and M1,2 has no use for q[3]. Both effects are quite common and can be used to speed things
up.

CS 6140 Data Mining; Spring 2017 Instructor: Jeff M. Phillips, University of Utah


