L22: Markov Chains

Jeff M. Phillips

April 9, 2018

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Markov Chain : Life Lessons (ergodic)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Markov Chain : Life Lessons

 [L1] Only your current position matters going forward, don't worry about the past.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Markov Chain : Life Lessons

- [L1] Only your current position matters going forward, don't worry about the past.
- [L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Markov Chain : Life Lessons

- [L1] Only your current position matters going forward, don't worry about the past.
- [L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

• [L3] In the limit, everyone has perfect karma.

Graphs

Mathematically: G = (V, E) where

$$V = \{a, b, c, d, e, f, g\} \text{ and}$$
$$E = \left\{\{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{c, e\}, \{e, f\}, \{e, g\}, \{f, g\}, \{f, h\}\right\}$$

.

Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise. (For a directed graph, it may not be symmetric).

		а	b	с	d	е	f	g	h		(0	1	1	1	0	Δ	0	0)
<i>G</i> =	а	0	1	1	1	0	0	0	0			1	1	1	0	0	0	$\binom{0}{2}$
	b	1	0	0	1	0	0	0	0			0	0	1	0	0	0	
	c	1	0	0	1	1	0	0	0				0	T	T	0	0	0
	d	1	1	1	<u> </u>	n	ñ	0 0	ñ	_	1	1	1	0	0	0	0	0
	u		1	1	0	0	1	1	0	_	0	0	1	0	0	1	1	0
	е	0	0	T	0	U	T	T	0		0	0	0	0	1	0	1	1
	f	0	0	0	0	1	0	1	1			0	0	0	1	1	0	
	g	0	0	0	0	1	1	0	0			0	0	0	0	1	0	
	h	0	0	0	0	0	1	0	0		(0	U	⊐⊾	∪ ∢ ₫ >	U	L E F A	U ≣⊧⊧	0 /

Markov Chain

$$q_1 = Pq = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}'.$$

$$P = \begin{pmatrix} 0 & 1/2 & 1/3 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 1/2 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 0 & 1/2 & 1 \\ 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 \end{pmatrix} \text{ and } q^{T} = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^{T}.$$

$$q_{1} = Pq = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}^{T}.$$

$$q_{2} = Pq_{1} = \frac{PPq}{\sqrt{2}} = \begin{bmatrix} \frac{1}{2} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 \end{bmatrix}^{T}.$$

<□ > < @ > < E > < E > E のQ @

$$P = \begin{pmatrix} 0 & 1/2 & 1/3 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 1/2 & 1/3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ \end{pmatrix} \text{ and } q^{T} = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^{T}.$$
$$q_{1} = Pq = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}^{T}.$$
$$q_{2} = Pq_{1} = PPq = P^{2}q = \begin{bmatrix} \frac{1}{2} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 \end{bmatrix}^{T}.$$
$$q_{3} = Pq_{2} = \begin{bmatrix} \frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} & 0 & 0 & 0 \end{bmatrix}^{T}.$$

<□ > < @ > < E > < E > E のQ @

In the limit: $q_n = P^n q$

8x eregodic

[L1] Only your current position matters going forward, don't worry about the past.

Two wass to think shout M(

(Z) Probability Distributeer maintair 8 can be dense. 8

n states (2) takes O(n) space (1) takes O(log n) space

Cyclic Examples

alterate Arren : MC at fixed epoch of site P22 $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$ $\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)$ $\begin{pmatrix} 0 & 1/2 & 1/2 & 1/2 & 1/2 \\ 1/4 & 0 & 0 & 0 & 0 \\ 1/4 & 0 & 0 & 0 & 0 \\ 1/4 & 0 & 0 & 0 & 0 \\ 1/4 & 0 & 0 & 0 & 0 \\ 0 & 1/2 & 1/2 & 1/2 & 1/2 \end{pmatrix}$ 0 1/40 ・ロト ・聞ト ・ヨト ・ヨト æ

Unconnected Examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Limiting State

$$M(is ergodi(if if if))$$

$$is not @cgclic, @hourg
absorbing and translent
Let $P^* = P^n as n \to \infty$. States, and @ "Connected
Let $q_* = P^*q$.

$$M(is ergodi(if))$$

$$States, and @ "Connected"$$

$$Let q_* = P^*q$$

$$M(is ergodi(if))$$

$$M(is ergodi(i$$$$

◆□ ▶ ◆■ ▶ ◆ ■ ◆ ● ◆ ● ◆ ● ◆

Limiting State

Let
$$P^* = P^n$$
 as $n \to \infty$.
Let $q_* = P^*q$.

[L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Delicate Balance

Let
$$P^*=P^n$$
 as $n o\infty$.
Let $q_*=P^*q$.
Also $q_*=PP^*q$ thus $q_*=Pq_*$.

So the probability of (being in a state i and leaving to j) is the same as (being in another state j and arriving in i)

Delicate Balance

Let
$$P^* = P^n$$
 as $n \to \infty$.
Let $q_* = P^*q$.
Also $q_* = PP^*q$ thus $q_* = Pq_*$.

So the probability of (being in a state i and leaving to j) is the same as (being in another state j and arriving in i)

$$P_{i,j}q_*(i) = P_{j,i}q_*(j)$$

[L3] In the limit, everyone has perfect karma.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example Graph $g_{\star} = (0.15, 0.1, 0.15, 0.15, 0.15, 0.15, 0.15, 0.1, 0.05)$ $q \qquad C \qquad Q \qquad f$ × × (f)

Metropolis Algorithm

Metropolis Algorithm

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953

$$\begin{array}{c} \underline{\mathsf{Metropolis on } V \text{ and } w} \\ \underline{\mathsf{Metropolis on } V \text{ and } w} \\ \underline{\mathsf{Initialize } v_0 = [0 \ 0 \ 0 \ \dots \ 1 \ \dots \ 0 \ 0]^T}. \\ \mathbf{repeat} \\ \underline{\mathsf{Generate } u \sim K(v, \cdot) = 2} \\ \underline{\mathsf{Generate } u \sim K(v, \cdot) = 2} \\ \mathbf{if } (w(u) \geq w(v_i)) \text{ then} \\ \underline{\mathsf{Set } v_{i+1} = u} \\ \mathbf{else} \\ \underline{\mathsf{Nith probability } w(u)/w(v) \text{ set } v_{i+1} = u} \\ \mathbf{else} \\ \underline{\mathsf{Set } v_{i+1} = v_i} \\ \underline{\mathsf{until "converged"}} \\ \mathbf{return } V = \{v_1, v_2, \dots, \} \\ \mathbf{V}_{\mathsf{In}} \\ \mathbf{cs } n = \infty \\ \mathbf{C} \left[\mathbf{V}_{\mathsf{In}} \right] = \underbrace{\mathsf{W}(v_{\mathsf{In}})}_{\mathsf{In}} \\ \mathbf{cs } n = \infty \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{cs } n = \infty \\ \mathbf{cs } n = \infty$$