L22: Markov Chains

Jeff M. Phillips

April 9, 2018

Markov Chain: Life Lessons (ergodic)

Markov Chain: Life Lessons

- [L1] Only your current position matters going forward, don't worry about the past.

Markov Chain: Life Lessons

- [L1] Only your current position matters going forward, don't worry about the past.
- [L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

Markov Chain: Life Lessons

- [L1] Only your current position matters going forward, don't worry about the past.
- [L2] You just need to worry about one step at a time; you will get there eventually (or you won't).
- [L3] In the limit, everyone has perfect karma.

Graphs

Mathematically: $G=(V, E)$ where

$$
\begin{aligned}
V & =\{a, b, c, d, e, f, g\} \text { and } \\
E & =\{\{a, b\},\{a, c\},\{a, d\},\{b, d\},\{c, d\},\{c, e\},\{e, f\},\{e, g\},\{f, g\},\{f, h\}\} .
\end{aligned}
$$

Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise.
(For a directed graph, it may not be symmetric).
$G=\left|\begin{array}{l|llllllll} & a & b & c & d & e & f & g & h \\ \hline a & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ b & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ c & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ d & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ e & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ f & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ g & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ h & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right|=\left(\begin{array}{llllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$

Markov Chain

$(V, P, q): V$ node set, P probability transition matrix, q initial state.
 $P \xlongequal{1 / 2 / 2} 1\left(\begin{array}{cccccccc}0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\ 1 / 4 / 3) & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\ 1(1 / 3) & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\ 1 / 3) & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\ 0 & 0 & 0 & 0 & 1 / 3 & 0 & \frac{1 / 2}{1 / 2} & 1 \\ 0 & 0 & 0 & 0 & 1 / 3 & 11 / 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0\end{array}\right) \xlongequal[g]{ }$

Transitions

$$
\begin{gathered}
\text { prob } \\
\text { fransituon }\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\\
q_{1}=P q=\left[\begin{array}{cccccccc}
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0
\end{array}\right]^{T} .
\end{gathered}
$$

Transitions

$$
\begin{aligned}
& P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array} 0 \quad 0 \quad 0\right] \\
& q_{1}=P q=\left[\begin{array}{llllllll}
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0
\end{array}\right]^{T} . \\
& q_{2}=P q_{1}=\underset{\sim}{P} \quad \underset{\text { mat } 2 x}{P r} q=\left[\begin{array}{llllllll}
\frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 & 0
\end{array}\right]^{T} .
\end{aligned}
$$

Transitions

$$
\left.\begin{array}{c}
P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{array}\right] .
$$

Transitions

$$
\begin{aligned}
& P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& q_{1}=P q=\left[\begin{array}{llllllll}
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0
\end{array}\right]^{T} . \\
& q_{2}=P q_{1}=P P q=P^{2} q=\left[\begin{array}{llllllll}
\frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 & 0
\end{array}\right]^{T} \text {. } \\
& q_{3}=P q_{2}=\left[\begin{array}{llllllll}
\frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} & 0 & 0 & 0
\end{array}\right]^{T} .
\end{aligned}
$$

In the limit: $q_{n}=P^{n} q$

$$
q * e \operatorname{crgod} c
$$

Transitions

$$
\left.\begin{array}{c}
P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array} 0\right.
\end{array}\right]
$$

[L1] Only your current position matters going forward, don't worry about the past.

Two wags to thints soot $M C$
(1) Random walk. Matropolis of always $[0,0 \ldots 1,0,0]$ Agorithm exactly on one vertex)
(2) Probabilits Distributoon
8 can be douse.
n states (2) tobes $O(n)$ spaca
(1) tebes $O(\operatorname{los} n)$ space

Cyclic Examples : MC altusate batweren stites of Frxid epoch of site P32

$$
\left(\begin{array}{lll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Absorbing and Transient Examples

Unconnected Examples

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { (b) } \\
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\left(\begin{array}{cccccc}
1 / 2 & 1 / 2 & 0 & 0 & 0 & 0 \\
1 / 2 & 1 / 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 1 / 2 & 1 / 3 & 0 \\
0 & 0 & 1 / 3 & 0 & 1 / 3 & 0 \\
0 & 0 & 1 / 3 & 1 / 2 & 1 / 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

$$
\mathscr{\varnothing}
$$

Limiting State
$M C$ is ergodic if it is not ©cgalic, ehhoirg ab sorbing and transient
Let $P^{*}=P^{n}$ as $n \rightarrow \infty$. states, and (3) "connector.
Let $q_{*}=P^{*} q$.
independent of 8 Ls for onus initial 8

Limiting State

$$
\begin{aligned}
& \text { Let } P^{*}=P^{n} \text { as } n \rightarrow \infty \text {. } \\
& \text { Let } q_{*}=P^{*} q \text {. }
\end{aligned}
$$

[L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

Delicate Balance

Let $P^{*}=P^{n}$ as $n \rightarrow \infty$.
Let $q_{*}=P^{*} q$.
Also $q_{*}=P \underline{P^{*} q}$ thus $q_{*}=P q_{*}$.
So the probability of (being in a state i and leaving to j) is the same as (being in another state j and arriving in i)

Delicate Balance

Let $P^{*}=P^{n}$ as $n \rightarrow \infty$.
Let $q_{*}=P^{*} q$.
Also $q_{*}=P P^{*} q$ thus $q_{*}=P q_{*}$.
So the probability of (being in a state i and leaving to j) is the same as (being in another state j and arriving in i)

$$
P_{i, j} q_{*}(i)=P_{j, i} q_{*}(j)
$$

[L3] In the limit, everyone has perfect karma.

How 6* relates to P
La lost cigenuecton of P.
$[v, L]=\operatorname{eig}(P)<m$ matlab
ristytors vies

$$
\frac{V_{1}}{\sin \left(v_{1}\right)}=q_{*}
$$

Ind eigenuduc sum $\left(\omega_{1}\right) \quad \lambda_{2} \quad$ (set $\lambda_{1}=1$)
Tells haw fast converse.
smaller $\lambda_{2} \rightarrow$ fester convergence.

$$
\frac{\lambda_{2}}{\lambda_{1}} \quad \text { Example } \quad \lambda_{2}=0.875
$$

Example Guph

$$
q_{*}=\begin{array}{ccc}
(0.15, & 0.1,0.15,0.15, & 0.15,0.15,0.1,0.05 \\
a & c d e
\end{array}
$$

Metropolis Algorithm

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953
Set \& states $V\left\{[0], \mathbb{R}^{d},[0,1]^{d}\right\}$ \rightarrow can evacuate $\omega(v)$ fo $v \in V$

$$
\begin{aligned}
& \operatorname{Prob}[v \in V] \approx w(v)
\end{aligned}
$$

Metropolis Algorithm

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953

Metropolis on V and w $\iota^{\text {exactly }} 1$ stan Initialize $v_{0}=\left[\begin{array}{llllllll}0 & 0 & 0 & \ldots & 1 & \ldots & 0 & 0\end{array}\right]^{T}$.
repeat
Generate $u \sim K(v, \cdot)=e^{-\|v, v\|^{2}}$

if $\left(w(u) \geq w\left(v_{i}\right)\right)$ then Set $v_{i+1}=u$
else
With probability $w(u) / w(v)$ set $v_{i+1}=u \quad$ aver abe else

$$
\text { Set } v_{i+1}=v_{i}
$$

until "converged"
burning
return $V=\left\{v_{1}, v_{2}, \ldots,\right\}$

$$
\begin{aligned}
& V_{n} \text { as } \operatorname{lin}_{n}\left[v_{n}\right]=\frac{\omega\left(v_{n}\right)}{v_{n}}
\end{aligned}
$$

.
. V
V000

