
Asmt 6: Regression
Turn in through Canvas by 2:45pm:

Wednesday, March 27
100 points

Overview
In this assignment you will explore regression techniques on high-dimensional data.

You will use a few data sets for this assignment:

• http://www.cs.utah.edu/˜jeffp/teaching/cs5140/A6/X.dat
• http://www.cs.utah.edu/˜jeffp/teaching/cs5140/A6/Y.dat
• http://www.cs.utah.edu/˜jeffp/teaching/cs5140/A6/M.dat
• http://www.cs.utah.edu/˜jeffp/teaching/cs5140/A6/W.dat

These data sets are in matrix format and can be loaded into MATLAB or OCTAVE. By calling
load filename (for instance load X.dat)
it will put in memory the data in the file, for instance in the above example the matrix X. You can then
display this matrix by typing
X

For python, you can for instance use the following approach:

As usual, it is highly recommended that you use LaTeX for this assignment. If you do not, you may
lose points if your assignment is difficult to read or hard to follow. Find a sample form in this directory:
http://www.cs.utah.edu/˜jeffp/teaching/latex/

1 Linear Regression (75 points)
We will find coefficients A to estimate X*A ≈ Y, using the provided datasets X and Y. We will compare
two approaches least squares and ridge regression.

Least Squares: Set A = inverse(X’ * X)*X’*Y

Ridge Regression: Set As = inverse(X’*X + sˆ2*eye(15))*X’*Y

A (30 points): Solve for the coefficients A (or As) using Least Squares and Ridge Regression with
s = {1, 5, 10, 15, 20, 25, 30} (i.e. s will take on one of those 7 values each time you try, say obtaining A05
for s = 5). For each set of coefficients, report the error in the estimate Ŷ of Y as norm(Y - X*A,2).
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B (30 points): Create three row-subsets of X and Y

• X1 = X(1:66,:) and Y1 = Y(1:66)

• X2 = X(34:100,:) and Y2 = Y(34:100)

• X3 = [X(1:33,:); X(67:100,:)] and Y3 = [Y(1:33); Y(67:100)]

Repeat the above procedure on these subsets and cross-validate the solution on the remainder of X and
Y. Specifically, learn the coefficients A using, say, X1 and Y1 and then measure norm(Y(67:100) -
X(67:100,:)*A,2).

C (15 points): Which approach works best (averaging the results from the three subsets): Least Squares,
or for which value of s using Ridge Regression?

2 Orthogonal Matching Pursuit (25 points)
Consider a linear equation W = M*Swhere M is a measurement matrix filled with random values {−1, 0,+1}
(although now that they are there, they are no longer random), and W is the output of the sparse signal S
when measured by M.

Use Orthogonal Matching Pursuit (as described in the notes as Algorithm 18.2.1) to recover the non-zero
entries from S. Record the order in which you find each entry and the residual vector after each step.

BONUS: L1 ball geometry (2 points)
In class we examined pictures of L1-balls in R2, but in higher dimensions their geometry is more wild. Its
boundary has ”facets” of k-dimensions for each k ∈ {0, . . . , d}, these are linear subspaces of of rank k.

As a function of d and k, derive how many different facets there are of k-dimensions when on the boundary
of L1-balls in Rd. Explain how you derive your answer.
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