# L22: Markov Chains

#### Jeff M. Phillips

April 8, 2019

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

# L22: Markov Chains

#### Jeff M. Phillips

April 8, 2019

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

<ロ> <@> < E> < E> E のQの

 [L1] Only your current position matters going forward, don't worry about the past.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- [L1] Only your current position matters going forward, don't worry about the past.
- [L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- [L1] Only your current position matters going forward, don't worry about the past.
- [L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

• [L3] In the limit, everyone has perfect karma.

Graphs



Mathematically: G = (V, E) where

 $V = \{a, b, c, d, e, f, g\} \text{ and}$  $E = \left\{\{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{c, e\}, \{e, f\}, \{e, g\}, \{f, g\}, \{f, h\}\right\}.$ 

**Matrix-Style:** As a matrix with 1 if there is an edge, and 0 otherwise. (For a directed graph, it may not be symmetric). As  $\mathbf{k}$ 

|            |   | L .      | 1        |          |   |          | c |   | 1        | 1 |     |                         | $\wedge$     | r   | -                       |      |     |       |
|------------|---|----------|----------|----------|---|----------|---|---|----------|---|-----|-------------------------|--------------|-----|-------------------------|------|-----|-------|
|            |   | а        | D        | С        | а | е        | T | g | n        |   | ( ) | 1                       | $ _1\rangle$ | 1   | Ο                       | Ο    | Ο   | 0 \   |
| <i>G</i> = | а | 0        | 1        | 1        | 1 | 0        | 0 | 0 | 0        |   |     | T                       |              | 1   | 0                       | 0    | 0   |       |
|            | h | 1        | Δ        | Δ        | 1 | Δ        | Δ | Δ | Δ        |   |     | 0                       | 0            | 1   | 0                       | 0    | 0   | 0     |
|            | D | L T      | 0        | 0        | Т | 0        | 0 | 0 | 0        |   |     | 0                       | 0            | 1   | 1                       | 0    | 0   | 0     |
|            | С | 1        | 0        | 0        | 1 | 1        | 0 | 0 | 0        |   |     | 1                       | 1            | 5   | ~                       | õ    | õ   |       |
|            | d | 1        | 1        | 1        | Ω | Ω        | Ω | Ω | Ω        | _ | 1   | T                       | 1            | μ   | 0                       | 0    | 0   | 0     |
|            | u | 1        | 1        | 1        | 0 | 0        | 0 | 0 | 0        | _ | 0   | 0                       | 1            | 0   | 0                       | 1    | 1   | 0     |
|            | е | 0        | 0        | 1        | 0 | 0        | 1 | 1 | 0        |   |     | 0                       | 0            | 0   | 1                       | Δ    | 1   | 1     |
|            | f |          | Ο        | 0        | 0 | 1        | Ο | 1 | 1        |   |     | U                       | 0            | U   | Т                       | U    | Т   | - I   |
|            | ' |          | ~        | ~        | ~ | -        | - | - | -        |   | 0   | 0                       | 0/           | 0   | 1                       | 1    | 0   | 0     |
|            | g | 0        | 0        | 0        | 0 | 1        | 1 | 0 | 0        |   |     | Δ                       |              | Δ   | Δ                       | 1    | Δ   |       |
|            | h | 0        | 0        | 0        | 0 | 0        | 1 | 0 | 0        |   |     | 0                       | V            | U   | 0                       | T    | U   | 0/    |
|            |   | <u> </u> | <u> </u> | <u> </u> |   | <u> </u> | - |   | <u> </u> |   |     | <ul> <li>• •</li> </ul> | • • •        | ₽ > | <ul> <li>4 3</li> </ul> | È► 4 | -≣≯ | 三 臣 、 |

 $g_{i} \geq 0$   $\xi_{i} = g_{i} = 1$ Markov Chain 10/2a edges (d) 3 0% h 60 %0 V node set P probability transition matrix q initial state, e.g.  $q^T = [0,1] 0 0 0 0 0 0]$  or  $q^T = [0.1,0,0,0.3,0,0.6,0,0]$ . E t t 1/2 0 1/31/30 0 0 0  $P_i =$ 0 1/30 0 0 0 A: IlAily 1/3 1/3 0 0 1/31/30 0 0 1/21/30 0 0 0 0  $P \equiv$ 0 0 0 1/30 1/31/20 0 0 0 1/31 0 1/20  $P_{ij} = 0$  $P_{ij} = 1$ 0 0 0 1/30 1/30 0 0 0 0 0 0 0 0 1/3normalized 1000 Coloma э イロト イポト イヨト イヨト

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のみの

T

$$P = \begin{pmatrix} 0 & 1/2 & 1/3 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 1/2 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 0 & 1/2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/3 & 0 & 0 \end{pmatrix} \text{ and } q^{T} = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^{T}.$$
$$q_{1} = Pq = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}^{T}.$$
$$q_{2} = Pq_{1} = PPq = P^{2}q = \begin{bmatrix} \frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 \end{bmatrix}^{T}.$$

<□ > < @ > < E > < E > E のQ @

$$P = \begin{pmatrix} 0 & 1/2 & 1/3 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 1/2 & 1/3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 \\ \end{pmatrix} \text{ and } q^{T} = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^{T}.$$
$$q_{1} = Pq = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}^{T}.$$
$$q_{2} = Pq_{1} = PPq = P^{2}q = \begin{bmatrix} \frac{1}{2} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 \end{bmatrix}^{T}.$$
$$q_{3} = Pq_{2} = \begin{bmatrix} \frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} & 0 & 0 & 0 \end{bmatrix}^{T}.$$

<□ > < @ > < E > < E > E のQ @

$$P = \begin{pmatrix} 0 & 1/2 & 1/3 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 1/3 & 1/2 & 1/3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}^{T}$$

$$q_{1} = Pq = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \end{bmatrix}^{T}$$

$$q_{2} = Pq_{1} = PPq = P^{2}q = \begin{bmatrix} \frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 & 0 \end{bmatrix}^{T}$$

$$q_{3} = Pq_{2} = \begin{bmatrix} \frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} & 0 & 0 & 0 \end{bmatrix}^{T}$$
In the limit:  $q_{n} = P^{n}q$ 

$$q_{3} = N^{n}q$$

andin 9

$$P = \begin{pmatrix} 0 & 1/2 & 1/3 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 0 & 0 & 1/3 & 1/3 & 0 & 0 & 0 & 0 \\ 1/3 & 1/2 & 1/3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 0 & 0 & 1/3 & 1/2 & 0 \\ 0 & 0 & 0 & 0 & 1/3 & 0 & 1/2 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1/3 & 0 & 0 \end{pmatrix} \text{ and } q^{T} = [0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \end{bmatrix}^{T}.$$
$$q_{1} = Pq = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \end{bmatrix}^{T}.$$
$$q_{2} = Pq_{1} = PPq = P^{2}q = \begin{bmatrix} \frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 \end{bmatrix}^{T}.$$
$$q_{3} = Pq_{2} = \begin{bmatrix} \frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} & 0 & 0 \end{bmatrix}^{T}.$$

In the limit:  $q_n = P^n q$ 

[L1] Only your current position matters going forward, don't worry about the past.

1 XI (s Two Presperdives

a random walk ench state g is not exactle 1 location.

· probability distribution on oandour walk

 $gi \in O_n$ 

treeps track & parobabslity & randma malk.

Vin Ke tim: 1" **Cyclic Examples** Ineed rergodic"  $\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$  $\left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array}\right)$ 1/4 0 0 0 0 1/41/2 1/2 1/2 0 1/20

イロト 不得 とくほ とくほ とうほう

bipardule Graph

#### Absorbing and Transient Examples 44/100 $\left(\begin{array}{cc} 1/2 & 0\\ 1/2 & 1 \end{array}\right)$ ... ۲r2 $\left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$ 0 0 0 0 1/20 $49/100^{1}$ 0 1/4 1/4 1/4 1/4 1/41/4 1/4 1/4 0 0 0 0 1/41/41/4 1/4n 0 1/4 1/41/4 1/4 absorbing

<ロト <回ト < 注ト < 注ト

э

| Unconnected Example                               | es                                                                                                       |     |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----|
|                                                   |                                                                                                          |     |
| <u>C</u> C                                        | $\left(\begin{array}{cc}1&0\\0&1\end{array}\right)$                                                      |     |
|                                                   | $\left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right)$                                     |     |
|                                                   | $\left(\begin{array}{ccc}1&0&0\\0&0&1\end{array}\right)$                                                 | E R |
| ergodic $\begin{pmatrix} 1/2\\ 1/2 \end{pmatrix}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                     |     |
| - not cyclic 0                                    | $\begin{array}{c ccccc} 0 & 1/3 & 1/2 & 1/3 \\ 0 & 1/3 & 0 & 1/3 \\ 0 & 1/2 & 1/2 & 1/2 \\ \end{array} $ |     |
| - vo teanslept                                    | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                       |     |
| - convected                                       |                                                                                                          | (₹) |

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Assume ergodic Limiting State

Let 
$$P^* = P^n$$
 as  $n \to \infty$ .  
Let  $q_* = P^*q$ . In general  
not  $q_* = (\frac{1}{n}, \frac{1}{n}, \dots, \frac{1}{n})$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

## Limiting State

Let  $P^* = P^n$  as  $n \to \infty$ . Let  $q_* = P^*q$ .

> [L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

ton if not ergodit

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

#### **Delicate Balance**



## **Delicate Balance**

Let 
$$P^* = P^n$$
 as  $n \to \infty$ .  
Let  $q_* = P^*q$ .  
Also  $q_* = PP^*q$  thus  $q_* = Pq_*$ .

So the probability of (being in a state i and leaving to j) is the same as (being in another state j and arriving in i)

$$P_{i,j}q_*(i) = P_{j,i}q_*(j)$$

[L3] In the limit, everyone has perfect karma.



Calculate gx • g\* = for i=1 to T (power method) g = Fg mat-vec  $P^{2}$   $P^{2} = (P^{2}) \cdot (P^{2})$  $5^{mo} = f_{u,s}^{conder}$  $\int (z_1 z) = \lambda_z$ log T metrox molt. · 8x = Run T random maltes - 8x = Acke average state. [Iv,L] = cis(P) $v_{1} = V(\cdot, 1)_{1}^{2}$ · 8x = Grost eigenvector of P. Ex= VI (Sum(U,)



Metropolis Algorithm

SGikks Simpling

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953

# Metropolis Algorithm

