L22: Markov Chains

Jeff M. Phillips

April 8, 2019

L22: Markov Chains

Jeff M. Phillips

April 8, 2019

Markov Chain: Life Lessons

Markov Chain: Life Lessons

- [L1] Only your current position matters going forward, don't worry about the past.

Markov Chain: Life Lessons

- [L1] Only your current position matters going forward, don't worry about the past.
- [L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

Markov Chain: Life Lessons

- [L1] Only your current position matters going forward, don't worry about the past.
- [L2] You just need to worry about one step at a time; you will get there eventually (or you won't).
- [L3] In the limit, everyone has perfect karma.

Graphs

Mathematically: $G=(V, E)$ where
$V=\{a, b, c, d, e, f, g\}$ and
$E=\{\{a, b\},\{a, c\},\{a, d\},\{b, d\},\{c, d\},\{c, e\},\{e, f\},\{e, g\},\{f, g\},\{f, h\}\}$.
Matrix-Style: As a matrix with 1 if there is an edge, and 0 otherwise.
(For a directed graph, it may not be symmetric).

$$
G=\left(\begin{array}{lllllllll}
& a & b & c & d & e & f & g & h \\
a & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
b & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
c & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
d & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
e & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
f & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
g & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
h & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)=\left(\begin{array}{llllll}
0 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Transitionsin@

Transitions

$$
\begin{aligned}
& P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array} 0 \quad 0 \quad 0\right] \\
& q_{1}=P q=\left[\begin{array}{llllllll}
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0
\end{array}\right]^{T} . \\
& q_{2}=P q_{1}=P P q=P^{2} q=\left[\begin{array}{llllllll}
\frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 & 0
\end{array}\right]^{T} .
\end{aligned}
$$

Transitions

$$
\left.\begin{array}{c}
P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{array}\right] .
$$

Transitions

$$
\begin{aligned}
& P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& q_{1}=P q=\left[\begin{array}{llllllll}
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0
\end{array}\right]^{T} . \\
& q_{2}=P q_{1}=P P q=P^{2} q=\left[\begin{array}{llllllll}
\frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 & 0
\end{array}\right]^{T} . \\
& q_{3}=P q_{2}=\left[\begin{array}{llllllll}
\frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} & 0 & 0 & 0
\end{array}\right]^{T} .
\end{aligned}
$$

In the limit: $q_{n}=P^{n} q$

$$
\text { as } n \rightarrow \infty \quad \text { (need conditions) }
$$

Transitions

$$
\begin{gathered}
P=\left(\begin{array}{cccccccc}
0 & 1 / 2 & 1 / 3 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 & 0 \\
1 / 3 & 1 / 2 & 1 / 3 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 & 0 & 1 / 3 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 \\
0 & 0 & 0 & 0 & 1 / 3 & 1 / 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 3 & 0 & 0
\end{array}\right) \text { and } q^{T}=\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
q_{1}=P q=\left[\begin{array}{llllllll}
\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0
\end{array}\right]^{T} . \\
q_{2}=P q_{1}=P P q=P^{2} q=\left[\begin{array}{llllllll}
\frac{1}{6} & \frac{2}{6} & \frac{2}{6} & \frac{1}{6} & 0 & 0 & 0 & 0
\end{array}\right]^{T} . \\
q_{3}=P q_{2}
\end{gathered}=\left[\begin{array}{llllllll}
\frac{1}{3} & \frac{1}{9} & \frac{1}{9} & \frac{1}{3} & \frac{1}{9} & 0 & 0 & 0
\end{array}\right]^{T} .
$$

In the limit: $q_{n}=P^{n} q$
[L1] Only your current position matters going forward, don't worry about the past.

Two Perspertives of X Cs

- random walr
euch state q is at exactly 1 locatton.
- probubilits distrabuton on random zalta

$$
q_{i} \in \Delta_{n}
$$

Keeps teack of parobability of randum mals.

Cyclic Examples
'in SC tim: $f^{\prime \prime}$
Eneed rergodic"
(a) (b)

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

(a) b

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

(c)
bipartite graph

Absorbing and Transient Examples

Unconnected Examples

$$
\text { ergodic }\left(\begin{array}{llll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Limiting State Assume ergodic

Let $P^{*}=P^{n}$ as $n \rightarrow \infty$.
Let $q_{*}=P^{*} q$. \lessdot in general, not uniform not $q_{*}=\left[\frac{1}{n}, \frac{1}{n}, \ldots \frac{1}{n}\right]$

Limiting State

$$
\begin{aligned}
& \text { Let } P^{*}=P^{n} \text { as } n \rightarrow \infty \text {. } \\
& \text { Let } q_{*}=P^{*} q \text {. }
\end{aligned}
$$

[L2] You just need to worry about one step at a time; you will get there eventually (or you won't).

Delicate Balance

Let $P^{*}=P^{n}$ as $n \rightarrow \infty$.
Let $q_{*}=P^{*} q$.
if q close to
Also $q_{*}=P P^{*} q$ thus $q_{*}=P q_{*}$.
q*, needs fewer steps.
So the probability of (being in a state i and leaving to j) is the same as (being in another state j and arriving in i)

Delicate Balance

Let $P^{*}=P^{n}$ as $n \rightarrow \infty$.
Let $q_{*}=P^{*} q$.
Also $q_{*}=P P^{*} q$ thus $q_{*}=P q_{*}$.

So the probability of (being in a state i and leaving to j) is the same as (being in another state j and arriving in i)

$$
P_{i, j} q_{*}(i)=P_{j, i} q_{*}(j)
$$

[L3] In the limit, everyone has perfect karma.

$$
\text { Calculate } q_{*}
$$

- $q_{*}=$ for $i=1$ to $T \quad$ (power method)
$q=\nabla q$ mat-vec

$$
\text { - } q_{*}=P^{\top}=\frac{P \cdot P}{P^{2}} \cdot \cdots \cdot D
$$

$$
P^{2} P^{2}=\left(P^{2}\right) \cdot\left(P^{2}\right)
$$

$$
p^{8}=\left(p^{4}\right)\left(p^{2}\right)
$$

$\log T$ matiox molt.

- $q_{x}=R_{u_{n}} T$ sandon waltes
\rightarrow toke average stete.
- $q_{x}=$ fiost eisen vector of P.

$$
\begin{aligned}
& {[v, L]=\operatorname{cis}(P)} \\
& v x=v(:, 1) ; \\
& q_{x}=v\left(\operatorname{sum}\left(v_{1}\right)\right.
\end{aligned}
$$

Example graph

$$
q_{x}=\left(\begin{array}{ccccccc}
a & b & c & d & e & f & y \\
\text { l } \\
0.15, & 0.1
\end{array}, 0.15,0.15,0.15,0.15,0.1,0.05\right)
$$

drontzards? walt

Metropolis Algorithm

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953

Metropolis Algorithm

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller in 1953

repeat
\quad Generate $u \sim K(v, \cdot)$ geoss nenolou
shide u
if $\left(w(u) \geq w\left(v_{i}\right)\right)$ then Set $v_{i+1}=u$
else
With probability $w(u) / w(v)$ set $v_{i+1}=u$
else
Set $v_{i+1}=v_{i}$
until "converged"
return $V=\left\{v_{1}, v_{2}, \ldots,\right\} \approx \omega$

