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What is Data Mining?

» Finding structure in data?
» Machine learning on large data?
> Unsupervised learning?

» Large scale computational statistics?

» How to think about data analytics.

> Principals of converting from messy raw data to abstract
representations.

» Algorithms of how to analyze data in abstract representations.

> Addressing challenges in scalability, error, and modeling.



Modeling versus Efficiency

Two Intertwined (and often competing) Objectives:
» Model Data Correctly
» Process Data Efficiently
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Maths: Linear Algebra, Probability, High-dimensional geometry



Classic (Old) View of Data Mining

labeled
data

unlabeled
data

(X, y) =

X =

regression | classification
dimensionality .

reduction Clustering

scalar set
outcome outcome

C—> prediction

—> structure



Outline

Statistical and Mathematical Principals:

» 1. Hashing, Concentration of Measure

» 2. Similarity (find duplicates and similar items)
Structure in Data:

» 3. Clustering (aggregate close items)

» 4. Regression (linearity of high-d data, sparsity)

» 5. Dimensionality Reduction (PCA, embeddings)

» 7. Link Analysis (prominent structure in large graphs)
Controlling for Noise and Uncertainty:

» 6. Noisy Data (anomalies in data, ethics, privacy)
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> When do items collide?
» When do you see all items?

» When is the distribution almost uniform?




Statistical Principals
What happens as data is generated with replacement
{IP addresses, words in dictionary, edges in graph, hash table}
> When do items collide?
» When do you see all items?

» When is the distribution almost uniform?

m
T T T T T T T T T T T T T T TN TN TN T T T T T T I T T NI TITTITIT1]




Statistical Principals
What happens as data is generated with replacement
{IP addresses, words in dictionary, edges in graph, hash table}
» When do items collide?
» When do you see all items?

» When is the distribution almost uniform?

]
[1TT]

]

l

[T
[TTTTT]

l

|
111
[ 1]

|

s
[TT

11T




Statistical Principals
What happens as data is generated with replacement

{IP addresses, words in dictionary, edges in graph, hash table}

» When do items collide?
» When do you see all items?
» When is the distribution almost uniform?




Raw Data to Abstract Representations

How to measure similarity between data?
Key idea: data — point
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Similarity

Given a large set of data P.
Given new point g, is g in P?

Given a large set of data P.
Given new point g, what is the closest point in P to g7




Clustering

How to find groups of similar data.
» do we need a representative?
> can groups overlap?
» what is structure of data/distance?



Clustering

How to find groups of similar data.

>

>

>

do we need a representative?
can groups overlap?

what is structure of data/distance?

Hierarchical clustering : When to combine groups?
k-means clustering : k-median, k-center, k-means++

Graph clustering : modularity, spectral
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Regression

Consider a data set P € RY, where d is BIG!
Want to find linear (or polynomial) function that represents P.

degree 3 fit




Regression

Consider a data set P € RY, where d is BIG!
Want to find linear (or polynomial) function that represents P.

degree 3 fit
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» Least Squares : Common easy approach (polynomial,
high-dimensional)

» L; Regression : Sparser, generalizes better, Orthogonal
Matching Pursuit

» Info Recovery : Compressed Sensing



Dimensionality Reduction

Again consider a data set P € RY, where d is BIG!
Want to find linear subspace that represents P.




Dimensionality Reduction

Again consider a data set P € RY, where d is BIG!
Want to find linear subspace that represents P.

Vkl

» SVD : Linear Algebra basis for PCA

» Multidimensional Scaling : Fits sets of distances in R with
k small

» Matrix Sketching: Random Projections, Sampling, FD



Noisy Data

What to do when data is noisy?

» Identify it : Find and remove outliers
» Model it : It may be real, affect answer
» Exploit it : Differential privacy, Ethics of Data Science
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Link Analysis, Graphs

How does Google Search work?

Converts webpage links into directed graph.
» Markov Chains : Models movement in a graph
» PageRank : How to convert graph into important nodes
» MapReduce : How to scale up PageRank

» Communities : Other important nodes in graphs




Summaries

Reducing massive data to small space.
Want to retain as much as possible (not specific structure)
error guarantees
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OnePass Sampling : Reservoir Sampling

MinCount Hash : Sketching data, — abstract features
Density Approximation : Quantiles

Matrix Sketching : Preprocessing complex data

Spanners : graph approximations
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Themes

What are course goals?
> Intuition for data analytics
» How to model data (convert to abstract data types)

» How to process data efficiently (balance models with
algorithms)



