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-------------------------------------------------
Graph G = (E,V)
  V = vertices {a,b,c,d,e,f,g,h}
  E = edges    {(a,b), (a,c), (a,d), (b,d), (c,d), (c,e), (e,f), (e,g), (f,g), 
(f,h)}
      unordered pairs

Draw graph:
  a b c d e f g h
a 0 1 1 1 0 0 0 0
b 1 0 0 1 0 0 0 0
c 1 0 0 1 1 0 0 0
d 1 1 1 0 0 0 0 0
e 0 0 1 0 0 1 1 0
f 0 0 0 0 1 0 1 1
g 0 0 0 0 1 1 0 0
h 0 0 0 0 0 1 0 0

**adjacency matrix**

---------
What are the best 2 clusters of vertices?  

Top-Down Clustering:
 - find best cut into 2 (or more pieces) 
 - recur on pieces

Today we'll mainly talk about finding the one best subset
  S subset V

Vol(S) = # edges with at least one edge in V
Cut(S,T) = # edges with one edge in S, and one in T

normalized cut  NCut(S,T) = Cut(S,T)/Vol(S) + Cut(S,T)/Vol(T)

goal is to find cut with smallest "normalized cut" (S subset P, T = P \ S)
  - other similar measures that are also good.  
  - this one gives small edges split + good balance

S = {h}  ->  NCut = 1/1 + 1/11 = 1.09
S = {e,f,g,h} -> NCut = 2/6 + 2/7 = 0.62

---------------------------------------



Graph as Matrix:

  adjacency matrix:
A = 
  a b c d e f g h
a 0 1 1 1 0 0 0 0
b 1 0 0 1 0 0 0 0
c 1 0 0 1 1 0 0 0
d 1 1 1 0 0 0 0 0
e 0 0 1 0 0 1 1 0
f 0 0 0 0 1 0 1 1
g 0 0 0 0 1 1 0 0
h 0 0 0 0 0 1 0 0

  degree matrix:   "diagonal matrix"
D = 
  a b c d e f g h
a 3 0 0 0 0 0 0 0
b 0 2 0 0 0 0 0 0
c 0 0 3 0 0 0 0 0
d 0 0 0 3 0 0 0 0
e 0 0 0 0 3 0 0 0
f 0 0 0 0 0 3 0 0
g 0 0 0 0 0 0 2 0
h 0 0 0 0 0 0 0 1

Laplacian matrix:
L = D - A = 
   a  b  c  d  e  f  g  h
a  3 -1 -1 -1  0  0  0  0
b -1  2  0 -1  0  0  0  0
c -1  0  3 -1 -1  0  0  0
d -1 -1 -1  3  0  0  0  0
e  0  0 -1  0  3 -1 -1  0
f  0  0  0  0 -1  3 -1 -1
g  0  0  0  0 -1 -1  2  0
h  0  0  0  0  0 -1  0  1

Note that each row and column sums up to 0:  
 - think of D as being flow into a vertex
 - and A as the flow out of the vertex  
(We'll see other useful concepts like this)

------------------------
An *eigenvector* of a matrix M, is a vector v s.t. 
  Mv = lambda*v,
where lambda is a scalar.  lambda is the corresponding "eigenvalue."



  usually restrict that ||x|| = 1

There are several eigenvectors of L (Laplacian):  sort by lambda

lambda  0        .278   1.11  2.31  3.46  4     4.82
----------------------------------------------------
v    1/sqrt(8)   -.36   0.08  0.10  0.28  0.25  1/sqrt(2)
     1/sqrt(8)   -.42   0.18  -.64  -.38  0.25  0
     1/sqrt(8)   -.20   -.11  0.61  0.03  -.25  0
     1/sqrt(8)   -.36   0.08  0.10  0.28  0.25  -1/sqrt(2)
     1/sqrt(8)   0.17   -.37  0.21  -.54  -.25  0
     1/sqrt(8)   0.36   -.08  -.10  -.28  0.75  0
     1/sqrt(8)   0.31   -.51  -.36  0.56  -.25  0
     1/sqrt(8)   0.50   0.73  0.08  0.11  -.25  0

[V,lambda] = eig(L)    in MATLAB or OCTAVE

 ** Smallest eigenvalue of L (any laplacian) is 0.  

 ** Second Smallest eigenvalue/vector is VERY important.  
    - it tells us how to cut the graph
    - it tells us how "best" to put all vertices on a single line
    + in first eigenvector v_2, those < 0 in S, those > 0 in T
      S = {a,b,c,d}   T = {e,f,g,h}
    + can check all cuts by v_2, use one with best NCut 

 ** Third eigenvector v_3 can be used for 4-way cut
    ++ above 0 v_2, above 0 v_3   S = {h}
    +- above 0 v_2, below 0 v_3   T = {e,f,g}
    -+ below 0 v_2, above 0 v_3   U = {a,b,d}
    -- below 0 v_2, above 0 v_3   R = {c}

Tells us how to draw a graph:
  x-axis values along v_2
  y-axis values along v_3
 (scale values by 1/sqrt{lambda_i})

Or: use first k eigenvectors to embed in R^k.  Then run 
   - k-means, or 
   - other Euclidean clustering algorithms.

** The smaller the eigenvalue, the more important the vector.  

** Adjacency matrix does not need to be 0-1.  Can fill with similarity value.  
   - But good to cut off small values at 0, so matrix is "sparse" makes more 
efficient.  


