
L11 -- spectral clustering
[Jeff Phillips - Utah - Data Mining]

Graph G = (E,V)
 V = vertices {a,b,c,d,e,f,g,h}
 E = edges {(a,b), (a,c), (a,d), (b,d), (c,d), (c,e), (e,f), (e,g), (f,g),
(f,h)}
 unordered pairs

Draw graph:
 a b c d e f g h
a 0 1 1 1 0 0 0 0
b 1 0 0 1 0 0 0 0
c 1 0 0 1 1 0 0 0
d 1 1 1 0 0 0 0 0
e 0 0 1 0 0 1 1 0
f 0 0 0 0 1 0 1 1
g 0 0 0 0 1 1 0 0
h 0 0 0 0 0 1 0 0

adjacency matrix

What are the best 2 clusters of vertices?

Top-Down Clustering:
 - find best cut into 2 (or more pieces)
 - recur on pieces

Today we'll mainly talk about finding the one best subset
 S subset V

Vol(S) = # edges with at least one edge in V
Cut(S,T) = # edges with one edge in S, and one in T

normalized cut NCut(S,T) = Cut(S,T)/Vol(S) + Cut(S,T)/Vol(T)

goal is to find cut with smallest "normalized cut" (S subset P, T = P \ S)
 - other similar measures that are also good.
 - this one gives small edges split + good balance

S = {h} -> NCut = 1/1 + 1/11 = 1.09
S = {e,f,g,h} -> NCut = 2/6 + 2/7 = 0.62

Graph as Matrix:

 adjacency matrix:
A =
 a b c d e f g h
a 0 1 1 1 0 0 0 0
b 1 0 0 1 0 0 0 0
c 1 0 0 1 1 0 0 0
d 1 1 1 0 0 0 0 0
e 0 0 1 0 0 1 1 0
f 0 0 0 0 1 0 1 1
g 0 0 0 0 1 1 0 0
h 0 0 0 0 0 1 0 0

 degree matrix: "diagonal matrix"
D =
 a b c d e f g h
a 3 0 0 0 0 0 0 0
b 0 2 0 0 0 0 0 0
c 0 0 3 0 0 0 0 0
d 0 0 0 3 0 0 0 0
e 0 0 0 0 3 0 0 0
f 0 0 0 0 0 3 0 0
g 0 0 0 0 0 0 2 0
h 0 0 0 0 0 0 0 1

Laplacian matrix:
L = D - A =
 a b c d e f g h
a 3 -1 -1 -1 0 0 0 0
b -1 2 0 -1 0 0 0 0
c -1 0 3 -1 -1 0 0 0
d -1 -1 -1 3 0 0 0 0
e 0 0 -1 0 3 -1 -1 0
f 0 0 0 0 -1 3 -1 -1
g 0 0 0 0 -1 -1 2 0
h 0 0 0 0 0 -1 0 1

Note that each row and column sums up to 0:
 - think of D as being flow into a vertex
 - and A as the flow out of the vertex
(We'll see other useful concepts like this)

An *eigenvector* of a matrix M, is a vector v s.t.
 Mv = lambda*v,
where lambda is a scalar. lambda is the corresponding "eigenvalue."

 usually restrict that ||x|| = 1

There are several eigenvectors of L (Laplacian): sort by lambda

lambda 0 .278 1.11 2.31 3.46 4 4.82
--
v 1/sqrt(8) -.36 0.08 0.10 0.28 0.25 1/sqrt(2)
 1/sqrt(8) -.42 0.18 -.64 -.38 0.25 0
 1/sqrt(8) -.20 -.11 0.61 0.03 -.25 0
 1/sqrt(8) -.36 0.08 0.10 0.28 0.25 -1/sqrt(2)
 1/sqrt(8) 0.17 -.37 0.21 -.54 -.25 0
 1/sqrt(8) 0.36 -.08 -.10 -.28 0.75 0
 1/sqrt(8) 0.31 -.51 -.36 0.56 -.25 0
 1/sqrt(8) 0.50 0.73 0.08 0.11 -.25 0

[V,lambda] = eig(L) in MATLAB or OCTAVE

 ** Smallest eigenvalue of L (any laplacian) is 0.

 ** Second Smallest eigenvalue/vector is VERY important.
 - it tells us how to cut the graph
 - it tells us how "best" to put all vertices on a single line
 + in first eigenvector v_2, those < 0 in S, those > 0 in T
 S = {a,b,c,d} T = {e,f,g,h}
 + can check all cuts by v_2, use one with best NCut

 ** Third eigenvector v_3 can be used for 4-way cut
 ++ above 0 v_2, above 0 v_3 S = {h}
 +- above 0 v_2, below 0 v_3 T = {e,f,g}
 -+ below 0 v_2, above 0 v_3 U = {a,b,d}
 -- below 0 v_2, above 0 v_3 R = {c}

Tells us how to draw a graph:
 x-axis values along v_2
 y-axis values along v_3
 (scale values by 1/sqrt{lambda_i})

Or: use first k eigenvectors to embed in R^k. Then run
 - k-means, or
 - other Euclidean clustering algorithms.

** The smaller the eigenvalue, the more important the vector.

** Adjacency matrix does not need to be 0-1. Can fill with similarity value.
 - But good to cut off small values at 0, so matrix is "sparse" makes more
efficient.

