```
L11 -- spectral clustering
[Jeff Phillips - Utah - Data Mining]
```

```
Graph G = (E,V)
    \(V=\) vertices \(\{a, b, c, d, e, f, g, h\}\)
    \(E=\) edges \(\quad\{(a, b),(a, c),(a, d),(b, d),(c, d),(c, e),(e, f),(e, g),(f, g)\),
(f,h) \}
    unordered pairs
```

Draw graph:
a b c defgh
a 01110000
b 10010000
c 10011000
d 11100000
e 00100110
f00001011
g 00001100
h 00000100
adjacency matrix
What are the best 2 clusters of vertices?
Top-Down Clustering:
- find best cut into 2 (or more pieces)
- recur on pieces

Today we'll mainly talk about finding the one best subset S subset V
$\operatorname{Vol}(S)=\#$ edges with at least one edge in V Cut $(S, T)=\#$ edges with one edge in S, and one in T
normalized cut N Cut $(S, T)=\operatorname{Cut}(S, T) / \operatorname{Vol}(S)+\operatorname{Cut}(S, T) / \operatorname{Vol}(T)$
goal is to find cut with smallest "normalized cut" (S subset $\mathrm{P}, \mathrm{T}=\mathrm{P}$ \S)

- other similar measures that are also good.
- this one gives small edges split + good balance
$S=\{h\} \quad->\quad$ NCut $=1 / 1+1 / 11=1.09$
$S=\{e, f, g, h\}->N C u t=2 / 6+2 / 7=0.62$

Graph as Matrix:
adjacency matrix:
$\mathrm{A}=$
$a b c d e f g h$
a 01110000
b 10010000
c 10011000
d 11100000
e 00100110
f00001011
g 00001100
h 00000100
degree matrix: "diagonal matrix"
D =
abcdefgh
a 30000000
b02000000
c 00300000
d00030000
e 00003000
f00000300
g 00000020
h 00000001

Laplacian matrix:
L = D - A =

	a	b	c	d	e	f	g	h
a	3	-1	-1	-1	0	0	0	0
b	-1	2	0	-1	0	0	0	0
c	-1	0	3	-1	-1	0	0	0
d	-1	-1	-1	3	0	0	0	0
e	0	0	-1	0	3	-1	-1	0
f	0	0	0	0	-1	3	-1	-1
g	0	0	0	0	-1	-1	2	0
h	0	0	0	0	0	-1	0	1

Note that each row and column sums up to 0:

- think of D as being flow into a vertex
- and A as the flow out of the vertex
(We'll see other useful concepts like this)

```
An *eigenvector* of a matrix M, is a vector v s.t.
    Mv = lambda*v,
where lambda is a scalar. lambda is the corresponding "eigenvalue."
```

usually restrict that $\|x\|=1$
There are several eigenvectors of L (Laplacian): sort by lambda

lambda 0	. 278	1.11	2.31	3.46	4	4.82
1/sqrt(8)	-. 36	0.08	0.10	0.28	0.25	1/sqrt(2)
1/sqrt(8)	-. 42	0.18	-. 64	-. 38	0.25	0
1/sqrt(8)	-. 20	-. 11	0.61	0.03	-. 25	0
1/sqrt(8)	-. 36	0.08	0.10	0.28	0.25	-1/sqrt(2)
1/sqrt(8)	0.17	-. 37	0.21	-. 54	-. 25	0
1/sqrt(8)	0.36	-. 08	-. 10	-. 28	0.75	0
1/sqrt(8)	0.31	-. 51	-. 36	0.56	-. 25	0
1/sqrt(8)	0.50	0.73	0.08	0.11	-. 25	0

[V,lambda] $=\operatorname{eig}(L) \quad$ in MATLAB or OCTAVE
** Smallest eigenvalue of L (any laplacian) is 0.
** Second Smallest eigenvalue/vector is VERY important.

- it tells us how to cut the graph
- it tells us how "best" to put all vertices on a single line
+ in first eigenvector v _2, those < 0 in S , those > 0 in T $S=\{a, b, c, d\} \quad T=\{e, f, g, h\}$
+ can check all cuts by v_2, use one with best NCut
** Third eigenvector v_3 can be used for 4-way cut
++ above 0 v_2, above 0 v_3 $S=\{h\}$
+- above 0 v_2, below 0 v_3 T = \{e,f,g\}
-+ below 0 v_2, above $0 \vee _3 \quad U=\{a, b, d\}$
-- below 0 v_2, above 0 v_3 $R=\{c\}$
Tells us how to draw a graph:
x-axis values along v_2
y-axis values along v_3
(scale values by $1 /$ sqrt $\{$ lambda_i $\}$)
Or: use first k eigenvectors to embed in $\mathrm{R} \wedge \mathrm{k}$. Then run
- k-means, or
- other Euclidean clustering algorithms.
** The smaller the eigenvalue, the more important the vector.
** Adjacency matrix does not need to be 0-1. Can fill with similarity value.
- But good to cut off small values at 0, so matrix is "sparse" makes more efficient.

