L11 -- spectral clustering
[Jeff Phillips - Utah - Data Mining]

Graph G = (E,V)

V = vertices {a,b,c,d,e,f,g,h}

E = edges {Ca,b), (a,0), (a,d), (b,d), (c,d), (c,e), (e,f), (e,9), (f,9),
(f,h)}

unordered pairs

Draw graph:
abcdefgh
a01110000
b10010000
cloo011000
d11100000
e00100110
foooo1011
goooo01100
hoo00001080

adjacency matrix

What are the best 2 clusters of vertices?

Top-Down Clustering:
- find best cut into 2 (or more pieces)
- recur on pieces

Today we'll mainly talk about finding the one best subset
S subset V

Vol(S)

= # edges with at least one edge in V
Cut(S, T =

edges with one edge in S, and one in T
normalized cut NCut(S,T) = Cut(S,T)/Vol(S) + Cut(S,T)/Vol(T)
goal is to find cut with smallest "normalized cut" (S subset P, T =P \ S)

- other similar measures that are also good.
- this one gives small edges split + good balance

wn
Il

{h} -> NCut = 1/1 + 1/11 = 1.09
{e,f,g,h} -> NCut = 2/6 + 2/7 = 0.62

(V)
Il

Graph as Matrix:

adjacency matrix:

>

>SQ ~0dO QO N T Q

[SEISEISRIRE RN i eI ||
[SESEISE SIS IR S e
OSSOSO FrRrRPFRPOOoORDN
[SESEIORIOEION RN I ol
S RPFPOORFRPRSOOOO
P POPFRPOOOO —h
SO O0ORFRP P OO0 oK
(SIS IR R RS RN Ria o

degree matrix: "diagonal matrix"

(w}

>SKQ ~d QO N T QO

S OO0 WAl
S OO0 NSCT
S OO OO0 WOeOoON
(SISO RVU SRRl
O OO0 WO OSSO
OO WO OO —
O NO OO K
[l SN CS BRGNS BN G O e

Laplacian matrix:
L=D-A=

1
[(SEISEOEON SN
1
oSS SorPFrWOoORrN

S SoSoc0oWRrRERLREPLOQ

[(SESENSIR SN i N VSN e
I
I

S NPFPPFPOOOSOSK
1

P ORrRP OO0

SOSrRrPFrPrRWOoORFrRrSoOOSOO

>SQ O QO N T Q
PP WRFRPOSOO S -

Note that each row and column sums up to 0:
- think of D as being flow into a vertex
- and A as the flow out of the vertex
(We'll see other useful concepts like this)

An *eigenvector* of a matrix M, is a vector v s.t.
Mv = lambda*v,
where lambda is a scalar. 1lambda is the corresponding "eigenvalue."

usually restrict that |IxIl =

1

There are several eigenvectors of L (Laplacian): sort by lambda

lambda @ 278 1.11 2
\% 1/sqrt(8) -.306 0.08 0
1/sqrt(8) -.42 0.18 -
1/sqrt(8) -.20 -.11 0
1/sqrt(8) -.36 0.08 0
1/sqrt(8) .17 -.37 0
1/sqrt(8) ©0.36 -.08 -
1/sqrt(8) ©.31 -.51 -
1/sqrt(8) ©0.50 0.73 0

21
.10
.36
.08

46 4

28 0.25
38 0.25
.03 -.25
28 0.25
54 -.25
28 0.75
.56 -.25
11 -.25

[V,1lambda] = eig(L) in MATLAB or OCTAVE

1/sqrt(2)
0

0
-1/sqrt(2)
0

0
0
0

** Smallest eigenvalue of L (any laplacian) is 0.

** Second Smallest eigenvalue/vector is VERY important.

it tells us how to cut the graph
it tells us how "best" to put all vertices on a single line

+ in first eigenvector v_2, those < @ in S, those > @ in T
S = '{Cl,b,C,d} T = {e’F’g’h}
+ can check all cuts by v_2, use one with best NCut

** Third eigenvector v_3 can be used for 4-way cut

++ above @ v_2, above 0 v_3
+- above @ v_2, below 0 v_3
-+ below @ v_2, above 0 v_3
-- below @ v_2, above 0 v_3

Tells us how to draw a graph:
x-axis values along v_2
y-axis values along v_3

S

"
U
R

(scale values by 1/sqrt{lambda_i})

{h}
{e,f,g}
{a,b,d}
{c}

Or: use first k eigenvectors to embed in RAk.

- k-means, or

- other Euclidean clustering algorithms.

Then run

** The smaller the eigenvalue, the more important the vector.

** Adjacency matrix does not need to be 0-1.
- But good to cut off small values at @, so matrix is "sparse" makes more

efficient.

Can fill with similarity value.

