```
L12 -- Intro to Regression
[Jeff Phillips - Utah - Data Mining]
Linear Regression (in R^2)
    - other sorts of regression:
    "find a restricted pattern, and regress data to that pattern"
Linear Least Squares
Input: P subset R^2
Output: line y = ax+b
    s.t. sum_{p in P} (p.y - a p.x+b)^2 minimized
    "vertical distance"
We model p.y = f(p.x) + eps_p where eps_p ~ Gaussian noise
    f(p.x) = a p.x + b
    and minimize sum_{p in P} eps_p^2
solve for a = Cov[p.x, p.y] / Var[p.x]
bar{x} = (1/n) sum_{i=1}^n x_i
Cov[x,y] = (1/n) sum_{i=1}^n (x_i - bar{x})(y_i - bar{y})
        = (1/n) sum_{i=1}^n x_i y_i - ((1/n) sum_{i=1}^n x_i) ((1/n)
sum_{i=1}^n y_i)
        =(1/n) sum_{i=1}^n x_i y_i - bar{x}bar{y}
Var[x] = Cov[x,x]
    a = <p.x,p.y>/||p.x||^2
solve for b = bar{y} - a bar{x}
to fit p.y = a p.x
Let X = P.x
a = (X^T X)^{-1} X^\top y
and H_X = X (X^T X)^{-1} X^T is the "hat" matrix
since
    hat{y} = X a = H_X y
puts the hat on }\textrm{y
but this does not allow an "intercept" value b.
    --> first shift P' = P - bar{P}
        then intercept b=0
        can shift back later
```

```
Gauss-Markov Theorem
linear regression is optimal of all linear models
    - if must have 0 expected error (unbiased)
    - all errors (eps_p) uncorrelated, have equal variances
then: above minimizes least-squared error. (minimum variance)
Are we done? (no!)
4 issues:
    - robustness to outliers (from L_2)
    - can have less error with bias
    - y-distance, not distance to line
    - matrix inverse can be expensive (randomization)
    - (dense)
Theil-Sen estimator
Median slope of pairs of points.
For all p_i = (x_i, y_i) and p_j = (x_j, y_j) with x_i < x_j
    let s_{i,j} = (y_j - y_i)/(x_j - x_i)
Let a = median_{i,j} {s_{i,j}}
Let b = median_i {y_i - a x_i}
more robust to outliers. (up to 29.3% corruption)
    + Siegel: (for x_i < x_j for i<j)
    let s_i = median { s_{j,i} (j<i) cup s_{i,j} (i<j))
    Let a = median_i {s_i}
    Let b = median_i {y_i - a x_i}
even more robust to outliers (up to 50% corruption)
Straight-forward in O(n^2)
    also O(n log n) algorithms...
Tikhonov Regularization (ridge regression)
assume \(\operatorname{bar}\{p . y\}=0\) and \(\operatorname{bar}\{p . x\}=0\); hence \(b=0\)
minimize: \(\quad\) sum_\{p in \(P\}(a p . x-p . y) \wedge 2+s a^{\wedge} 2\)
where \(s\) is a tunable regularization (shrinkage) parameter
```

```
trades off having some bias for having less variance (regression to mean = no
correlation)
```

```
hat{a} = (<p.x,p.x> + s^2)^{-1} * <p.x, p.y>
```

hat{a} = (<p.x,p.x> + s^2)^{-1} * <p.x, p.y>
where X = P.x then and s a^2 = ||sI a||^2
where X = P.x then and s a^2 = ||sI a||^2
hat{a} = (X^T X + s^2 I)^{-1} X^T b
hat{a} = (X^T X + s^2 I)^{-1} X^T b
or:
minimize: sum_{p in P} (a p.x - p.y)^2
s.t. a^2 < t
1-1 correspondence be between each solution with s and with t
as s decreases, t increases
Lasso (basis pursuit)
assume bar{p.y} = 0 and bar{p.x}=0; hence b = 0
minimize: sum_{p in P} (a p.x - p.y)^2 + s |a|
where s is a tunable regularization (shrinkage) parameter
or:
minimize: sum_{p in P} (a p.x - p.y)^2
s.t. |a| < t
(in higher dimensions, we'll see, when t is small, some dimensions are 0!)
Way to compute optimal solution efficiently (LAR, see later lectures)
****** Up to here, great reference: Elements of Statistical Learning
Hastie, Tshibirani, Friedman
PCA -> "orthogonal distance"
Don't explain y from x , but explain relationship between x and y .

- before we assume x was correct. Now there can be error/residuals in both
In R^2 first center (double center):
$x_{-} i=x _i-\operatorname{bar}\{x\}$
$y_{-} i=y_{-} i-\operatorname{bar}\{y\}$
(from now assume they are already double-centered)
Find unit vector v (i.e. $\|\mid v\|=1$) to minimize

```
\[
\operatorname{PCA}(v)=\operatorname{sum}_{-}\{p \backslash \text { in } P\}\|p-\langle p, v\rangle v\| \wedge 2
\]
note that \(<\mathrm{p}, \mathrm{v}>\) is a scaler : the length of p along v . And \(v\) is a direction from the origin. So \(<p, v>v\) is the "projection" of \(p\) onto \(v\).
and \(p-<p, v>v\) is the distance to the projection.

How do we find \(v\) ?
Only depends on 1 parameter (angle)
PCA \((v)\) is convex - up to antipodes.
in higher dimensions, we (essentially) just repeat this.```

