L13 -- SVD

[Jeff Phillips - Utah - Data Mining]
Let P subset $\mathrm{R} \wedge$ d and $|P|=n$
Then $P=d x n \quad$ (usually $n>d$)
Want to place P in R^k where $\mathrm{k} \ll \mathrm{d}$
Find $\mathrm{R} \wedge \mathrm{k}$ subset $\mathrm{R} \wedge$ d where
mu : R^d -> R^k
and minimize
sum_ $\{p$ in $P\}(p-m u(p))^{\wedge 2}$

Solution: SVD (PCA)
$\mathrm{U}, \mathrm{S}, \mathrm{V} \wedge \mathrm{T}=\operatorname{svd}(\mathrm{P}) \quad$ (in matlab or octave // LAPACK)
in fact $P=U S V \wedge T$
$S=\operatorname{diag}\left(s _1, s_{-} 2, \ldots, s_{-} r\right)$ where $r<=d$ where $r=r a n k(P)$ (d $\times \mathrm{n}$)
s_1 >= s_2 >= . . . >= s_r >= 0

U (dxd), V (nxn) are orthogonal matrices.

Orthogonal Matrix U

- basically rotations about 0, can also do mirror flips
- each |lu_il| = 1
- each u_i, u_j columns U have <u_i, u_j> = 0
- U^T $=\mathrm{U} \wedge\{-1\}$
the columns (and rows) of U form a basis (usually not the original basis)
for any p in $\mathrm{R} \wedge$ d we can write
$p=\operatorname{sum}\{i=1\} \wedge t=a_{-} i u_{-} i$
where $a_{-} i=<p, u_{-} i>$ is a scalar
- permutation matrix is orthogonal
--> thus for any p in R^d $\|\|\mathrm{p}\|=\| p \|$ (rotation + flip)

Consider rank=2 matrix
$\mathrm{A}=(1 / \mathrm{sqrt}\{2\})[\operatorname{sqrt}\{3\} \operatorname{sqrt}\{3\}$; -33 ; 11$]$
$b=A x$
transforms circle in plane to ellipse in R^3

- only uses 2 dimensions in $\mathrm{R} \wedge 3$
- stretches it out along certain axis
[U S V^T] :
$U=[00.866-.5 ;-100 ; 00.50 .866]$
S = [3 0; 0 2; 0 0]
V^T = [0.707 0.707; -. 707 0.707]
3 steps:

1. from (x_1, x_2) circle -> rotation -> (xi_1, xi_2)
where two orthogonal vectors v_1, v_2 map to axis v_1', v_2'
v_1, v_2 == right singular vectors of A
V = [v_1 v_2]
$\mathrm{xi}=\mathrm{V}^{\wedge} \mathrm{T} \mathrm{x}$
2. from (xi_1, xi_2) circle -> stretch -> (eta_1, eta_2)
where eta_1 = s_1 * v_1' eta_2 = s_2 * v_2'
s_1, s_2 == singular values of A
S = [s_1 0 ; 0 s_2; 0 0]
eta $=\mathrm{S} \mathrm{xi}$
3. from (eta_1, eta_2) -> rotation -> (y_1, y_2, y_3)
where sigma_1 * u_1 = y_2
sigma_2 * u_2 = in span(y_1, y_3)
u_3 in span(y_1, y_3), but has none of circle
(orthogonal to)

$$
\begin{aligned}
& u_{-} 1, u_{_} 2, u_{-} 3=\text { left singular vectors of } A \\
& U=\left[u_{_} 1 u_{-} 2 u_{-} 3\right] \\
& b=U \text { eta }
\end{aligned}
$$

$$
b=U S V \wedge T x=A x
$$

How does this help us get a projection?
given a point x in $\mathrm{R}^{\wedge} \mathrm{n}$ (with similarities to all n points) maps to y in $R \wedge d$ (in the space of dimensions) each y_i is a linear combination of dimensions
y is an orthogonal linear combination of this basis of $\left\{y _i\right\}$
s_i tells us how much the ith dimension is scaled.
move to an r-dimensional space

- already centered (assumed)
- have Gaussian with std.dev on each axis y_i according to s_i
- if s_i is small, then maybe we don't care
- s_1 chosen to be as large as possible, s_2 as large from what's
left, s_3...
So set some s_k such that s_\{k+1\} is small enough.
- statistical data sets (small) typically decay quickly and usually $\mathrm{s}_{-}\{\mathrm{k}+1\}$ close to 0
- internet data sets (huge) typically decay slowly, and \backslash sum_\{j=k+1\}^infty != 10%

Vectors u_i (n-dimensional) are linear combinations of points
so represent new basis Take $\mathrm{R} \wedge \mathrm{k}=\left[\mathrm{u}_{-} 1 \mathrm{u}_{2} 2 \ldots \mathrm{u} . \mathrm{k}\right]=$ U_k
V does the "bookkeeping" of moving original basis to new one S stretches it appropriately
U puts the new basis in the proper projection
P_k in R^k <<--- P_k = U_k^T S_k V_k
V_k rotates appropriately the top k directions, the others it does not care since gets set to 0 .
(if we don't first recenter, then u_1, s_1 just point to the center)

All we need are $\mathrm{V}_{-} \mathrm{k}^{\wedge} \mathrm{T}$. We can then project to this basis.
S_k tells us how much we save
S_\{k+1\}^r tells us how much we lost (our "loss" function)

How do we compute SVD?

+ find top vector (convex problem, but NLA approach better)
+ project to space orthogonal to top vector
REPEAT
since finds large components first, numerically stable.

```
Relationship to eigen-decomposition
    P^T P V = V S^2
so v_i are eigenvectors of P^T P
    P P^T U = U S^2
so u_i are eigenvectors of P P^T
and s_i^2 are eigenvalues of P^T P and of P P^T
```

