
L13 -- SVD
[Jeff Phillips - Utah - Data Mining]

Let P subset R^d and |P| = n
Then P = d x n   (usually n > d)

Want to place P in R^k  where k << d

Find R^k subset R^d where
  mu : R^d -> R^k
and minimize
  sum_{p in P} (p - mu(p))^2

Solution:  SVD (PCA)

--------------
U, S, V^T = svd(P)            (in matlab or octave  //  LAPACK)

in fact P = U S V^T

S = diag(s_1, s_2, ..., s_r)  where r<=d where r=rank(P)
    (d x n)
         s_1 >= s_2 >= ... >= s_r >= 0

U (dxd), V (nxn) are orthogonal matrices.

-------------
Orthogonal Matrix U
 - basically rotations about 0, can also do mirror flips
 - each ||u_i|| = 1
 - each u_i, u_j columns U have <u_i, u_j> = 0
 - U^T = U^{-1}

the columns (and rows) of U form a basis (usually not the original 
basis)
for any p in R^d we can write
  p  = sum_{i=1}^t = a_i u_i
where a_i = <p, u_i> is a scalar
  - permutation matrix is orthogonal



--> thus for any p in R^d  ||U p|| = ||p||  (rotation + flip)

--------------
Consider rank=2 matrix  
A = (1/sqrt{2}) [sqrt{3} sqrt{3} ; -3 3 ; 1 1]

  b = Ax
transforms circle in plane to ellipse in R^3
 - only uses 2 dimensions in R^3
 - stretches it out along certain axis

[U S V^T] :
U = [0 0.866 -.5;  -1 0 0; 0 0.5 0.866]
S = [3 0; 0 2; 0 0]
V^T = [0.707 0.707; -.707 0.707]

3 steps:
1.  from (x_1, x_2) circle  ->  rotation ->  (xi_1, xi_2)
   where two orthogonal vectors v_1, v_2 map to axis v_1', v_2'

   v_1, v_2  == right singular vectors of A
   V = [v_1 v_2]
   xi = V^T x

2.  from (xi_1, xi_2) circle -> stretch -> (eta_1, eta_2)
   where eta_1 = s_1 * v_1'
         eta_2 = s_2 * v_2'
   
   s_1, s_2 == singular values of A
   S = [s_1 0 ; 0 s_2; 0 0]
   eta = S xi

3.  from (eta_1, eta_2) -> rotation -> (y_1, y_2, y_3)
    where sigma_1 * u_1 = y_2
          sigma_2 * u_2 = in span(y_1, y_3)
          u_3 in span(y_1, y_3), but has none of circle 
(orthogonal to)

     u_1, u_2, u_3 == left singular vectors of A
     U = [u_1 u_2 u_3]
     b = U eta



     b = U S V^T x = A x

---------------
How does this help us get a projection?  

 given a point x in R^n  (with similarities to all n points)
  maps to y in R^d  (in the space of dimensions)
  each y_i is a linear combination of dimensions
  y is an orthogonal linear combination of this basis of {y_i}

s_i tells us how much the ith dimension is scaled.  
move to an r-dimensional space
 - already centered (assumed)
 - have Gaussian with std.dev on each axis y_i according to s_i
 - if s_i is small, then maybe we don't care
 - s_1 chosen to be as large as possible, s_2 as large from what's 



left, s_3 ...

So set some s_k such that s_{k+1} is small enough.  
  - statistical data sets (small) typically decay quickly 
      and usually s_{k+1} close to 0
  - internet data sets (huge) typically decay slowly, 
      and \sum_{j=k+1}^infty != 10%

Vectors u_i (n-dimensional) are linear combinations of points
  so represent new basis Take R^k = [u_1 u_2 ... u_k] = U_k

V does the "bookkeeping" of moving original basis to new one
S stretches it appropriately
U puts the new basis in the proper projection

P_k in R^k <<---  P_k = U_k^T S_k V_k 

V_k rotates appropriately the top k directions, the others it does 
not care since gets set to 0.  

(if we don't first recenter, then u_1, s_1 just point to the 
center)

All we need are V_k^T.  We can then project to this basis.
S_k tells us how much we save
S_{k+1}^r tells us how much we lost (our "loss" function)

---------------
How do we compute SVD?  
 + find top vector (convex problem, but NLA approach better)
 + project to space orthogonal to top vector
 REPEAT
 since finds large components first, numerically stable.  

--------------
Relationship to eigen-decomposition
  P^T P V = V S^2
so v_i are eigenvectors of P^T P
  P P^T U = U S^2
so u_i are eigenvectors of P P^T
and s_i^2 are eigenvalues of P^T P and of P P^T


