
L14 -- Random Projection
[Jeff Phillips - Utah - Data Mining]

Two techniques:
 - random projections to subspace (data independent)
 - basis selection

P in R^d and |P| = n
goal: mu : P -> R^k (k << d)
 s.t. max_{p,q in P}
(1-eps) ||p-q|| <= ||mu(p) - mu(q)|| <= (1+eps) ||p-q||

Idea: randomly project the data to a subspace.

How to get a random vector? ???
 1. compute random Gaussian variable x_i in R^d
 2. normalize to u_i = x_i/||x_i||

Then ~mu(y_i) = <p, u_i>

Lets focus on simpler problem for now:
for one p in P (s.t. ||p|| = 1)
 (1-eps/2) ||p||^2 <= ||mu(p)||^2 <= (1+eps/2)||p||^2

 sqrt{(1-eps/2)} > (1-eps) and sqrt{(1+eps/2)} < (1-eps)
 pretend just eps/2 = eps ...

 ||p||^2 = sum_{i=1}^d ||p_i||^2

 But, it has the same problem as homework.
 E[||~mu(p)||^2] == ???
 ||p||^2/d <--- too small

 let mu(p) = ~mu(p) * d
 now E[||mu(p)||^2] = ||p||^2

Worst case ||mu(p)||^2 - ||p||^2 <= (d-1) ||p||^2 = Delta_i
 Var[||mu(p)||^2] = 1

 Can use Chernoff Bound
 - expected value = 0
 - bounded variance [or bounded worst case]

Choose k random directions {u_1, u_2, ..., u_k} <-- basis
 mu(p)_i = <p, u_i> * sqrt{d/k}

 mu(p) in R^k
 ||mu(p)||^2 = sum_{i=1}^k ||mu(p)_i||^2

 E[||mu(p)||^2 - ||p||^2] = 0
 E[||mu(p)_i||^2 - ||p||^2/k] = 0
 Var[||mu(p)||^2] <= ||p||
 Var[||mu(p)_i||^2] = ||p||/k
 Var_i = Var[||mu_i(p)||^2/||p||^2] = 1/k

Pr[| ||mu(p)||^2 - ||p||^2 | > eps ||p||^2] =
Pr[| ||mu(p)||^2/||p||^2 - 1 | > eps] <
 2 exp(- eps^2 / 4 sum_{i=1}^k Var_i^2) =
 2 exp(- eps^2 / 4 k (1/k^2))
 < delta'

 k eps^2 /4 = ln(2/delta')
 k = (4/eps^2) ln(2/delta'))

OK, so with k = c/eps^2 log(1/delta'), one norm is preserved.

now think of each ||p - q|| for p,q in P a norm that needs preserving
 with ||mu(p) - mu(q)|| = ||mu(p-q)||
 since mu is linear, then mu(p) - mu(q) = mu(p-q)

 {n choose 2} < n^2 such norms

 set delta' = delta/n^2

then chance that each norm has error is at most delta/n^2
 then chance any has norm error is sum_{i=1}^n^2 delta/n^2 = delta
 <<<<<< Union Bound >>>>>>>

So k = c/eps^2 log(n^2/delta)
 = O((1/eps^2) log (n/delta))

Problems:
 - not as good as SVD (optimal in some sense)
 - does not preserve dimension-structure
 - ignores data distribution
Advantages:
 + very easy to implement
 + ignores data distribution (oblivious)

 + can be implemented very fast (only need random {-1,0,+1} matrix)
 + if sparse -> no longer sparse (strangely, this prevents from being faster)

--
Column sampling

 - returns set or t = (1/eps^2) k log k dimensions that is close to best k
from SVD.

simple
 compute w(j) = ||p_j||^2 of each column.
 Select column proportional to w(j)
 <<<<<<< just like k-means++ >>>>>>>>
 assume that columns picked are j on J and |J| = t

 set mu(p)_i = p_j * 1/w(j) * (d/t)
 --> mu(P) = Q_t

P = U S V^T = [U_k U_k^#] [S_k 0; 0 S_k^#] [V_k ; V_k^#]
 = U_k S_k V_k^T + U_k^# S_k^# (V_k^#)^T
P_k = U_k S_k V_k^T

 -> gives weak approximation, but very easy.
 -> can do both rows and columns to get both subspace and "coreset"

 ||P - mu(P)||_2^2 = sum_{p in P} ||p - mu(p)||_2^2
 ||P - mu_k(P)||_2^2 = sum_{p in P} ||p - mu_k(p)||_2^2
 where mu_k is the best linear rank-k projection (from SVD)

 ||P - Q_t||_2^2 <= ||P - P_k||_2^2 + eps ||P||_F^2
and
 ||P - Q_t||_F^2 <= ||P - P_k||_F^2 + eps ||P||_F^2

 Frobenious norm: ||P||_F^2 = sum_{i=1}^n ||p_i||_2^2

Better result:
 1. Construct V_k^T <--- subspace of the best rank-k approximation
 defines mu_k()
 2. Let w'(j) = ||(V_k^T)_j||^2 = sum_{p in P} (<mu_k(p), x_i>)^2
 3. Select t = (1/eps^2) k log k columns: J
 mu'(p)_i = p_j * 1/w'(j) * (d/t)
 mu'(P) = Q'_t

Now:
 ||P - Q_t||_F^2 <= ||P - P_k||_F^2 + eps ||P - P_k||_F^2
 ||P - Q_t||_F^2 <= (1+eps)||P - P_k||_F^2

 -> gives better approximation
 -> takes about as long as SVD_k, but gives better result

t = (1/eps^2) k log k
 (1/eps^2) comes from Chernoff bound, need to bound error
 k log k comes from Coupon Collector, need to hit each top k component

