Input: $n \times$ d matrix $P=\left[p _1 p _2 \ldots p _n\right]^{\wedge}$
"n points in d dimensions"

```
P_i = [p_{i,1} p_{i,2} ... p_{i,d}]
** assume that for all j sum_{i=1}^n p_{i,j} = 0
P_j = [p_{1,j} p_{2,j} ... p_ pn,j}]^T
    + a column with all n points jth coordinate
```

and:
Y = [y_1 y_2 ... y_n]^T y_j scalar
think of $f\left(P_{-} i\right)=y _i$
** assume that sum_ $\{i=1\} \wedge n$ y_i $=0$
Let $A=\left[\begin{array}{llll}a _1 & a _2 & . . & \left.a _d\right] \wedge T\end{array}\right.$
Goal: Find $g(X)=a_{-} 0+\operatorname{sum}_{-}\{j=1\} \wedge d x_{-} a_{-} j$
where $X=\left[x_{-} 1 \quad x_{-} 2 \ldots . . x_{-} d\right]$
and where $\operatorname{Loss}(g(P)-Y)$ is minimized
"best linear fit" (can add P_\{i'\} = P_i^2 or P_i*P_\{i'\} for non-linear fit)
ignore $a_{-} 0$ by adding dimension where $p_{-}\{i, 0\}=1$ for all i.
Loss Functions
If $\operatorname{Loss}(g(P)-Y)$ is $\left||g(P)-Y| I _2=\left||g(P)-Y| I _2 \wedge 2\right.\right.$ "least squares"
$A=(P \wedge T P) \wedge\{-1\} P \wedge T Y$
$g(P)=P A=P(P \wedge T P) \wedge\{-1\} P \wedge T Y$
If $\operatorname{Loss}(g(P)-Y)=|I g(P)-Y| I _2+s| | A \mid I _2 \quad$ "ridge regression"
(or $\operatorname{Loss}(g(P)-Y)=|I g(P)-Y| \mid _2$ s.t. $\left.||A|| _2<t\right)$
$A=(P \wedge T P+S I)^{\wedge-1} P^{\wedge} T Y$
$g(P)=P A=P(P \wedge T P+s I)^{\wedge}\{-1\} P \wedge T Y$
If Loss $(g(P)-Y)=|I g(P)-Y| I _2+s| | A \mid I _1 \quad$ "Lasso" "basis pursuit"
(or $\operatorname{Loss}(g(P)-Y)=|I g(P)-Y| \mid _2$ s.t. $\left.||A|| _1<t\right)$
How to solve coming soon...
Note: ridge + Lasso trade off decreased variance for increased (non-zero bias) ridge + Lasso are both convex in A (one minimum), so should be easy to solve.

Lasso has "magical" property than many $a_{-} j=0$.
[Draw picture of constraint variant with L_1 or L_2 ball -- See ESL book] Want L_0 ball, but then not convex (multiple minimum)

```
Could use "Orthogonal Matching Pursuit" approach
    Init: set a_j = 0 for all j in [d]
    1: Find j with max_j I<P_j,Y>| <--- coordinate j
    2: Set a_j = min_a Loss(P_j a - Y)
    3: Calculate residual in P_j a - Y in place of Y (and repeat)
```

"Forward Subset Selection"
(also "Backwards Subset Selection": remove P_i with smallest effect)

How do we solve Lasso?
**use constraint variant and start with $t=$ infty
Set $a_{-} j=0$ for all j in [d]
Set $t=s u m _\{j=1\} \wedge d\left|a_{-} j\right|$
Set $r(t)=Y-\operatorname{sum}\{j=1\} \wedge d P_{-} j a_{-} j(t)$
0: Find j_1 = $\operatorname{argmax}_{-}{ }^{1}\left|<P_{-} j, r>\right|$
Set $a_{-}\left\{j _1\right\}(t)=a_{-} j^{*} t$
1: Find $t _2$ s.t. some j_2 != j_1 has $1<P_{-}\left\{j _1\right\}, r(t)>\left|=\left|<P_{-}\left\{j _2\right\}, r(t)>\right|\right.$
Find correlations (via derivatives) and reset
$a_{-}\left\{j _1\right\}(t)=a_{-}\left\{j _1\right\}\left(t _2\right)+\left(t-t _2\right) * b_{-} 1$
$a_{-}\left\{j _2\right\}(t)=\left(t-t _2\right) * b_{-} 2$
s.t. |b_1| + |b_2| = 1
** cool fact: as t increases, optimal choice of $a_{-} j$ is linear in t with slopes
b_1,b_2...
in general:
1: Find t_k s.t. some j_t != j_l \in [j_1...j_\{t-1\}] has $1<P_{-}\left\{j _l\right\}, r(t)>|=|$
<P_\{j_k\},r(t)>1
Set $a_{-}\left\{j j_{-} l\right\}(t)=a_{-}\left\{j_{-} l\right\}\left(t _k\right)+\left(t-t_{-} k\right) b_{-} l$
s.t. sum_ $\{l=1\} \wedge k$ |b_l| = 1
"intuitively:"
Let $\sim b_{-} l=(d / d t)\left|<P_{-}\left\{j _l\right\}, r(t)>\right|$
B = sum_\{l=1\}^k |~b_l|
$b_{-} l=\sim b_{-} l / B \quad$ <- normalize
** Sometimes may have slopes $b_{-} l$ as negative, and may snap $a_{-}\left\{j _l\right\}=0$ LAR (least angle regression) does not re-snap $a_{-}\left\{j _l\right\}=0$
This occurs since we initially overfit $a_{-}\left\{j _l\right\}$ and need to adjust, sometimes remove

Cool thing is that we have solved for every value of t (hence every value of s)
--> can cross-validate to find best value of t (leave some data out, and test accuracy on those values)

Low Rank + Sparse
SVD: $\mathrm{P}=\mathrm{U}$ S V^T = [U_k U_k'] [S_k 0 ; 0 S_k'] [V_k^T ; V_k'^T] P_k = U_k S_k V_k^T
low rank (rank $=k$)
If P = P_k + N_0 where N_0 is Gaussian Noise, then this is "best" reconstruction

What if $P=L+S$ where S is sparse noise (small number << $n \wedge 2$) items are arbitrarily large and L is rank k

Solve minimum ||L||_* + ||S|I_1 where restrict $P=L+S$
|IMII_* = trace(sqrt(M*M)) = sum (singular values M)

What if P = L_k + S_0 + N_0 where L_k is rank k
and S_0 is sparse noise
and $\mathrm{N} _0$ is Gaussian noise
Solve minimum IILII_* + IISII_1 such that IIP - L - SII_F < delta
both are convex problem, and can solved using specially designed solvers iteratively find PCA, filter out supposed sparse results, and repeat. uses time equivalent to about 16 SVD computations.

