```
Graph G = (E, V)
    \(V=\) vertices \(\{a, b, c, d, e, f, g, h\}\)
    \(E=\) edges \(\quad\{(a, b),(a, c),(a, d),(b, d),(c, d),(c, e),(e, f),(e, g),(f, g)\),
(f,h)\}
        unordered pairs
```

Draw graph:
a b c defgh
a 01110000
b 10010000
c 10011000
d 11100000
e 00100110
f00001011
g 00001100
h 00000100
adjacency matrix
Each v in V is a state.
If $a t b$, represent state as
$q=\left[\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]^{\wedge}$
Can "think of" fractional state
$q=\left[\begin{array}{lllllll}1 / 2 & 0 & 0 & 1 / 2000 & 0\end{array}\right]^{\wedge}$
$1 / 2$ at a and $1 / 2$ at d
probability of being in each state:
each $q[i]>=0$ and sum_i $q[i]=1$
Transition matrix $\mathrm{P}=$ normalized adjacency matrix

	a	b	c	d	e	f	g	h
a	0	$1 / 2$	$1 / 3$	$1 / 3$	0	0	0	0
b	$1 / 3$	0	0	$1 / 3$	0	0	0	0
c	$1 / 3$	0	0	$1 / 3$	$1 / 3$	0	0	0
d	$1 / 3$	$1 / 2$	$1 / 3$	0	0	0	0	0
e	0	0	$1 / 3$	0	0	$1 / 3$	$1 / 2$	0
f	0	0	0	0	$1 / 3$	0	$1 / 2$	1
g	0	0	0	0	$1 / 3$	$1 / 3$	0	0
h	0	0	0	0	0	$1 / 3$	0	0

then given a state q, we can "transition" to the next state by q_1 = P^{*} q
This one "step" of a "Markov Chain".
"Markov" means that each state only depends on previous state.

```
next step
q_2 = P*q_1 or
    = P*P=q or
    = P^2*q
q_n = P^n*q
    where P^n = P*P*P* ... n times ... *P
Can think of as a randomized random walk.
    + start state q=q_0.
    + each step, takes one path at random
    + q_n is probability distribution of state after i steps
    + thus each column of P^n positive, sums to 1 for all n
```

Markov Chain is **ergodic** if
exists some t such that for all $n>=t$ then
each entry in $\mathrm{P}^{\wedge} \mathrm{n}$ is positive.
--> for any q, then
q_n = $\mathrm{P}^{\mathrm{n}} \mathrm{n} \mathrm{q}$
is positive in all elements
--> after t steps, always have *some* probability of being anywhere.

```
When is a chain not ergodic?
    + cyclic
    P = [l0 1]
        [1 0]
    always alternates states in even/odd states
    --> can be larger and more irregular, uncommon in practice
    + has absorbing + transient states
    P based on *directed* graph
    P = [00 1/2 1/2 0]
        [1/2 0 1/2 1/2 1]
        [1/2 1/2 0 0}00
        [0}000000
    state d always goes to b, but can never return to d.
    also...
```

```
    P = [llllll
        [1/2 0 1/2 1/2 1/2]
        [ \begin{array} { l l l l } { 1 / 2 } & { 1 / 2 } & { 0 } & { 0 } \end{array} ]
        [0}000001/2
    may stay at d (w.p. 1/2) but state "seeps" from d to b (and then a,c)
    (a,b,c) = absorbing, d = transient
    + not connected
    P = [lll2 1/2 0 0 ]
        [ \begin{array} { l l l l } { 1 / 2 } & { 1 / 2 } & { 0 } & { 0 } \end{array} ]
        [0 0
        [0 0
    (a,b) cannot reach (c,d) and vice-versa
```

Consider an ergodic Markov Chain (P,q)
AMAZING property
let $\mathrm{P} \wedge *=\mathrm{P} \wedge \mathrm{n}$ as n -> infty
then $q_{-}{ }^{*}=P \wedge * q$
is **NOT** dependent on 9
--> That is, for all starting states q, the final state is q-*
--> as we do a random walk, we will eventually be in the same expected state.
Note that $q_{-}^{*}=P \wedge * q=P \wedge\{*+1\} q$
so $q_{-}^{*}=P q_{-}^{*}$
--> If state distribution is initially $q_{-}{ }^{*}$, then already in final distribution.
q_* second eigenvector of P
second eigenvalue determines rate of convergence --> smaller <-> faster convergence

Metropolis Algorithm (MCMC)
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller 1953 (Boltzman dist, Manhattan project)
Hastings 1970
(more general)
each state v in V has weight associated with it

$$
w(v) \quad \text { sum_ }\{v \text { in } V\} w(v)=W
$$

Want to land in state v w.p. w(v)/W
--> V might be very large, and W unknown.
--> V can be "continuous"
"probe-only" can only measure w(v) at any one state

Strategy: design special Markov Chain so $q_{-}^{*}[v]=w(v) / W$

Start v_0 in V $\left(q=\left[\begin{array}{llllllll}0 & 0 & 0 & \ldots & 1\end{array} \ldots 000 \wedge T\right)\right.$
choose neighbor u (proportional to $K(v, u)$)
if $\left(w(u)>=w\left(v_{-} i\right)\right) \quad-->\quad v_{-}\{i+1\}=u$
else w.p. w(u)/w(v) $\quad->v_{-}\{i+1\}=u$
else $\quad-->\quad v_{-}\{i+1\}=v_{-} i$
if ergodic:
there exists some t s.t. for $i>=t$ $\operatorname{Pr}\left[v_{-} i=v\right]=w(v) / W$

NOTE: not in limit, but for some finite t (even for continuous) V through AMAZING "coupling from past"
But t is hard to find.

Often goal is to create many samples:
formal: run for $t+$ steps, take sample, ... run for another $t+$ steps, take sample, ... repeat
in practice: run for 1000 steps (burn in), take next 5000 steps as random samples
has "auto-correlation" but eventually more time efficient than $t N$ steps for N samples
and t unknown.

"inherently sequential" makes very hard to parallelize

Applies even if V is continuous

