```
L5 -- min-hash
[Jeff Phillips - Utah - Data Mining]
```

Jaccard Similarity
$A=\{0,1,2,5,6\}$
$B=\{0,2,3,5,7,9\}$
How similar are A,B?

```
JS(A,B) = |A cap B| / |A cup B|
    = |{0,2,5}|/|{0,1,2,3,5,6,7,9} |
    = 3/8
```

```
Matrix Representation:
S1 = {1, 2, 5}
S2 = {3}
S3 = {2, 3, 4, 6}
S4 = {1, 4, 6}
Jac(S1, S3) = \S1 cap S3| / |S1 cup S3|
= |{2}| / |{1,2,3,4,5,6}|
    = 1/6
```

Element | S1 | S2 | S3 | S4

$1 \quad \mid 110$ | 0 | 1
2 | 1 | 0 | 1 | 0
3 | 0 | 1 | 1 | 0
$4 \quad \mid 0$ | 0 | 1 | 1
5 | 1 | 0 | 0 | 0
6 | 0 | 0 | 1 | 1
Mostly sparse == mostly 0s.
- 90\% 0s
- size $\mathrm{n}^{\wedge 2}$, then $\mathrm{n} \wedge\{.9\}$ are 0s.
very wasteful representation (but convenient to think about).

Idea 1 Hash-Clustering
random function hash $\mathrm{h}:\{1,2,3,4,5,6\}$-> $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$
example $[1,2,3,4,5,6]$-> [A,B,B,C,A,A]
Element | S1 | S2 | S3 | S4

```
    A | 1 | 0 | 1 | 1
    B | 1 | 1 | 1 | 0
    C | 0 | 0 | 1 | 1
Jac(S1,S2) = 0 Jac(h(S1),h(S2)) = 1/2
Jac(S1,S3) = 2/6 Jac(h(S1),h(S3)) = 2/3
Jac(S1,S4) = 1/5 Jac(h(S1),h(S4)) = 1/3
Jac(S2,S3) = 1/4 Jac(h(S2),h(S3)) = 1/3
Jac(S2,S4) = 0 Jac(h(S2),h(S4)) = 0
Jac(S3,S4) = 2/5 Jac(h(S3),h(S4)) = 2/3
similarity generally increases.
if intersect -> still intersect
OK when want to study frequent items and have many infrequent items (see more
in Summaries)
```

Idea 2 Min-Hashing
Step 1. Randomly permute items:

Element | S1 | S2 | S3 | S4

2 | 1 | 0 | 1 | 0

5 | 1 | 0 | 0 | 0
6 | 0 | 0 | 1 | 1
$1 \quad|1| 0|0| 1$
4 | 0 | 0 | 1 | 1
3 | 0 | 1 | 1 | 0
Step 2. record first 1 in each column

```
m(S1) : 2
m(S2) : 3
m(S3) : 2
m(S4) : 6
```

Step 3. $\operatorname{Pr}[m(S i)=m(S j)]=\operatorname{Jac}(S i, S j)$
Proof: 3 types of rows
X : 1 in both column --> count x
Y : 1 in one column, 0 in other --> count y
Z : 0 in both columns --> count z
Jac(Si,Sj) = x/(x+y)
and z >> x, y (mostly empty)
ignore type Z.

```
Let row r is the min of {m(Si),m(Sj)}
    it is either type X or Y.
    it is X w.p. x/(x+y)
Which is the only case that m(Si) = m(Sj) otherwise either Si or Sj has 1, but
not both.
    QED
```

Only gives 1 or 0 . But has right expectation.
Lets consider k different random permutations
\{m_1, m_2, ..., m_k\}
And consider k random variables
\{X_1, X_2, ..., X_k\}
\{Y_1, Y_2, ..., Y_k\}
where
X_l = 1 if m_l(Si) = m_l(Sj)
$X_{-} l=0 \quad$ otherwise
and $Y_{-} l=X_{-} l-\operatorname{Jac}(S i, S j)$
Let $M=(1 / k)$ sum_ $\{l=1\} \wedge k \quad Y_{-} l$
Let $A=(1 / k)$ sum_ $\{l=1\} \wedge k X_{-} l$
Note $-1<X_{-} l<1$ and $E[M]=0$
With k = (2/eps^2) ln (2/delta)
then
$\operatorname{Pr}[I J a c(S i, S j)-A l<e p s]>1-d e l t a$
Chernoff-Hoeffding Inequality

Too slow:

- Still construct full matrix.
- permute k times!

Fast Minhash algorithm.
Make 1 pass on data. Maintain k hash functions:
h_i : [N] -> [N] (at random)
Set k counters $\left\{c_{-} j\right\}$ set to infty.
for each i in [N]
if (S(i) = 1)
for each j in [k]

```
if (h_j(i) < c_j)
```

 c_j := h_j(i)
 Now $m_{-}(S)=c_{-} j$

Space now is $0\left(k^{*} N\right)$ where there are N documents.

