[Jeff Phillips - Utah - Data Mining]
Consider a set of n (= 1 million items)
Q1: Which items are similar?
Q2: Given an query item, which others are similar?
For Q1: we don't want to check all $0(n \wedge 2)$ distance (no matter how fast)
For Q2: we don't want to check against all $O(n)$ items (only ones that might be close)

Consider n points in the plane. How do we quickly answer Q1 and Q2 efficiently.

- hierarchical models (range trees, kd-trees, B-trees) don't work in high dimensions
- lay down grid:
+ close points in same grid cell.
+ some across boundary
+ some further than 1 grid cell, but still "similar"
+ randomize grid, and check again

```
Abstract Ideas:
    Hash (like a grid) so
        Pr[h(a) = h(b)] > alpha if d(a,b) < gamma
        Pr[h(a) = h(b)] < beta if d(a,b) > phi
Need alpha > beta for gamma < phi
    Want (alpha-beta) large and (phi-gamma) small
    Then: repeat *random* hash to "amplify"
            -> make (alpha-beta) smaller for fixed (phi-gamma)
                        (works for many phi-gamma simultaneously)
"(gamma,phi, alpha,beta)-sensitive"
MinHashing as LSH:
    t hash functions {h1, h2, ... ht}
        hi = [m] -> [m] (at random)
    Documents: D1 D2 D3 D4 D5 D6 ... Dn
    h1 1 2 0 4 0
    h2 2 0 1 3 3 1 2
    h3 5
---------------------------------------
    h4 1
```

ht

```
Jac(D1,D2) = E[ (1/t) # rows hi(D1) = hi(D2)]
b}\mathrm{ bands of r = t/b rows each
    Let s = Jac(D1,D2) = probability hashes collide
        s^r = prob all collide in 1 band
        (1-s^r) = prob not all collide in 1 band
        (1-s^r)^b = prob in no bands, all collide
f= 1-(1-s^r)^b = prob all collide in at least 1 band
f is an S-curve:
    x-axis : s = Jac(D1,D2)
    y-axis : probably being a candidate
threshold tau = where f has largest slope (about (1/b)^(1/r))
r=3, b = 5, t = 15
s 1-(1-s^r)^b
------------------
. }1.00
.2 . }0
. . . }1
.4 . }2
. . . }4
.6 . }7
.7 . }8
. . . }9
.9 . }99
```

As r and b increase, the S curve gets sharper.
s > tau, we want to almost always check true distance
s < tau, we rarely want to check true distance

Any distance where there is a family of hash functions such that $d(a, b)=\operatorname{Pr}[h(a)=h(b)]$
this techniques works directly.
tau $=$ gamma $=$ phi
alpha $=\operatorname{Jac}(a, b)$
beta $=1-J a c(a, b)$
In general, if hash so
$\operatorname{Pr}[h(a)=h(b)]>a l p h a$ if $d(a, b)<$ gamma
$\operatorname{Pr}[h(a)=h(b)]$ < beta if $d(a, b)>$ phi
then same approach works as well...

```
LSH for Euclidean Distance
a,b in R^d for large d. How to LSH?
take random unit vector v in R^d
    "project" all a,b onto v
    a_v = <a,v> = sum_{i=1}^d a_i * v_i
    * L_2(a_v, b_v) <= L_2(a,b) "contractive"
    create bins of size gamma on v (in R^1)
    * if L_2(a,b) < gamma/2
        Pr[a,b same bin] > 1/2
    * if L_2(a,b) > 2gamma = phi
        Pr[a,b same bin] < 2/3
            (need cos(a-b,v) < pi/3 out of [0,pi])
        otherwise L_2(a,b) > 2 L_2(a_v,a_v) & -> different bins
    "(gamma/2, 2gamma, 1/2, 1/3)-sensitive"
    Can also take <a,v> mod (t gamma)
        for large enough t, and probably of collision is low
```

