
  

  

Abstract—Accurate models of the feel of physical objects are 
essential to improving the realism of haptic simulations.  This 
paper presents a method for automatically obtaining 
experimentally based models of general passive, nonlinear 
devices for use in haptic playback applications, with specific 
emphasis on modeling switches and buttons.  The method, 
based on the exponentially weighted least-squares (EWLS), 
allows estimation of position- and direction-dependent 
parameters of a general nonlinear model.  Results are 
presented for two push-button switches.   

I. INTRODUCTION 
The end objective of haptic simulations is to provide a 

realistic and immersive virtual experience.  Ideally, and with 
the proper technology, a user would not be able to 
distinguish such simulations from reality [1].  One obstacle 
to achieving this level of realism is the problem of modeling 
the feel of the environments that are to be simulated.  Even 
with the highest quality force-feedback interface, graphics, 
and control software, a haptic simulation will remain 
deficient if the simulation does not incorporate a realistic 
model of how the environment should feel.  One solution to 
this problem is to derive accurate models for haptic 
rendering from experimental measurements on real devices 
or environments [2]. Such “reality-based” modeling methods 
have been shown to result in haptic simulations that, when 
displayed to the user, more realistically replicate the feel of 
physical devices and phenomena [3], [4].   

 
 

A. Objective 
This paper demonstrates a reality-based approach to 

modeling the feel of a class of passive, mechanical devices: 
push-button switches.  The objective is to automatically 
obtain nonlinear, dynamic, parameterized models for such 
devices from experimental force and motion profiles.  These 
profiles are obtained by actuating the devices using an 
instrumented probe and recording the resulting force, 
position, and acceleration.  Parameterized models of the 
target devices are then generated from the experimental data 
using a modified version of the exponentially weighted 
least-squares (EWLS) method.  The models thus obtained 
are suitable for use in haptic simulations, and may be useful 
in such applications as: 1) virtual prototyping, in which 
realistic models of physical features of a prototype would 
allow a designer to evaluate a design without the need for 
costly physical prototypes; 2) training, in which accurate 
models of specific devices that the trainee must learn to use 
could be generated; and 3) device libraries, in which a large 
selection of haptic models of mechanical devices is available 
for use in general haptic simulations. 

B. Related Work 
Some other approaches to modeling buttons, switches, 

and knobs have been investigated.  The approaches have 
been varied, including generating ad hoc force profiles with 
subjectively adjusted parameters [5]; deriving approximate 
models from first principles, with arbitrarily selected model 
parameters [6]; and recording and playing back force 
profiles without identifying parameterized models from the 
recorded data [7]-[9].  Others have generated reality-based 
static parameterized models of buttons and switches [4].  
Initial work aimed at developing a method for identifying 
nonlinear dynamic models of buttons and switches is 
described in [10], [11].  The present work seeks to develop a 
general and automatic method for obtaining parameterized 
models of such devices. 

II. APPARATUS 

A. Target Devices 
Two push-button switches were selected as targets for the 

modeling method that will be described in this paper.  The 
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Fig. 1.  Push-button switches used in modeling experiments, with 
PB1 on the left and PB2 on the right. 
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two buttons, designated PB1 and PB2, are shown in Fig. 1 
and described in Table 1.  These buttons were selected for 
their relatively large range of motion (13 mm and 8 mm, 
respectively), relatively large maximum static actuation 
forces (17.8 N and 11.6 N, respectively), and distinctive feel 
characterized by a nonlinear force/motion relationship. 

B. Modeling Testbed 
The experimental system, described in [10], consists of a 

direct drive linear motor to apply perturbation inputs to the 
target device, an internal incremental encoder for measuring 
the position trajectory, and an impedance head to measure 
the acceleration trajectory and actuation force.  A detail of 
this system is shown in Fig. 2, in which the testbed is 
actuating and making measurements on button PB2.  The 
linear motor was found to have a static open-loop force 
bandwidth of 118 Hz, and a closed-loop position bandwidth 
greater than 29 Hz.  Control and data acquisition tasks were 
handled by a PC operating at a 4 kHz sampling rate. 

III. METHODS 

A. Nonlinear Model Structure 
A method for obtaining haptic models of mechanical 

devices must include a model structure that captures the feel 
of such devices.  Each device may have widely varying 
dynamic behavior, so a modeling method that is truly 
general must include a model structure that is capable of 
describing the feel of a broad class of target devices.  In the 
most general case, the force required to actuate a passive 
mechanical device is a nonlinear, time-varying function of 
the motion (position x, velocity v, and acceleration a) that 
the device is caused to undergo [10]: 

 
 ( )tavxfF ,,,=  (1) 
 
where F is the actuation force and t is time.  The success 
with which (1) describes the feel of a mechanical device is 
strongly dependent on the structure of the model function 
f(·),  with different target devices generally requiring 
different structures to accurately model their dynamic 
behavior.  This, of course, requires customized modeling 
that limits the generality of a given modeling scheme. 

One candidate structure that is well suited to 
approximating the feel of a wider class of mechanical 
devices is derived by generating a multivariable Taylor 
series expansion of (1) about an arbitrarily varying operating 

point [11]: 
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where m, b, and k are freely varying mass, damping, and 
stiffness parameters that are functions of the direction of 
motion (as indicated by the superscripts + and -), and the 
position x at which the model is evaluated.  The Fo term 
represents a varying offset force that is a product of the 
Taylor series expansion, but corresponds physically to a 
combination of a spring offset and dry friction forces.  The 
structure given by (2) has been shown to accurately model a 
one degree-of-freedom system specially designed with 
inherent nonlinearities and known physical parameters [11].  
The present work seeks to apply (2) to the more general 
problem of modeling existing mechanical devices, with 
particular emphasis on modeling buttons and switches for 
use in haptic simulations. 

B. Input Design 
Selection of a single, general-purpose perturbation input 

to excite the dynamics of a wide class of nonlinear devices is 
problematic; the nature of nonlinear systems prohibits a 
priori selection of optimal input frequency ranges and 
waveforms for estimating the parameters of nonlinear 
models.  Selection of inputs is therefore generally based on 
intuition and experience, with an underlying objective of 
maximizing the power level present in the signal over a 
large range of frequencies, resulting in model parameters 
that are valid for a wide range of operating conditions.  The 
approach taken in the present work was to select 
bidirectional position perturbation inputs that 1) contain a 
frequency range that is as large as possible, while remaining 
within the bandwidth of the perturbation system and safety 
limits of the target devices, and 2) span the entire travel of 
the target device.  Various inputs were evaluated, including 
single frequency sinusoids, swept sine waves, pseudo-
random binary sequences (PRBS), and small-amplitude 
swept sines or PRBS signals on large amplitude sinusoids. 

TABLE 1 
TARGET DEVICES FOR MODELING EXPERIMENTS 

 Push-Button #1 Push-Button #2 
Designation PB1 PB2 

Description Eaton 0150 
normally open 

Cutler-Hammer 1090 
normally closed 

Stroke (mm) 13 8 
Maximum Static 
Force (N) 17.8 11.6 

PB2

Impedance HeadLinear Motor Slider

Motion 

Fig. 2.   Detail of testbed system making measurements on PB2.  Not 
shown: encoder, motor drivers, control system. 
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C. Exponentially Weighted Least-Squares 
The system identification technique selected for a given 

modeling application is dictated primarily by the model 
structure.  An estimation method, based on exponentially 
weighted least-squares (EWLS), has been developed for 
estimating the position- and direction-varying parameters of 
model (2).  The EWLS algorithm is a recursive method for 
estimating time-varying parameters of linear models [12], 
with current data points being weighted more heavily than 
past data points.  The amount of relative weighting is 
determined by the following cost function J, in which the 
residuals, ei, through the current (kth) instant are multiplied 
by a sample-specific exponential weighting term: 
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In this equation, βi = λk-i is the weighting applied to the ith 

residual and λ, called the “forgetting factor,” is a 
dimensionless constant between 0 and 1 that determines the 
rate at which past data points are forgotten in the current 
time (kth) estimate of the model parameters.  Larger values 
of λ result in heavier weighting of past data points.  The 
equations of the EWLS algorithm can be found in [12]. 

D. Modeling Algorithm 
1) Data Collection and Preparation 

The first step in the modeling process is to actuate the 
target device and record the bidirectional position, 
acceleration, and force data resulting from the input motion 
trajectory.  In preparation to apply the EWLS algorithm, it is 
necessary to pre-process the experimental data to adapt the 
linear, time-varying parameter estimation algorithm to the 
problem of identifying nonlinear (position- and direction-
dependent), time-invariant models.  This is accomplished in 
the following steps: 

 
a. Directional Grouping: The entire data set (position, 

velocity, acceleration, and force) is grouped 
according to direction of travel, based on 
examination of the velocity trajectory, which is 
estimated from the measured position.  In this 
paper positive and negative direction data are 
indicated by the superscripts “+” and “-”, 
respectively.   

 
b. Sorting by Position: Each data set is sorted by 

position, ordered from low to high values of x. 
 

The above operations result in two data sets, one 
containing data recorded during travel in the positive 
direction, one containing negative direction data, and each 
ordered according to position.  Each set contains m 
measurements of the position, velocity, acceleration, and 
force (x(k), v(k), a(k),  and F(k) where k = 1…m), with each 

measurement corresponding to an x-location, rather than an 
instant in time.  It follows that data in the vicinity of the kth 

data point are spatial, rather than temporal, neighbors; data 
point k+1 and k-1 may have been sampled at widely 
different times, but, due to their spatial proximity, lie 
adjacent to data point k after undergoing the 
grouping/sorting operations described above.  It also follows 
that consecutive data points may have widely differing 
velocity, acceleration, and force, despite their closeness in 
position.  This is again a result of the grouping/sorting 
operations; data collected during different passes of the 
actuated probe may have different characteristics due to the 
varying input.  The result is a rich input, with parameter 
estimates in each spatial region derived from data points 
with similar spatial locations, but with a wide range of 
velocities and accelerations. 

2) Parameter Estimation 
With the data grouped and sorted, they are in the proper 

form to be used as inputs to the EWLS estimation algorithm.  
The position-varying parameters in (2) are estimated for 
each direction by sequentially stepping through the data 
points in each directional set, and estimating a set of model 
parameters at each point using the EWLS method.  The 
result is two tables of model parameters, one containing 
positive-direction model parameters as a function of the 
position x, and the other containing parameters for the 
negative-direction data.   

3) Post-Processing 
The modified EWLS method yields thousands of model 

data points distributed unevenly over the x-range of the 
model space.  Some of these data points occur at the same x-
values, due to the multiple passes of the instrumented probe 
during data collection.  At such points, each model 
parameter is replaced by the mean of all instances of that 
model parameter that occur at the same x-value.  The result 
is a set of unevenly spaced data points, with unique model 
parameters at each x-value.  To reduce the size of the data 
set, the data are resampled at a spacing of ∆x (called the 
resampling increment) and interpolated in cases when there 
is not a data point corresponding to a specified x-value.  The 
post-processing operations, applied to fictitious positive-
direction stiffness data, are illustrated in Fig. 3.  In the 
figure, unevenly spaced data, with repeated stiffness values 
at certain values of x, are averaged, resampled and 
interpolated to produce evenly spaced data with no repeated 
points.  

The reality-based models obtained in these steps are well 
suited for playback in haptic simulations.  The models are in 
the form of look-up tables, with model parameters m, b, k, 
and Fo tabulated as functions of x.  For each device there are 
two tables, one for each direction. 

IV. RESULTS 
The methods described in previous sections were applied 

to modeling the two push-button switches, PB1 and PB2.  
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The results of these experiments will now be presented. 

A. Push-Button #1 (PB1) 
Seven candidate perturbation inputs were applied to PB1, 

with the best input being selected as the one that resulted in 
the set of model parameters with the highest variance-
accounted-for (VAF).  The VAF represents the proportion of 
the variance of the force that is predicted by the model, and 
is equivalent to the coefficient of determination used in 
linear regression applications [13].  The input that resulted 
in the highest VAF for PB1 was a single frequency (2 Hz) 
sinusoid with an amplitude of 5.59 mm.  For this input, 
models were generated using various values of forgetting 
factor (λ = 0.9990…0.9999) and resampling increment (∆x = 
0.05…4 mm). The VAF was calculated for each 
combination of λ and ∆x, the results of which are shown in 
Fig. 4.  It is clear from this figure that the quality of the 
parameter estimates, as measured by the VAF, is a function 
of both the forgetting factor and the resampling increment.  
The optimal combination, based on the highest VAF, was 

found to be λ = 0.9999 and ∆x = 0.5 mm.  The estimated 
model parameters for this combination are shown in Fig. 5.  
In this figure, the position- and direction-dependence of the 
model parameters is apparent.   

To test the ability of the resulting models to describe the 
dynamic forces necessary to actuate PB1, a 1.5 Hz 
sinusoidal validation input was applied to the device, and the 
resulting forces were recorded.  The forces predicted by the 
reality-based model were compared to the measured forces, 
as shown in Fig. 6, which verifies the quality of the 
experimental model.  The effect of varying the forgetting 
factor on the nature of the parameter estimates is illustrated 
in Fig. 7 for the positive-direction only.  Note that increasing 
the forgetting factor results in a smoother parameter profile, 
which is most apparent in the trace of the offset force (lower 
right corner).  This trend is due to the fact that higher values 
of λ result in heavier weighting of more distant data points in 
the parameter estimates, resulting in a smoothing effect. 

To investigate the ability of the model structure and 
estimation method to realistically capture the feel of PB1, 
the frequency content of the predicted and measured forces 
were also compared, as shown in Fig. 8, which shows the 
Fast Fourier Transform (FFT) of each trace.  Note that the 
model accurately represents the frequency characteristics of 

Fig. 3.  Post-processing of unevenly-spaced, repeated 
model parameters 

Fig. 4.  Variance-accounted-for (VAF) as a function of forgetting factor 
(λ) and resampling increment (∆x) for PB1 
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the target device. 

B. Push-Button #2 (PB2) 
Eight candidate inputs were applied to PB2. The results 

presented here are for a 1-5 Hz swept sine, of amplitude 1 
mm, superimposed on a 0.5 Hz, 2.9 mm sine.  The optimal 
model parameters were found to result from a combination 
of λ = 0.9998 and ∆x = 0.2 mm.  The resulting model 
parameters are shown in Fig. 9, and the measured and 
predicted forces in Fig. 10.  The FFT of the measured and 
predicted forces are shown in Fig. 11.  The effect on 
parameter estimates of varying the forgetting factor is 
illustrated in Fig. 12. 

V. DISCUSSION 
The results of this research suggest that the nonlinear 

model structure and identification method presented in this 
paper are capable of modeling the feel of passive buttons 
and switches.  It has been shown that the quality of the 
haptic model is a function of the forgetting factor and 
resampling increment, with a drastic drop-off in model 
quality for resampling increments larger than 2 mm (see Fig. 
4).  It is probable that the value at which such a drop-off 

occurs depends on the scale of model features for a 
particular target device; for devices with quickly varying 
dynamics, it is clear that more closely spaced model 
parameters would be necessary to describe the dynamics.  
The relationship between the forgetting factor and model 
quality may also be related to the spatial rate of variation of 
a device’s dynamics, with quickly varying devices requiring 
a lower value of forgetting factor in order to accurately track 
the model parameters.  Higher values of λ resulted in models 
whose parameters vary more smoothly with position.  
Although the values of λ appear high when taken in the 
context of traditional application of the EWLS algorithm, 
the present application causes many more data points to be 
present in a given spatial range, due to repeated traversals of 
the target device’s range.  The result is that high values of 
the forgetting factor are necessary to incorporate small 
spatial ranges of data into the parameter estimate at a given 
point. 

During the process of refining the methods described 
here, variations on the model (2) were evaluated.  These 
variations included eliminating the offset force term and 
removing the direction-dependence in the model.  Both 
modifications were found to adversely affect the quality of 
the resulting models, as determined by visual inspection of 

5
10

0.999
0.9995

1

0

0.5

1

λx (mm)

m
+  (k

g)

246810

0.999
0.9995

1

0

0.5

1

λx (mm)

b+  (N
*s

/m
m

)

5
10

0.999
0.9995

1

0

1

2

λx (mm)

k+  (N
/m

m
)

246810

0.999
0.9995

1

-6

-4

λx (mm)

F o+  (N
/m

m
)

Fig. 7.  Positive-direction model parameters as a function of forgetting 
factor (λ) for PB1 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

f (Hz)

F 
(N

)

Actual
Predicted

Fig. 8.  Measured and predicted FFT of forces based on the model of PB1

0 2 4 6 8
-0.01

-0.005

0

0.005

0.01

0.015

x (mm)

m
 (k

g)

0 2 4 6 8
-2

-1

0

1

2

3

x (mm)

b 
(N

*s
/m

m
)

0 2 4 6 8
-1

0

1

2

3

4

x (mm)

k 
(N

/m
m

)

0 2 4 6 8
-15

-10

-5

0

5

x (mm)

F o (N
)

+ direction
- direction

Fig. 9.  Direction- and position-dependent model parameters for PB2

10 15 20 25
-4

-3

-2

-1

0

1

2

3

4

t (s)

F 
(N

)

Actual
Predicted

Fig. 10.  Measured and predicted forces based on the model of PB2

WeB4.5

501



  

the resulting force profiles and through quantitative 
comparisons of the VAF.  Future model improvements may 
include addition of stiction-type friction terms or velocity 
dependence of model parameters. 

A limitation of the present method is that it always 
estimates a complete model, regardless of whether a 
complete model is necessary to accurately represent the feel 
of the target device.  There may be certain devices whose 
behavior is strongly dominated by a subset of the terms 
present in (2).  For example, the behavior of certain devices 
may be dominated by the stiffness term, making the effects 
of damping or inertia negligible by comparison.  In such 
cases it would be desirable to neglect the terms that 
contribute little to the total force, resulting in a simpler 
model with fewer terms to pass through noise effects. 

The quality of the models generated in this work was 
determined strictly from objective, engineering analyses of 
the time- and frequency-domain characteristics of the forces 
predicted by the models.  Work is under way to evaluate 
these reality-based methods by displaying the resulting 
models to users using a simple haptic interface, and asking 
the users to subjectively rate the quality of the models.  
These methods are also being applied to more challenging 
target devices, including turn-signal switches with highly 
nonlinear dynamics.  Although these methods have been 
applied specifically to modeling buttons and switches, they 
should be equally applicable to other passive, nonlinear, 
mechanical devices.  
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