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Abstract

This paper describes a method for identifying
models of a class of nonlinear passive devices, such as
switches, knobs, and buttons. A general nonlinear
impedance model is presented, which accounts for
dynamics that change with both position and direction.
Exponentially-weighted least-squares is used to fit the
nonlinear model to experimental data from a specially
designed physical 1-DOF test device with inherent
nonlinearities.  The data are obtained using an
instrumented linear probe.

1. Introduction

An important aspect of improving the realism of
haptic simulations is that of accurately modeling the
feel of complex devices. One area of particular interest
is modeling the forces felt as a user interacts with
passive devices, such as switches, knobs, levers, and
other controls or tools. Consider, for example, an
automobile turn signal switch. As a user actuates the
switch, a rather complex force profile is felt, due to the
nonlinear nature of the switch. Detents, friction,
backlash, and other discontinuities contribute to the
distinctive “feel” of a turn signal switch. Additionally,
a description of the force profile may vary with
position, direction, or other parameters. Creating a
model of such a device for use in haptic simulations (in
which a user actuates a virtual turn signal switch and
feels the resulting force profile) is a challenging
proposition. The objective of the work presented in
this paper is to create the tools needed to effectively
model complex, nonlinear devices.

1.1.Related work

There are many approaches to modeling the feel of
complex devices. A common approach is to examine
the design of a device and formulate idealized
equations, based on engineering assumptions, to

describe the force profile. The parameters of these
idealized models are often selected arbitrarily and then
subjectively adjusted until the virtual device feels like
the real object [1]. Examples of this approach include
the work done by Allotta et al., in which a haptic
simulation of a cam-based rotary knob was created, the
model for which was derived from first principles using
arbitrarily assigned parameters [6]. Hayward and
Armstrong [5] took this approach in applying various
friction models to haptic rendering. The models were
simulated using a planar haptic device, but no mention
was made of how the model parameters were obtained.
There are many other examples in the literature of
using idealized engineering models to describe the feel
of passive devices.

Although this approach has theoretical appeal, in
actuality its success is limited by the complexity of the
device to be modeled (the “target device”) and the
modeler’s knowledge of the model parameters, which
may be highly dependent on material properties,
lubrication, assembly method, tolerances, and an
infinite variety of other factors. Clearly, there is a need
for an experimental approach to generating models for
complex, nonlinear devices [2]. These “reality-based”
models are derived from measurements on physical
target devices, and may be used to enhance haptic
simulations by providing a more realistic force display
for complex virtual devices.

There are two approaches to reality-based
modeling of interaction forces that are most relevant to
the work presented in this paper. The first is to actuate
a physical device using an instrumented probe, record
the resulting interaction forces, and then play the force
profile back, as is, in haptic simulations. In this
approach, a model is not fitted to the recorded force
profile. It is generally assumed that the force felt by
the user is a function of position only, and not
dependent on other parameters (such as velocity or
acceleration). An example of this is given by Angerilli
et al. [7], in which the force-position relationship of an
automotive gearshift was recorded and played back on
a specialized haptic interface. A parameterized model
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of the force-position relationship was not obtained.
Weir et al. [8] used an instrumented probe to record
force profiles for three push button switches. The
forces were plotted vs. position, velocity, and
acceleration, giving a rather complete description of
the feel of each switch. The data accounted for the
dependence of the force on velocity and acceleration,
but a parameterized model was not identified.

The advantage of the recording/playback approach
is that it is easily implemented, and does not require
system identification methods to model the force
profile. The disadvantage is that the method does not
account for the dynamics of the target system. It is, in
essence, a static description of the stiffness of the target
device, and makes no allowance for forces dependent
on velocity or acceleration. It is also difficult to adjust
the feel of a virtual device without making a new
measurement on a different device. For example, if it
is desired to change the feeling of mass or friction of a
virtual device, the recording/playback approach has no
way to account for the changed mass or friction,
because the force profile is strictly a force recording,
with no description of the causes of those forces.

The second approach is to actuate a physical
device using an instrumented probe, record the
resulting forces, and then fit a parameterized model to
the recorded data. The model may be a function of
position only, or a more complicated function of
position and other variables (such as velocity and
acceleration). The advantage of this method is that it
has the ability to describe the dynamics of a target
device, and so the force output may change depending
on how the user actuates the device (e.g., the force may
depend on velocity, as with a dashpot, or on
acceleration, as with a mass). This approach therefore
allows a more complete description of a target device.
It is also more versatile, allowing the user to adjust the
feel of the virtual device by changing the model
parameters. For example, if it is desired to change the
feeling of friction, it is a simple matter to change the
magnitude of the friction parameter in the model.

There are multiple examples of using reality-based
measurements to generate parameterized models.
Dupont et al. [1] successfully estimated the mass and
coefficient of friction of blocks during a teleoperated
stacking task using static measurements of contact
force. Richard et al. [4] discusses reality-based
estimation of the parameters of a modified Karnopp’s
friction model applied to a block sliding on various
surfaces; an active probe was used to actuate the block,
and the estimates were obtained using ordinary least-
squares. Okamura et al. [15] and Okamura et al. [16]
addressed the problem of modeling vibration for haptic

simulations. An instrumented stylus was used to
acquire vibration data during tapping, stroking, and
puncturing tasks. A parameterized model was fitted to
the measured data for each task.

MacLean and Durfee [9] and MacLean [10]
proposed a reality-based approach to estimating models
of switches. An active probe was used to apply
position inputs to a toggle switch and record the
resulting force. This data was used to generate a
segmented impedance model of the switch. A
different, specialized input was used to estimate each of
the model parameters. The parameters were estimated
individually, with the mass estimate dependent on the
estimate of the damping, which was dependent on the
estimate of the stiffness. Problems associated with this
approach limited the ability to estimate higher-order
parameters; only an estimate of the stiffness was
obtained.  Colton and Hollerbach [11] used an
instrumented probe to actuate a nonlinear test system,
and fitted a segmented impedance model to the
experimental data. Parameters estimates were obtained
simultaneously using ordinary least-squares.  The
stiffness and mass were estimated accurately, but, due
to noise and other factors, only a poor estimate of
damping was obtained.

1.2. Approach

The objective of the present research is to develop
the methods and apparatus for obtaining parameterized
models to describe the feel (relationship between
position, velocity, acceleration, and force) of 1-DOF
nonlinear passive devices. The approach is to use
exponentially-weighted  least-squares (EWLS), a
recursive algorithm that estimates the parameters of a
general nonlinear model from data obtained from
measurements on physical devices.

2. Model structure

2.1. General nonlinear model

General mechanical devices may exhibit a
nonlinear, time-dependent relationship between force
and position, velocity, and acceleration:

F=f(x,v,a,t,0) D

where F is the force, x position, v velocity, a
acceleration, 7 time, and 0 a vector of parameters of the
model (1). If a user causes a device to undergo motion
described by x, v, and a, then the device will exert a
force F on the user. Thus, the motion variables are
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considered the inputs to the system and the force the
output, as implied by (1). This approach is typical in
haptic simulations, in which a user interacts with a
virtual environment by manually controlling the
position and/or orientation of a haptic interface.

The aim of the present research is to automatically
estimate models of nonlinear devices for use in haptic
simulations. This objective reduces to the system
identification problem of determining a suitable model
function fin (1), and estimating its parameters 0 from
experimental measurements of the output F and the
inputs x, v, and a. One of the difficulties associated
with this problem is that current methods for estimating
the parameters for nonlinear models require that the
specific form of the nonlinear model (1) be known a
priori [3]. So, for a system identification method to
successfully model a device, the internal structure of
the device must be known in advance.

2.2. Locally linear model

A general approach to modeling nonlinear devices
is to work with a linear approximation of the true
behavior. If the target device’s dynamics are assumed
time-invariant, then (1) may be approximated by a
multivariable Taylor series expansion about the base
point {x,, v,, a,}, truncated after the first-order terms:

F :f(xavaav) = f(xo!vo’ao)'i_(x_xo)gl—i_
X

f A

9
+(v—vo)$+(a—ao)a—a

2)

where the partial derivatives are evaluated at the base
point. Defining the constants

of of of
F = WVy.a,), k=—,b=— m=— (3
e = (Xorvrt) ox v " da G)

and substituting them into (2), results in:
F=ma—a,)+b(v-v))+k(x—x)+F, (4)

Returning to the assumption of time-invariance, it is
noted that x, will not change with time, requiring that v,
and a, be zero. Making the necessary changes to (4)
and reordering its terms results in:

F=ma+bv+ke+F, —kx, )

The parameters F. and x, are not separately identifiable

by current estimation schemes, and so are combined:
F, 0o = F, c = kxo (6)
Substitution into (5) results in:

F=ma+bv+hkx+F, @)

Thus, a general model of the form given by (1), in
which the output force is a nonlinear function of the
motion variables, may be approximated at each value
of x by a linear mass-spring-damper model (7). The
final term represents an offset force due to the
Coulomb-like friction plus an offset in the spring. A
final modification to the model is obtained by allowing
the parameters to vary continuously with position and
direction of motion over the range of the target device:

Fe {er(x)a +b (xW+kT()x+E, (x), v>0 (®)

m (x)a+b (x)v+k (x)x+F, (x), v<O0

where the superscripts (" and *) indicate the direction of
motion for which the model parameters are valid. The
direction- and position-dependence provide the
flexibility needed to model a wide variety of devices.

The model described by (8) is appropriate for
several reasons. First, the derivation of the linearized
model is founded on the Taylor series expansion, and
so represents a true linear approximation to the
dynamics at a given operating point. As long as the
excursion from the operating point is small, the linear
approximation will be valid. This should always be the
case, since (8) is based on varying the operating point
so that it matches the position at which the function is
evaluated. Second, many mechanical devices are
actually comprised of mass, damping, stiffness, and
friction elements, and so may be represented accurately
by a model of this form. Third, existing identification
methods may be modified to estimate the parameters
appearing in (8). Lastly, most people have an intuitive
feel for the types of forces present in (8). In haptic
simulations, in which the objective is for a device to
feel realistic, there are obvious benefits of using
models with intuitive appeal.

3. Procedure

The problem at hand is to fit a model of the form
given by (8) to data obtained from measurements on a
physical target system. This is equivalent to estimating
the position- and direction-varying parameters in (8).
The procedure for formulating these parameter
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Impedance head

Fig. 1. Modeling testbed actuator and
impedance head

estimates is comprised of three steps: data acquisition,
data preparation, and parameter estimation.

3.1. Data acquisition

The actuation system must be capable of actuating
the target device and recording the resulting force,
position, velocity, and acceleration. A probe with these
capabilities has been constructed, comprised of a
direct-drive linear motor with an internal linear
encoder, and an impedance head capable of measuring
force and acceleration. Velocity is estimated by
differentiating the position signal. A portion of the
system is shown in Fig. 1, and details are given in [11].

The quality of the parameter estimates is a function
of the input used to actuate the target system.
Specifically, the frequency content of the input signal
must span the range of frequencies corresponding to
the individual model parameters [14]. This implies the
need for an input signal containing multiple discrete
frequencies, or a continuous range of frequencies. An
additional requirement is imposed by the assumption
that the model parameters vary with position: the input
signal must also cause the actuator to travel through the
entire x-range of the target device, thereby allowing
estimation of the parameters at each value of x. An
input that meets these requirements is a constant
amplitude swept-sine. The amplitude is selected to
span the entire range of x-values, and the frequency
sweep is selected to span the anticipated range of
frequencies of the target device. Data are acquired as
the probe moves through the swept-sine trajectory.

3.2. Data preparation

The instrumented probe follows the position
trajectory over time, and so the data (x, v, a, and F)
obtained are tabulated vs. time. The parameters in the
proposed model (8), on the other hand, are assumed to
depend on position and direction of travel. The time-
varying data, therefore, must be re-cast into a position-
and direction-varying form. This is accomplished by

first grouping the data according to direction of travel,
as determined by the sign of the filtered velocity. Each
data group is then sorted by position.

3.3. Parameter estimation

The estimation method selected for the present
work is exponentially-weighted least-squares (EWLS),
a recursive algorithm for estimating model parameters
from experimental data. Although generally applied to
time-varying models, EWLS is suitable for position-
varying models, after sorting and grouping the data.

Starting with an initial estimate of the parameters,
EWLS steps through each data point (in this case, the
measured data at each position), recursively estimating
the model parameters as a function of position. EWLS
is capable of estimating nonlinear model parameters by
weighting current data more heavily than previous
samples. The relative weighting of current vs. past data
is determined by selecting the “forgetting factor” 4,
with 0 < A < 1. Large values of 4 result in greater
emphasis on past data, with 4 = 1 corresponding to the
standard recursive least-squares, in which all samples
contribute equally to the recursive estimate. Smaller
values of 1 allow more accurate tracking of varying
parameters by weighting more heavily the recent data.

Table 1. EWLS equations

Li+h= A+ (pTIZE :)-([1))(;;(:;;(1 +1) @)
P(i+1)= %[P(i) C LG+ Dol i+ DPG)) (b)
e(i) = y(i+1)— 9" (i +10() (©)
0(i+1) =0(i) + L(i + De(i) (d)

The EWLS algorithm is summarized in Table 1, in
which ¢(7) is a row vector of input data at the current

(i) position step, y(i) is the output, e(i) is the
prediction error, é(i) is a column vector of parameter

estimates, and L(i) and P(i) are intermediate matrices
used in computing the estimate [14]. In the case of the
model (8), these variables are defined as follows:

o) =[a) vi) x() 1] 9)

y(@) = F() (10)

6 =lmo b0 ko Eof  an
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4. Target device

These methods have been applied successfully to a
target device comprised of elements with known model
parameters. The target device (see Fig. 2) consists of
nonlinear (hardening) springs, a mass, and a dashpot.
The springs were designed to exhibit constant stiffness
over certain ranges of x, and rapidly changing stiffness
over other ranges. This was verified in an independent
experiment using an Instron load frame. The x-varying
stiffness thus obtained is shown in as a solid line in the
upper plot of Fig. 3.

5. Experimental results

In the initial experiments, the instrumented probe
actuated the target device with a 90 second, 1-4 Hz
swept-sine position input over a 50 mm range, sampled
at 4 kHz. A dashpot was not included in this
experiment. After grouping the data by direction and
sorting by position, the EWLS algorithm was used to
estimate the model parameters as a function of position.
A forgetting factor of A = 0.999 was found to give
satisfactory parameter tracking for this target device.
The parameters were interpolated at 1 mm increments.
The results for both directions are shown in Fig. 3.
Note that the stiffness estimate closely matches the
actual stiffness (determined using the load frame). The
damping is estimated to be zero, as expected without
the dashpot in place. The mass estimate tracks, with
some variation, the actual constant mass of the system.
The offset force tracks reasonably well that portion that
is due to the spring offset, as determined using the
Instron load frame. Any discrepancy in the offset force
may be due to the friction, as shown in equation (6).

A 2 Hz sinusoidal input was applied to the system
in order to verify the estimated model’s ability to
predict the output force of the target device. The result
is shown in Fig. 4, in which it is clear that the model
closely predicts the output of the physical system.

6. Discussion and conclusion

The preliminary results presented in this paper
indicate that the EWLS method is capable of estimating
the position- and direction-varying parameters of a
model of the form described by (8). The parameters
are estimated simultaneously, which is an improvement
over certain other methods that estimate parameters
individually, with the quality of each parameter
estimate depending on the estimate of the other,
previously estimated parameters. It has also been
shown that the EWLS method, when used in

= Impedance head
| 7 SR

Fig. 2. Nonlinear test system
conjunction with a swept-sine input, is capable of
accurately estimating the mass of a target device, which
is often the most difficult parameter to estimate.

Current research is aimed at applying these
methods to more complex nonlinear systems, such as
an automobile turn signal lever. Initial results suggest
that the present methods will be able to identify models
of these types of devices. These models will then be
used in haptic simulations. Other approaches are being
investigated, including fitting segmented models to the
experimental data, which has the appeal of reducing the
overall complexity of the parameter variations. Take,
for example, the model parameters shown in Fig. 3.
The stiffness parameter, k, and the offset force, F,, are
approximately constant over the range 0 < x < 12 mm.
It would therefore simplify the model structure by
making that position range a single segment, with the
stiffness and offset force constant values in that range.
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