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ROBUST NODE GENERATION FOR MESH-FREE
DISCRETIZATIONS ON IRREGULAR DOMAINS AND SURFACES∗

VARUN SHANKAR† , ROBERT M. KIRBY‡ , AND AARON L. FOGELSON§

Abstract. We present a new algorithm for the automatic one-shot generation of scattered
node sets on irregular two dimensional (2D) and three dimensional (3D) domains using Poisson
disk sampling coupled to novel parameter-free, high-order parametric spherical-radial-basis-function-
based geometric modeling of irregular domain boundaries. Our algorithm also automatically modifies
the scattered node sets locally for time-varying embedded boundaries in the domain interior. We
derive complexity estimates for our node generator in 2 and 3 dimensions that establish its scalability,
and verify these estimates with timing experiments. We explore the influence of Poisson disk sampling
parameters on both quasi-uniformity in the node sets and errors in a radial-basis-function-based–
finite-difference discretization of the heat equation. In all cases, our framework requires only a small
number of “seed” nodes on domain boundaries. The entire framework exhibits O(N) complexity in
both 2 and 3 dimensions.
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embedded boundaries
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1. Introduction. Many engineering applications require solving partial differen-
tial equations (PDEs) on both surfaces and their enclosed volumes. A typical pipeline
is that data drive one’s understanding of the geometry, and from that initial data a
discretization of the PDE is built—either via mesh-based methods (e.g., finite element
methods (FEMs)) or from the class of mesh-free methods (e.g., radial basis function
(RBF) methods). From the latter class, RBF-based–finite-difference (RBF-FD) meth-
ods have been used for over a decade to solve PDEs [2, 7, 4, 41, 5, 14, 15, 19, 13, 26,
27, 21, 37], and recent work by Flyer and coworkers [12, 11, 1] has helped overcome
the traditional problems of RBF interpolants. Thus, for the remainder of this article,
we will assume PDE discretizations based on RBF-FD methods.

One motivation for developing the methods described in this paper is our own
work in simulating blood clotting, which involves the formation of an aggregate of
platelets. We treat each platelet as a discrete object (reconstructed from a set of
discrete points) moving with the fluid in which it is immersed [16, 35, 34]. Proteins
and other molecules that are secreted into the fluid by platelets mediate interplatelet
interactions. The fluid concentrations of these molecules each satisfy an advection-
diffusion-reaction equation in the fluid domain, with Robin-type boundary conditions
satisfied on each platelet’s surface. There may be several hundred platelets in the
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ROBUST NODE GENERATION FOR MESH-FREE METHODS A2585

overall domain, with their numbers changing over time as new platelets enter and
exit the domain; the fluid domain (that part of the overall domain external to all
platelets) itself changes as the platelets’ positions change. In order to apply RBF-FD
to this problem, a rapid and local node generation and modification algorithm is re-
quired. The methods presented in this paper may also be valuable in constructing
geometry and node sets for solving PDEs from medical images; such images are used
to define the geometry of a vascular bed for simulations of blood flow in that vascu-
lar bed [38, 39]. While current methods utilize meshing and an FEM-based solution
framework, a rapid node generation and modification algorithm would allow direct
solution of PDEs on the point-cloud data obtained from these images using RBF-
FD. Another application, which advances in cellular imaging should make possible
soon, is constructing intracellular domains, accounting for the presence of cellular
organelles, and generating node sets within them for the solution of fluid-flow or
advection-diffusion-reaction equations for intracellular processes [23, 29].

With the above applications in mind and from previous experience with RBF-
FD [31], we attempted to generate node sets using existing tools such as Gmsh [22]
and Distmesh [25], with the idea that we would generate surface and volumetric
meshes, disregard the edge information, and use the remaining node set for building
differential operators. However, numerical differential operators built on these node
sets were unstable on irregular domains (e.g., approximations of second-order differ-
ential operators that had positive real eigenvalues). We then turned to the graphics
community for inspiration on point-based sampling techniques, and tried Poisson disk
sampling [3, 42]. A naive implementation (without careful tuning) of Poisson disk
sampling also resulted in point sets that were bunched at curved boundaries and/or
that generated poorly conditioned numerical operators.

To overcome these challenges, we designed node generation algorithms (based on
Poisson disk sampling) for irregular domains using only a small set of locations on do-
main boundaries/surfaces as a starting point. The algorithms presented in this paper
attempt to satisfy four criteria. First, since RBF-FD is our chosen high-order dis-
cretization method, we require node sets on domain boundaries and the enclosing vol-
ume that approximately respect a user-specified node spacing h on the surface and the
volume; convergence estimates for RBF-FD methods are typically specified in terms of
such measures of node spacing [8, 10]. Second, we wish to eliminate free or tuning pa-
rameters (other than h) for generating these node sets in order to provide mathemati-
cal modelers with robust and automatic tools for solving their model equations. Third,
in order to rapidly generate node sets on time-varying domains, we desire one-shot
node generation algorithms with the ability to modify node sets locally, in contrast to
existing (iterative) repulsion-based approaches [18]. Fourth, in order to reduce time-
to-discovery, we want our methods to be (provably) computationally efficient and scal-
able with regards to the number of points needed to discretize the problem, regardless
of the order of the RBF-FD method used. Our focus in this work is not on generating a
suitable parametrization for an arbitrary point cloud, which is a problem that has been
tackled by others (e.g., [6]). We restrict ourselves to irregular domains with boundaries
that are easily parametrizable, of genus-0, and at least homeomorphic to the sphere
Sd−1 ⊂ Rd.

The remainder of our paper is structured as follows. In section 2, we present a
robust approach to geometric modeling using spherical RBF (SBF) interpolation, and
confirm its high-order convergence rates with numerical experiments. In section 3, we
present a node generation pipeline that utilizes this new geometric modeling technique
and Poisson disk sampling to generate scattered node sets on irregular domains and
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A2586 SHANKAR, KIRBY, AND FOGELSON

Table 1
Table of symbols.

Symbol Meaning

N Total number of domain nodes
Ni Number of interior nodes in the domain

Nb Number of boundary nodes
Nobb Number of nodes in the domain bounding box

Nd Number of “seed nodes” and data sites for geometric model

q Length/perimeter of the domain boundary in 2 dimensions
a Area of the domain in 2 dimensions

aobb Area of the domain bounding box in 2 dimensions

s Surface area of the domain boundary in 3 dimensions
v Volume of the domain in 3 dimensions

vobb Volume of the domain bounding box in 3 dimensions

h Approximate node spacing in domain
hi Approximate node spacing in domain interior

hb Approximate node spacing on domain boundary
Np Number of embedded inner boundaries

NΓ
b Number of nodes on each embedded boundary

NΓ
d Number of seed nodes on each embedded boundary

qΓ Length/perimeter of each embedded boundary in 2 dimensions

sΓ Surface area of each embedded boundary in 3 dimensions

hΓ Node spacing on each embedded boundary

surfaces while satisfying our four design criteria. We also verify the quasi-uniformity
of these node sets via histograms, and test their influence on stability and errors in
high-order RBF-FD discretizations. In section 4, we derive complexity estimates that
show the scalability of our proposed scheme, and verify these estimates with timing
experiments. We conclude in section 5 by discussing the trade-offs of our work and
possible future directions.

A note on symbols. For the readers’ convenience, we have listed and defined
the important symbols used in this article in Table 1. This table is not exhaustive,
and other symbols will be defined in the text where required.

2. Geometric modeling with RBFs. The foundation of our node generation
algorithm for irregular domains is a method for reconstructing the domain boundary
from a set of “seed” nodes obtained from an application. One approach to doing this
reconstruction is to form a parametric geometric model of the domain boundary. The
authors have previously developed parametric geometric models based on global SBF
interpolants that have been used for modeling/reconstructing irregular surfaces in
several applications [35, 36, 34, 33, 21, 20]. However, these methods require the user
to tune a shape parameter. We now present a modification of the geometric models
for closed surfaces developed in [35] that eliminates this parameter. We assume the
closed surface M ⊂ Rd is homeomorphic to the unit sphere Sd−1, where d is the
dimension of the embedding space. Let χd = {Xk}Nd

k=1 be a set of data sites on M.

For the following discussion, we assume that Λ = {λk}Nd

k=1 = {λ1
k, λ

2
k, . . . , λ

d−1
k }Nd

k=1 is
the set of parameter values for the data sites χd.

2.1. Modeling closed surfaces. We focus on the problem of modeling a closed
surface M ⊂ Rd. Let ξ(λ) ∈ Sd−1. Furthermore, assume we are given Nd points
X1, . . . ,XNd

on M, where Xk = {X1
k , . . . , X

d
k}. To model the surface, we use an

SBF interpolant generated from a polyharmonic spline (PHS) kernel. Interpolating
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ROBUST NODE GENERATION FOR MESH-FREE METHODS A2587

Xj with this new PHS SBF interpolant, we have

sj(λ) =

Nd∑
k=1

cjkφ
(√

2(1− ξ(λ) · ξ(λk))
)
,(1)

where φ(r) = rm on S1 (m is odd), and φ(r) = rm log(r) on S2 (m is even). For S1

(the unit circle), λ = λ1 = λ, allowing us to write (1) as

sj(λ) =

Nd∑
k=1

cjk (2− 2 cos (λ− λk))
m
2 , 0 < m /∈ 2N.(2)

A similar (albeit more complicated) expression can be derived for an interpolant on
S2 (the unit sphere). To find the coefficients, we solve the following linear systems for
j = 1, . . . , d:


(2(1− ξ(λ1) · ξ(λ1)))

m
2 . . . (2(1− ξ(λ1) · ξ(λNd

)))
m
2

(2(1− ξ(λ2) · ξ(λ1)))
m
2 . . . (2(1− ξ(λ2) · ξ(λNd

)))
m
2

...
. . .

...

(2(1− ξ(λNd
) · ξ(λ1)))

m
2 . . . (2(1− ξ(λNd

) · ξ(λNd
)))

m
2


 c

j
1
...

cjNd

 =

 X
j
1

...

Xj
Nd

 .
(3)

In the case of standard PHS RBF interpolants, it is important to augment the RBFs
with polynomials of degree

⌊
m−1

2

⌋
(or higher) to regularize the end conditions [17].

However, in the case of PHS SBFs, this is unnecessary due to periodicity. More
important is the question of the invertibility of (3). It is well known that the inclusion
of polynomials is required to show unisolvency of the interpolant for conditionally
positive-definite kernels such as the PHS kernel [10]. However, in our experiments,
we found that we were able to solve the linear system in (3) in all cases with simple
Gaussian elimination even without the inclusion of trigonometric polynomials.

It is important to note that, unlike in [35] where infinitely smooth SBFs with
shape parameters were used, we use the piecewise-smooth PHS SBF with a fixed m,
eliminating the need for tuning the shape parameter; we remark on the choice of m in
section 2.2. We demonstrate in section 2.2 that this setting allows for spectral conver-
gence rates when recovering smooth functions, despite the use of a piecewise-smooth
SBF. The interpolation matrix in (3) can be decomposed for a cost of O(N3

d ), with
subsequent coefficient calculations for all functions of the parametric nodes costing
O(N2

d ) operations. We will discuss the computational complexity of this technique in
the context of node generation in a later section.

2.1.1. Parametrization and interpolation nodes. We now discuss the para-
metrization of the seed nodes on the domain boundary. This parametrization will be
used within the SBF interpolant (1). Clearly, since the SBF interpolant assumes
parametrization on Sd−1, we must parametrize the seed nodes on the same set. How-
ever, as mentioned in section 1, this is, in general, a nontrivial task in 3 dimensions.
For the sake of this article, we focus on simple parametrizations of the seed nodes on
the domain boundary.

When modeling a closed surface M ⊂ R2, a natural parametric node set for
interpolation is Λ = {λk}Nd

k=1 ∈ [−π, π). For the purposes of this article, we restrict
ourselves to equispaced samples. If adaptive sampling is required, these samples can
be clustered appropriately.
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A2588 SHANKAR, KIRBY, AND FOGELSON

For M ⊂ R3, we use the parametric node set Λ = {λk}Nd

k=1 = {λk, θk}Nd

k=1, where
−π ≤ λ < π and−π/2 ≤ θ < π/2. However, obtaining the (λk, θk) pairs is not quite as
simple as in the case of M ⊂ R2. While equispaced points in [−π, π) correspond to eq-
uispaced Cartesian samples for S1, this is not true for S2. As was done previously [35],
we use quasi-uniform Cartesian nodes on the sphere transformed into spherical co-
ordinates in the rectangle [−π, π) × [−π/2, π/2) to obtain our parametric node sets.
There are many quasi-uniform node sets used for this purpose in the RBF literature,
such as minimal energy or maximal determinant nodes [35]. However, these node sets
are typically obtained by solving expensive optimization problems. Other node sets,
such as icosahedral nodes, are only available for certain values of Nd. We select a
node set that is easily computed on-the-fly in O(Nd) operations for any value of Nd:
the so-called generalized spiral points, developed by Rakhmanov, Saff, and Zhu [28].
Interestingly, the algorithm presented in [28] was improved by Thomsen in an online
discussion group [30, 40]. We opt to use Thomsen’s generalized spiral algorithm, pre-
sented in simple form on [30]. Once the generalized spiral points are generated, we
then transform them into spherical coordinates to obtain the parametric node set Λ.

2.1.2. Evaluation nodes. While a good choice of interpolation nodes controls
geometric modeling error, the choice of evaluation nodes affects the errors in RBF-FD
discretizations of PDEs on surfaces and domain boundaries. The goal is to find a set
of parametric evaluation nodes in the rectangle [−π, π)× [−π/2, π/2) (or in [−π, π] for
curves) that results in quasi-uniformly-spaced Cartesian nodes on the surface. While
this can be accomplished by solving optimization problems or rejection sampling in
parametric space, we will adopt an approach that is a combination of parametric
supersampling and Cartesian thinning. This is explained in the context of our node
generator in the next section.

2.2. Convergence of geometric models. In this section, we test the conver-
gence of our new geometric model for closed surfaces with the goal of understanding
its behavior on reconstructing both infinitely smooth and finitely smooth domain
boundaries. We use the boundaries presented in [35], repeated here for reference.
The functions corresponding to the one dimensional (1D) curves are given by (where
two dimensional is shortened to 2D)

2D C∞ :

[
1 +Aexp

(
−(1− cosλ)2

σ1

)]
xideal,(4)

2D C2 :

[
1 +Bexp

(
−(1− cos2 λ)1.5

σ2

)]
xideal,(5)

xideal(λ) = (xc + a cosλ, yc + b sinλ) ,(6)

where −π ≤ λ ≤ π. For the boundary represented by the C∞ function, we use
xc = yc = 0.9, a = 0.04, b = 0.05, A = 0.09, and σ1 = 0.1. For the boundary
represented by the C2 function, we use xc = yc = 0.2, a = b = 0.1, B = 0.04, and
σ2 = 0.9. The functions corresponding to the 2D surfaces are given by (where three
dimensional is shortened to 3D)

3D C∞ :

[
1 +Aexp

(
r2
c

σ1

)]
xideal,(7)

3D C3 :

[
1 +Bexp

(
r1.5
c

σ2

)]
xideal,(8)

xideal(λ) = (xc + a cosλ cos θ, yc + b sinλ cos θ, zc + c sin θ) ,(9)
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(c) Approximating a C2 function
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(d) First derivative

Fig. 1. Errors in function and derivative approximation for closed 1D curves using φ(r) = r7.
The dashed lines in the figures on the bottom row are lines of best fit with slopes shown in the
legends.

where −π ≤ λ ≤ π, −π2 ≤ θ ≤
π
2 , and rc = 1−cos θ cos θc cos(λ−λc)−sin θ sin θc. For

the boundary represented by the C∞ function, we use xc = yc = zc = 0.9, a = 0.1,
b = 0.2, c = 0.09, A = 0.09, and σ1 = 0.2. For the boundary represented by the C3

function, we use xc = yc = 0.1, zc = 0.2, a = b = c = 0.1, B = 0.04, and σ2 = 16
25 .

We set λc = 0 and θc = π
2 . Note that since the functions represent curves/surfaces,

their first parametric derivatives are the tangent vectors; for a detailed description on
generating these and other geometric quantities from the interpolant, see [35].

We first present results using PHS SBFs for interpolating the above closed 1D
curves, then present analogous results for interpolating the above closed 2D surfaces.
In the 1D case, we use φ(r) = r7, while in the 2D case we use φ(r) = r6 log r.
Figure 1 shows the results of modeling 1D curves of differing smoothness with PHS
SBFs. Figures 1(a) and 1(b) show the errors in approximating an infinitely smooth
function and its first derivative using PHS SBFs. Figure 1(a) shows that we get
a convergence rate of approximately N−9

d (ninth order) when interpolating the C∞

function with φ(r) = r7, and lose an order when approximating its derivative. This
is an order higher than the theoretical O(N−8

d ) convergence rate for PHS RBFs in
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(a) Approximating a smooth function
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(c) Approximating a C3 function
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Fig. 2. Errors in function and derivative approximation for closed 2D surfaces using φ(r) =
r6 log r. The results for the other first derivative are similar and therefore omitted. The dashed lines
in the figures on the bottom row are lines of best fit with slopes shown in the legends.

1 dimension [10]. In contrast, Figures 1(c) and 1(d) show that when approximating
a boundary represented by a C2 function, the convergence rates are limited by the
smoothness of the function, with each subsequent derivative converging at one order
lower, as indicated by the slopes of the dashed lines.

Figure 2 shows similar results for modeling boundaries that are 2D surfaces. Let
hd ∝ 1√

Nd
. The predicted convergence rate for the kernel φ(r) = r6 log r is O(h8

d) in

2 dimensions [10], and the observed convergence rate in Figure 2(a) is slightly higher.
Figure 2(b) shows that we attain the theoretically predicted O(h7

d) convergence rate
when approximating the first derivative. Figure 2(c) shows that the approximation
order is limited in the case of approximating a C3 function. In the infinity norm, we
have lost about three orders of convergence when compared to the C∞ case, and one
further order when approximating the derivative.

It is important to note that while spectral convergence rates can be obtained for
infinitely smooth functions using infinitely smooth SBFs [35], the shape parameters in
that work had to be carefully selected by running extensive experiments. In contrast,
the PHS SBFs in this study required no tuning to achieve high order convergence
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rates. Our experiments also indicated that using spherical harmonics in conjunction
with SBFs resulted in spectral convergence rates for modeling 2D surfaces. However,
we believe that our current formulation strikes an excellent balance between com-
putational cost and accuracy for both C∞ and finitely smooth boundaries. When
selecting Nd in practical applications, it is reasonable to select it by ensuring that the
error of the geometric model (from theory) is equal to or lower than the error from
an RBF-FD discretization.

3. Robust node generation on irregular domains and surfaces. Having
tested our geometric modeling technique, we present our algorithm (Algorithm 1) for
generating scattered nodes on irregular domains Ω ⊂ Rd, d = 2, 3, using a combina-
tion of Poisson disk sampling and the new geometric modeling technique. Algorithm 1
has the important feature that it ensures that interior nodes maintain a user-specified
separation distance of h from the boundary and between each other. In the remain-
der of this section, we will discuss the salient features of Algorithm 1, present some
modifications to allow for time-varying embedded boundaries, explore the quality of
the node sets it produces (using histograms), and test its suitability for RBF-FD
discretizations.

Algorithm 1 Node generation for domains with smooth boundaries.

Given: χd = {(Xd)`}Nd

`=1, a set of seed nodes on domain boundary.
Given: h, the average separation distance between nodes.
Generate: χb = {(Xb)j}Nb

j=1, a set of boundary nodes with spacing h.
Generate: ηb, the set of outward unit normals on the boundary.
Generate: χi = {xk}Ni

k=1, a set of interior nodes with spacing h.
Generate: χ = χi ∪ χb.

1: Obtain χb using Algorithm 2.
2: Evaluate derivatives of (1) at the parametric evaluation points obtained from

Algorithm 2 to obtain ηb.
3: Use the normals ηb to project χb inwards a distance h, giving a set χ̂b; this set

defines an inner boundary and an inner domain.
4: Build a kd-tree on the set χ̂b.
5: Generate the oriented bounding volume (OBV) corresponding to χ̂b using Algo-

rithm 3.
6: Fill the OBV with points of (approximate) spacing h using Poisson disk sampling

in Algorithm 4 [3].
7: Test each sample against the outward normal at its closest inner boundary point

(found using the kd-tree). If it is outside the inner domain, discard.
8: All remaining Poisson disk samples (not including χ̂b) form the set χi.
9: Set χ = χi ∪ χb.

3.1. Sampling on surfaces. A node generation algorithm for RBF-FD methods
must generate boundary nodes that are approximately a user-specified distance h
apart. Since all domain boundaries are submanifolds of Rd, this problem involves
generating a set of parametric evaluation nodes that result in approximately quasi-
uniform Cartesian node sets on surfaces. We present an algorithm based on two simple
ideas: supersampling of our geometric model, and decimation. As implemented in
Algorithm 2, we first supersample the parametric interpolant (1) to the surface at a
large set of parametric evaluation points in [−π, π) (curves) and [−π, π)× [−π/2, π/2)
(surfaces). The resulting Cartesian nodes are not quasi-uniformly spaced, but tend
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A2592 SHANKAR, KIRBY, AND FOGELSON

to “bunch” according to the parametric map. Thus, the Cartesian node set is now
thinned (or decimated) to approximately enforce that all nodes be no closer than
some separation distance h. This requires only the implementation of a ball query
(range search) algorithm—in our case provided by our kd-tree implementation—in
conjunction with a simple depth-first traversal of the node set (in any order). This
approach is often referred to as sample elimination. A strength of our approach is
that the resulting set of samples comes from the geometric model, and retains the
high-order accuracy conferred by the model. Algorithm 2 clearly only approximately
enforces that points be a distance h apart in the Euclidean norm, much like Bridson’s
algorithm for Poisson disk sampling [3]. We will explore the spatial distributions of
the node sets produced by Algorithm 2 in section 3.6.1.

Algorithm 2 Sampling on surfaces.

Given: χd = {(Xd)`}Nd

`=1, a set of seed nodes on domain boundary.
Given: h, the average separation distance between nodes.
Given: τ , the supersampling parameter.
Generate: χb = {(Xb)j}Nb

j=1, a set of boundary nodes with spacing h.
Generate: Λe, a set of parametric evaluation nodes for (1)
Generate: the SBF geometric model in (1).

1: Using (1), fit a geometric model to the nodes in χd.
2: To find Nb corresponding to a value of h, estimate the surface area (or perimeter)
ad of the OBV corresponding to χd (generated by Algorithm 3). Then, Nb =
adh
−(d−1).

3: Evaluate (1) at N̂b = τNb parametric evaluation points either in [−π, π) or
[−π, π)× [−π/2, π/2). Let χ̂b be the resulting candidate set of Cartesian evalua-
tion points.

4: Build a kd-tree on χ̂b.
5: Initialize g, an N̂b array of flags, to 1.
6: Store χ̂b in N̂b × d matrix X̂b.
7: for k = 1, N̂b do
8: if g(k) 6= 0 then
9: Set idxs = indices of points within distance h of X̂b (using, for instance, a

kd-tree ball query).
10: Set g(idxs 6= k) = 0.
11: end if
12: end for
13: Set ĝ = find (g = 1), the vector of indices corresponding to flags of 1.
14: Collect all parametric evaluation nodes corresponding to indices in ĝ into array

Λe.
15: Evaluate t(1) at Λe to obtain χb, the Nb Cartesian points on the boundary.

3.2. Oriented bounding boxes (OBBs) from principal component anal-
ysis (PCA). Algorithm 1 requires an OBV for node generation. Almost any simple
shape will serve as a bounding volume, but we restrict ourselves to OBBs, since
intersection tests of vectors against boxes simply involve testing a set of linear in-
equalities. Further, the Poisson disk sampling algorithm is trivial to implement
for a rectangular/cuboidal domain. Our goal is to use a technique that has low
computational complexity, is easy to implement, and is meshfree. Further, a tech-
nique that produces approximately minimal volume OBBs is desirable, since this
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Algorithm 3 OBB generation using PCA.

Given: Xb, the Nb × d matrix containing a set of points for which we want an
OBB.
Generate: B, the matrix of OBB vertices.

1: Compute xc = 1
Nb

[
∑Nb

i=1 Xb(i,1)
∑Nb

i=1 Xb(i,2)
∑Nb

i=1 Xb(i,3) ], the centroid of Xb.
2: Compute M = 1⊗ xc, the Nb × d matrix with xc as each of its rows.
3: Compute C = 1

Nb
(Xb −M)T (Xb −M), the d × d normalized covariance matrix

corresponding to Xb.
4: Decompose C as C = V DV T , where V contains eigenvectors (rotations about

origin), D contains eigenvalues (scaling).
5: Compute unrotated boundary points X̂b = XbV .
6: Find column minimum and maximum values for X̂b, i.e., two vertices of the un-

rotated bounding box.
7: Using these two vertices, find the side lengths of the box along each coordinate

direction.
8: Using two vertices and side lengths, find the other 2d− 2 vertices of the bounding

box.
9: Store all unrotated bounding box vertices in B̂, a 2d × d matrix.

10: Compute the OBB vertices B = B̂V T .

will result in fewer inside/outside tests. PCA fits all our requirements [9], and can eas-
ily be used to generate an OBB for our domain in O(Nb) operations. This procedure
is summarized in Algorithm 3.

3.3. Poisson disk sampling. Algorithm 1 is primarily structured around Pois-
son disk sampling inside the OBB generated by Algorithm 3. Our approach for Poisson
disk sampling in the OBB is a straightforward implementation of the algorithm de-
scribed in [3]. For completeness, we present this procedure in Algorithm 4, adapted

to our notation. The complexity of this algorithm is O(k̂Nobb). Since k̂ is a constant,

the cost scales as O(Nobb). In section 3.6, we will explore the impact of k̂ on the
uniformity of node distributions and on the accuracy for RBF-FD discretizations of
PDEs. We explore the node distributions obtained from the use of Algorithm 4 within
Algorithm 1 in section 3.6.2.

3.4. Domains with time-varying embedded boundaries. Biological prob-
lems often involve domains with not only irregular outer boundaries, but irregular
embedded inner boundaries, e.g., platelets and red blood cells in a blood vessel [34].
While the authors have begun developing numerical methods for simulations in such
complex domains [36, 31, 32], our methods currently lack a robust node generation
algorithm that can modify its node sets locally when the embedded inner bound-
aries deform, and are added or removed. Fortunately, Algorithm 1 is easily modified
to tackle this problem. Consider the scenario where Algorithm 1 has generated node
sets χb and χi on the boundary and interior of an irregular domain Ω0 without any em-

bedded boundaries. Now consider the inclusion of irregular boundaries Γ = {Γj}
Np

j=1

enclosing domains {Ωj}
Np

j=1 into Ω0 in such a way that these boundaries define a new

domain Ω = Ω0\
⋃Np

j=1 Ωj . Our node generator must automatically and efficiently

generate a node set in Ω that deletes the nodes contained in Ω̃ =
⋃Np

j=1 Ωj . In fact,
our algorithm also deletes any nodes that are within a distance h of the embedded
boundaries, again ensuring that the global separation distance is approximately h.
This is detailed in Algorithm 5. This procedure involves only locally changing the
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Algorithm 4 Fast Poisson disk sampling.

Given: h, the minimum distance between nodes.
Given: d, the spatial dimension.
Given: k̂, the number of samples to choose before rejection (the Poisson neigh-
borhood size).
Given: B, the matrix of vertices of the domain OBB.
Generate: The set of Nobb Poisson disk samples in the domain OBB.

1: Initialize a d-dimensional Cartesian background grid G with cell size h√
d
. A value

of −1 in G indicates no sample, any nonnegative integer is the linear index of the
sample in a cell.

2: Generate the first uniform random node x0 within the domain OBB. Insert this
node into G.

3: Initialize the array of node indices (active list) I with the index of 0 (corresponding
to x0).

4: while I is not empty do
5: Choose a random index i from I.
6: Generate k̂ uniform random nodes in the spherical annulus centered at xi with

inner radius h and outer radius 2h. Place these nodes in set P.
7: Compare all of P against existing nodes within distance h (using G to facilitate

comparisons).
8: If none of the nodes in P are sufficiently far from existing samples, remove i

from the active list.
9: If any of the nodes in P are sufficiently far from existing samples, add their

indices to the active list, store these valid samples in the set V.
10: If any of the nodes in P are outside the domain OBB, reject them.
11: end while
12: The set of Nobb Poisson disk samples is V.

(a) Star domain (b) Star with embedded el-
lipse

Fig. 3. Local node modification for embedded boundaries using Algorithm 5. The embedded
ellipse is shown using circles.

original node set as new objects are introduced, and also accounts for cases where an
embedded boundary may touch the domain outer boundary. It is important to note
that this algorithm features potential early termination: a point is only tested against
bounding boxes and embedded boundaries until it is found to be contained within
an embedded boundary. While other efficiency improvements are possible, we forgo
them for simplicity. Figure 3 shows an example of the node sets obtained using Algo-
rithm 5. In Figure 3(a), we show the interior nodes on the star domain. Figure 3(b)
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Algorithm 5 Node set modification for (closed) embedded boundaries.

Given: h, the average separation distance between nodes in domain Ω0.
Given: α, the ratio of the numbers of inner boundary nodes to outer boundary
nodes (see section 4.2).
Given: χb = {(Xb)j}Nb

j=1, a set of boundary nodes on ∂Ω0.
Given: ηb, the set of outward unit normals on the boundary ∂Ω0.
Given: χ = {xk}Nk=1, the set of nodes on Ω0 (including the boundary).
Given: NΓ

d seed nodes on each of the embedded boundaries Γj , j = 1, . . . , Np.
Generate: Z, the N × 2 array whose first column indicates whether a point
xk ∈ Ω, and second column is j if xk ∈ Ωj .

Generate: χ̃, the (modified) set of Ñ nodes on the irregular domain Ω = Ω0\Ω̃.
1: Using (1), fit a geometric model to the seed nodes on each embedded boundary

Γj , j = 1, . . . , p.
2: Set NΓ

b = αNb.

3: For j = 1, . . . , Np, obtain χΓj

b , the NΓ
b boundary points on the jth embedded

boundary using Algorithm 2.
4: Evaluate derivatives of the Np boundary interpolants at NΓ

b parametric points to

obtain η
Γj

b , the set of unit normals on each boundary (pointing into Ω0).
5: Extend each embedded boundary Γj by distance h in their normal directions to

obtain Γ̃j and the corresponding points χ̃
Γj

b .

6: Let χ̃Γ
b =

⋃Np

j=1
χ̃Γj

b .

7: Add χ̃Γ
b to the domain kd-tree currently containing χb.

8: Generate the OBB for each Γ̃j using Algorithm 3 on the NΓ
b boundary points.

9: Initialize the 2D array (map) Z with dimensions N × 2 to zeros.
10: for k = 1, N do
11: for j = 1, Np do
12: if xk is within the jth OBB then
13: Find the closest point ζ on Γ̃j using the domain kd-tree.

14: Use ζ to test xk against Γ̃j .

15: if xk is inside Γ̃j then
16: Set Z(k, 1) = 1, Z(k, 2) = j.
17: Break and go to next k value.
18: end if
19: end if
20: end for
21: end for
22: Let g = find (Z(:, 1) = 0) be the list of indices of points with Ω.
23: Set χ̃ = χ(g = 0), Ñ = length (χ̃).

shows the node set obtained when an ellipse is embedded into the star domain. It is
easy to see that Algorithm 5 only locally modifies node sets, as desired.

Algorithm 5 does not take into account the case where an embedded boundary
is removed. There are two options within the above framework for modifying the
node sets in such a situation. The first option is to fully generate a new node set on
Ω after an embedded boundary is removed; this would involve using Algorithm 5 to
modify the original node set on Ω0 to account for the embedded boundaries that were
not removed. This option is rather wasteful. Instead, Algorithm 5 associates each
grid point xk with an embedded boundary Ωj . Thus, to handle a removed embedded
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boundary Ωj , we need only find all nodes in the original node set that are contained
within Ωj by searching the second dimension of the array Z for the value j. Of course,
this second option relies on knowing which of the embedded boundaries were removed.
If this is not known, the first option discussed above is preferable.

3.5. Boundary refinement and ghost nodes. The numerical solution of
PDEs with RBF-FD sometimes requires denser node sets near domain boundaries [11,
12, 31], and/or ghost nodes outside the domain boundary to enforce boundary con-
ditions [11, 1, 32]. Our node generator must, therefore, possess these capabilities.
Generating ghost nodes is straightforward: given a set of boundary nodes and unit
outward normals, simply copy the nodes a distance h outside the domain along the
outward normals. Further, Algorithm 1 can be easily modified to provide a node
set refined near a boundary: simply copy the boundary nodes at some user-specified
distance inward from the boundary. This places a layer of nodes between χb and the
inner boundary χ̂b. This approach generalizes straightforwardly to multiple layers of
boundary refinement. However, a drawback of this approach is that it does not gen-
erate graded boundary-refined node sets, i.e., node sets that smoothly vary in space.
We leave this generalization for future work.

3.6. Some results. We now study three aspects of our algorithm. First, we
study the spatial distributions of domain boundary nodes obtained from Algorithm
2. Next, we explore the influence of the Poisson neighborhood size k̂ on the spatial
distributions of interior nodes obtained from Algorithm 4. Finally, we explore the
effect of the Poisson neighborhood size k̂ on the stability and errors in an RBF-FD
discretization.

3.6.1. Spatial distribution of boundary nodes. We first explore the effect of
Algorithm 2 on the node distributions produced on surfaces, and compare it to a naive
sampling of the parametric map. To briefly illustrate the efficacy of this procedure,
we sample two functions (corresponding to domain boundary s) whose maps from
parametric space to Cartesian space are likely to produce distorted point sets. The
2D shape (the star domain) is given by the following C0 function:

r(λ) = | cos(1.5λ)|sin(3λ),(10)

x(λ) = r(λ) cos(λ), y(λ) = r(λ) sin(λ),(11)

where λ ∈ [0, 2π). The three dimensional (3D) shape is a classic red blood cell shape,
obtained by smoothly distorting the sphere, and is therefore C∞ [21, 24]. For this
test, we interpolate the star shape with the SBF interpolant at Nd = 128 points (due
to its low smoothness) and attempt to generate Cartesian samples with an average
node spacing of h = 0.005. We interpolate the 3D shape with the SBF interpolant
at Nd = 700 points, and attempt to generate Cartesian samples with an average
node spacing of h = 0.05. The resulting node sets and their histograms are shown
in Figures 4 and 5. Figure 4(a) clearly shows the clustering in the naive sampling
technique for the star domain, corroborated by the histogram in Figure 4(c) which
shows a large number of nodes with a distance of h = 0.0025 to the nearest neighbor
(rather than the desired h = 0.005). Examining the histogram, we also see that the
nodes are also sometimes very far apart (as far apart as h = 0.02). In contrast,
Algorithm 2 produces much more uniform node sets, which can be verified visually
(Figure 4(b)) and from the corresponding histogram (Figure 4(d)). In this case, the
histogram shows the greatest number of nodes in the bin corresponding to h = 0.005,
with exponentially fewer nodes in bins corresponding to larger h values. The 3D
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(a) Naive parametric sampling (b) Sampling by Algorithm 2

(c) Histogram for h = 0.005 (naive sampling) (d) Histogram for h = 0.005 (Algorithm 2)

Fig. 4. Comparison of surface sampling techniques for the star domain using supersampling
parameter τ = 2.

results are shown in Figures 5(a) and 5(b). Figure 5(c) (naive sampling) shows that
most nodes are in a bin close to h = 0.03, but are distributed over a relatively wide
range. With naive sampling, there appear to be no nodes whatsoever in the desired
h = 0.05 bin! In marked contrast, the histogram in Figure 5(d) (corresponding to
sampling by Algorithm 2) shows the most number of nodes in the h = 0.05 bin (as
desired), with exponentially fewer nodes in bins corresponding to larger h values. In
all cases, Algorithm 2 still appears to produce quasi-uniform node sets.

3.6.2. Spatial distribution of interior nodes. We turn our attention to the
node sets produced by Algorithm 1 in the interiors of domains. Recall that this is
accomplished by applying Algorithm 4 in the domain bounding box to obtain Nobb
nodes, then eliminating those nodes that lie outside the parametric SBF interpolant to
the boundary. It is important to note that Algorithm 4 utilizes the Poisson neighbor-
hood size k̂ to control the cost of sampling. However, k̂ also determines the number of
nodes against which samples are compared to specify the desired separation distance
h. Indeed, one could imagine setting k̂ = Nobb to obtain a perfectly spaced set of
nodes at a cost of O(N2

obb) for node generation. Since k̂ controls both computational
cost and spatial distribution, it is important to explore the effect of this parameter
on spatial distributions of nodes. To do so, we compute histograms of distances to
the nearest neighbor for node sets in the interior of the star domain with h = 0.005
(2 dimensions), and the red blood cell with h = 0.05 (3 dimensions). The results are
shown in Figure 6. From Figure 6, it is clear that Algorithm 1 produces node sets
that are quasi-uniform regardless of the k̂ value used. Most nodes lie in the desired
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(a) Naive parametric sampling (b) Sampling by Algorithm 2

(c) Histogram for h = 0.05 (naive sampling) (d) Histogram for h = 0.05 (Algorithm 2)

Fig. 5. Comparison of surface sampling techniques for the red blood cell domain using super-
sampling parameter τ = 2.

bins of h = 0.005 (in 2 dimensions) and h = 0.05 (in 3 dimensions), and the number
of nodes in bins corresponding to larger values of h drops off exponentially in both 2
and 3 dimensions. Very similar node distributions were obtained when objects were
embedded within (results not shown).

3.6.3. Stability for RBF-FD discretizations. Our motivation for designing
Algorithm 1 was at least partly because nodes obtained from popular node generators
such as Gmsh were not always suitable for RBF-FD discretizations. Figure 7 shows an
example of this. A sixth-order RBF-FD discretization of the Laplacian in the unit ball
resulted in eigenvalues with positive real parts when using a Gmsh-generated node set
with N = 4561 nodes (Figure 7(a)). In contrast, the same high-order discretization on
N = 5157 nodes generated by Algorithm 1 results in a well-behaved spectrum (Figure
7(b)) with a relatively small spread even along the imaginary axis. We note that it
may indeed be possible to obtain appropriate nodes for RBF-FD discretizations from
Gmsh if the right parameters and algorithms are used. However, Algorithm 1 required
no fine tuning for this example.

3.6.4. Errors in RBF-FD discretizations. The goal of this article was to
design a node generator that produces node sets suitable for RBF-FD discretizations.
In this section, we provide some evidence as to that suitability by exploring the effects
of the parameter k̂ on the errors and convergence rates from RBF-FD discretizations
of the heat equation:

∂c(x, t)

∂t
= ∆c+ f(x, t),x ∈ Ω,(12)

∂c(x, t)

∂n
= g(x, t),x ∈ γ,(13)
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(a) Star, k̂ = 15, h = 0.005 (b) Star, k̂ = 45, h = 0.005

(c) Red blood cell, k̂ = 15, h = 0.05 (d) Red blood cell, k̂ = 45, h = 0.05

Fig. 6. Histograms of node sets generated by Algorithm 1 in the interiors of the star domain
(top row) and the red blood cell domain (bottom row) as a function of the Poisson neighborhood size

k̂.

(a) Eigenvalues on Gmsh nodes (b) Eigenvalues on Algorithm 1 nodes

Fig. 7. Eigenvalues of the discrete Laplacian formed by a sixth-order RBF-FD method in the
unit ball for nodes obtained from Gmsh (left) and Algorithm 1 with k̂ = 15 and τ = 2 (right).

where Ω is the red blood cell domain seen earlier, and γ is its curved boundary. We
have restricted ourselves to a 3D test for brevity. We use Nd = 800 seed nodes as
the starting point for the node generator; this is sufficient to ensure that the errors
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(a) Convergence rates for k̂ = 15
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(b) Convergence rates for k̂ = 45

Fig. 8. Errors in the solution to (12)–(13) in the red blood cell domain (Nd = 800) as a function

of the stencil size n, number of nodes N , polynomial degree `, and Poisson neighborhood size k̂.

in geometric modeling match the high orders of accuracy in RBF-FD. To measure
convergence rates, we manufacture a solution to the heat equation by prescribing
c(x, t), then computing a corresponding f(x, t) and g(x, t) that make the prescribed
solution hold. We use the infinitely smooth ansatz

c(x, t) = c(x, y, z, t) = 1 + sin(πx) cos(πy) sin(πz)e−πt.(14)

For the spatial discretization, we use the overlapped RBF-FD method [31], and the
ghost node technique outlined in [32]. The RBF-FD discretization is achieved by us-
ing PHS RBFs in conjunction with high-degree polynomials, where the convergence
rates are dictated purely by the polynomial degree [12, 11, 1]. Since these discretiza-
tion techniques are explained in detail in the references, we restrict ourselves to a
description of our results. Primarily, when increasing the RBF-FD stencil size n and
consequently the polynomial degree `, we expect to see higher orders of convergence.
We run these convergence studies and calculate `2 errors in the numerical solution for
different values of n, `, k̂, and h ∝ 1

3√
N

. The results are shown in Figure 8. Study-

ing Figures 8(a) and 8(b) closely, we see slightly different convergence rates between
the two figures for the same stencil size and polynomial degree. From the data (not

shown), the errors for k̂ = 45 appear to be slightly lower than the errors for k̂ = 15,
but not significantly so at higher values of N . This is not surprising, given the simi-
larity in the histograms for these two k̂ values, but it is reassuring since it indicates
that we can use k̂ = 15 and still achieve low errors and high orders of convergence on
fairly irregular domains.

4. Complexity analysis. We now derive the computational complexity of Al-
gorithms 1 and 5.

4.1. Complexity of one-time node generation. The total computational
cost of our node generator is a sum of the individual costs of the following steps:
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• Forming a kd-tree on the domain boundary: The kd-tree is formed on Nb
points for a cost of C1 = O(dNb logNb). Each subsequent nearest neighbor
search costs O(logNb) operations.

• SBF boundary representation: Since this involves Nd seed nodes, it requires
the solution of the Nd×Nd dense linear system (3), which has an asymptotic
cost of O(N3

d ). This interpolant is evaluated to obtain τNb boundary points
for a cost ofO(NbNd), then thinned for a worst-case cost ofO(Nb logNb) using
the kd-tree. If we assume Nd = γNb, where γ ∈ (0, 1] is some small number,
the evaluation cost can be written as O(γN2

b ). Cost: C2 = O(γ3N3
b ) +

O(γN2
b ) +O(Nb logNb).

• OBB: The primary cost in the PCA computation of the OBB is the O(d2Nb)
cost of forming the d × d covariance matrix. The subsequent eigendecom-
position of the d × d matrix is computed in d3 flops. Then, the rotations
and max/min computations to find the unrotated bounding box cost O(Nb).
The costs of rotations of the bounding boxes can be neglected when d = 2, 3.
Cost: C3 = O(Nb).

• Poisson disk sampling in the OBB: Using Algorithm 4, Poisson disk samples
for the OBB can be computed for a cost of C4 = O(Nobb).

• Eliminate OBB nodes outside the domain boundary: This requires finding the
closest boundary point to each of the Nobb Poisson disk samples in the OBB
using the kd-tree. The total cost is therefore given by C5 = O(Nobb logNb).

The total cost is given by Ctot =
∑5
i=1 Ci. Dropping the big-O notation for

convenience, we have

Ctot = dNb logNb + γ3N3
b + γN2

b +Nb logNb +Nb +Nobb +Nobb logNb.(15)

All our costs are currently in terms of Nb and Nobb. However, it is more appropriate
to express Ctot in terms of the total number of points in the domain N = Ni + Nb.
This requires dimension-specific simplifications.

4.1.1. 2D complexity estimates. We now present the complete 2D complexity
estimates in terms of N . Assuming the nodes are approximately uniformly spaced on
both the boundary and the interior, we have

hi =

(
a

Ni

) 1
2

, hb =
q

Nb
.(16)

If we wish the nodes to be spaced comparably on the boundary and interior, it is
reasonable to assume that hi = hb = h. Solving for Nb then gives

Nb = qa−
1
2N

1
2
i .(17)

Substituting (17) into (15) and neglecting sublinear terms in Ni gives us

Ctot = γ3q3a−
3
2N

3
2
i + γ

q2

a
Ni + 2qa−

1
2N

1
2
i + 2Nobb.(18)

We must now relate Nobb to Ni to get the total cost in terms of Ni. We know that

hi =

(
a

Ni

) 1
2

=

(
aobb
Nobb

) 1
2

,(19)

=⇒ Nobb =
aobb
a
Ni.(20)
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Substituting this new expression into (18) and retaining only linear and higher-order
terms in Ni, we obtain

Ctot = γ3q3a−1.5N1.5
i + γ

q2

a
Ni + 2

aobb
a
Ni.(21)

Since N = Ni +Nb and Nb << Ni, it is reasonable to replace Ni by N , giving us

Ctot = γ3q3a−1.5N1.5 + γ
q2

a
N + 2

aobb
a
N.(22)

The constant in front of the leading-order N1.5 term is typically small in practice for
large N and smooth domain boundaries. In such a case, the O(N) terms dominate.
Thus, for small γ and reasonably compact domains, we have

Ctot ≈
(
γ
q2

a
+ 2

aobb
a

)
N.(23)

Our node generator thus has a theoretical computational complexity of O(N) in 2
dimensions, despite the use of a global RBF interpolant on the boundary. As we show
in section 4.3, we recover the O(N) complexity in practice.

4.1.2. 3D complexity estimates. We proceed much in the same way as in the
2D case, but obtain a different estimate. First, assuming the nodes are approximately
uniformly spaced on both the boundary and the interior, we now have

hi =

(
v

Ni

) 1
3

, hb =

(
s

Nb

) 1
2

.(24)

Now, letting hi = hb = h, solving for Nb gives

Nb = sv−
2
3N

2
3
i .(25)

Using (25) in (15) and neglecting sublinear terms in Ni, we have

Ctot = γ3s3v−2N2
i + γs2v−

4
3N

4
3
i + 2Nobb.(26)

Once again relating Nobb to Ni using the volume of the OBB vobb, we have

Ctot = γ3s3v−2N2
i + γs2v−

4
3N

4
3
i + 2

vobb
v
Ni.(27)

For a sufficiently large Nb (small h) and fixed Nd, γ can be as low as O(10−3). Thus,
both the quadratic and superlinear terms in the above expansion may be small for a
compact domain, leaving us with

Ctot ≈ 2
vobb
v
Ni ≈ 2

vobb
v
N.(28)

Even if the superlinear term is retained, this represents a complexity of O(N1.3̄3).
However, in practice, we observe close to O(N) complexity, as we show in section 4.3.
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4.2. Complexity of node set modification. We now derive the complexity
associated with Algorithm 5. The total worst-case computational cost for removing
nodes from the interior of Np embedded boundaries can be written as

Cmod = O(Np(N
Γ
d )3) +O(NpN

Γ
b (NΓ

d )2) +O(NpN
Γ
b ) +O(NNp),(29)

where the first term corresponds to fitting the SBF geometric model to each embedded
boundary, the second term to evaluations of the models to obtain normals, the third
term to the computation of the OBBs of the embedded boundaries, and the last term
to testing each of the N domain nodes against the Np OBBs. Now, let

NΓ
b = αNb, N

Γ
d = αNd.(30)

If approximately the same spacing between nodes is maintained on all boundaries,

we have hΓ = hb, which in 2 dimensions gives us α = qΓ

q (rounded to the nearest

integer). Similarly, in 3 dimensions, we have α = sΓ

s . Dropping the big-O notation
for convenience, Cmod can be written as

Cmod = αγ2(α2γ + 1)NpN
3
b + αNpNb +NNp.(31)

Using the fact that N = Ni +Nb, (31) can be written as

C2D
mod = αγ2(α2γ + 1)Npq

3a−1.5N1.5
i + αNpqa

− 1
2N

1
2 +NNp.(32)

By a similar argument as in section 4.1, the N1.5
i term is small, leaving an estimate

of

C2D
mod ≈ NNp,(33)

where sublinear terms in N and Ni have been neglected. Since the number of embed-
ded boundaries is always much smaller than the number of nodes, i.e., Np << N , we
have C2D

mod = O(N). The 3D derivation is similar. Using the definition of Nb in terms
of Ni in 3 dimensions, (31) can be rewritten as

C3D
mod = αγ2(α2γ + 1)Nps

3v−2N2
i + αNpsv

− 2
3N

2
3 +NNp.(34)

Again, in practice, the linear term in N dominates. Thus, we have

C3D
mod ≈ NNp,(35)

which is in practice O(N) since Np << N . If a bounding box hierarchy is used to
keep track of the embedded boundaries, the O(NNp) term can be further shrunk to
O(N logNp), but we leave this approach for future work. It is important to note
that our estimates for node generation only constitute the worst case. In general,
it is unlikely that a Poisson disk sample needs to be tested against all OBBs of the
embedded inner boundaries. Indeed, the disk sample is deleted as soon as it is found to
lie within any embedded boundary, requiring no additional tests. The true complexity
estimate in this scenario is nondeterministic. We leave this analysis for future work
also.
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(a) Star, Nd = 128
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(b) Star, Nd = 256

10
2

10
4

10
6

Number of Nodes (N)

10
-1

10
0

10
1

10
2

10
3

T
im

e
 (

s
e
c
)

Cost of Node Generation

k̂ = 15, τ = 2

k̂ = 15, τ = 4

k̂ = 45, τ = 2

k̂ = 45, τ = 4

Slope = 1.236

Slope = 1.175

Slope = 1.19

Slope = 1.174

(c) Bumpy sphere, Nd = 400
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(d) Bumpy sphere, Nd = 800

Fig. 9. Cost of node generation using Algorithm 1 on 2D (top row) and 3D (bottom row) irreg-
ular domains (on a loglog plot). The timings are shown as a function of the Poisson neighborhood

size k̂, the supersampling parameter τ , the number of data sites Nd, and the total number of nodes
N . The dashed lines are lines of best fit used to measure slopes.

4.3. Scaling of the node generator. We now present scaling results (in the
form of timings) for our node generator. All timings were done using a C/C++ code
on the six-core Intel Coffee Lake 8700-K (12 logical cores with hyperthreading) clocked
at 4.56 GHz, with 16 GB of 2600 MHz DDR4 RAM. We focus on the star domain
from section 3 and the bumpy sphere domain from [21, 37]. We perform two experi-
ments: the first measures the cost of node generation in these two irregular domains,
while the second measures the cost of modifying these node sets with embedded inner
boundaries. The results of the first experiment are shown in Figure 9, and the results
from the second experiment are shown in Figure 10.
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(a) Star with embedded ellipse
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(b) Bumpy sphere with embedded red blood
cell

Fig. 10. Cost of node set modification using Algorithm 5 on 2D (left) and 3D (right) irregular
domains (on a loglog plot). The number of inner boundary data nodes is fixed to NΓ

d = 24 in 2

dimensions and NΓ
d = 200 in 3 dimensions. The timings are shown as a function of the Poisson

neighborhood size k̂, the supersampling parameter τ , and the total number of nodes N (measured
prior to modification). The dashed lines are lines of best fit used to measure slopes.

Figure 9 verifies that the cost of node generation is indeed approximately O(N)
in both 2 dimensions (Figure 9(a)) and 3 dimensions (Figure 9(b). The cost in each

case goes up slightly as Nd, k̂, and τ are increased (though this is hard to see from
the graphs), but the slopes remain approximately linear. Code profiling shows that
the bulk of the time is taken up by kd-tree operations for large N . We also verified
that the geometric modeling costs scaled as O(NbNd) (not shown). We return to this
in the discussion section. For the next experiment, we place a single ellipse tilted
at an angle of π/4 with respect to the x-axis at the center of the star domain; for
the 3D analogue of this experiment, we place a single red blood cell in the interior
of the bumpy sphere domain. We then measure the costs of modifying the node sets
as the node spacing h is decreased and N is increased. It is important to note that
this also has the effect of increasing the number of nodes on the boundaries of these
inner embedded objects. The results are shown in Figure 10 for different values of
k̂ and τ . Both the 2D and 3D experiments (Figures 10(a) and 10(b), respectively)
show once again that our asymptotic estimates hold true: we see that the cost of node
set modification is approximately O(N) (see figure captions). Obviously, the precise
cost depends on the shape, volume, and number of the inner embedded boundaries.
Nevertheless, the experiment verifies that one can indeed modify these node sets much
more quickly than one can generate them, reflecting the local nature of our node set
modification algorithm. From these results, the results from sections 3.6.1–3.6.4, we
conclude that it is reasonable to set τ = 2 and k̂ = 15 for our applications. It may be
reasonable to adapt τ according to the local curvature of the domain boundary. We
leave this for future work.

5. Discussion. In this article, we presented new algorithms for one-shot node
generation on irregular domains. The algorithm utilizes a parameter-free high-order
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boundary representation based on SBF interpolation, with a simple strategy for ob-
taining quasi-uniform node sets on domain boundaries. When used in conjunction
with a bounding box based on PCA, this allowed for the use of Poisson disk sampling
without hand tuning. The simplicity of the algorithm allowed for a straightforward
complexity analysis of our algorithms in 2 and 3 dimensions. We demonstrated that
our algorithms achieve a scaling of O(N) both in theory and in practice. Further,
we demonstrated that our algorithm for local node set modification also exhibited a
complexity of O(N), albeit with a much smaller constant than in the node generation
case. We demonstrated that the node sets were quasi-uniform, and that they were
suitable for RBF-FD discretizations even for the value of k̂ = 15 and τ = 2.

Profiling revealed that our kd-tree implementation was the primary bottleneck
in our algorithm, with the nearest neighbor search and ball query operation costs
dominating the cost of node generation. A faster data structure for these operations
would likely significantly improve the wall-clock times for node generation and modifi-
cation. Similarly, a bounding box hierarchy would enable rapid node set modification
when hundreds of time-varying embedded boundaries are involved. These are ar-
eas of future research. The second significant bottleneck is the high-order boundary
representation, with asymptotic costs of O(N1.5) in 2 dimensions and O(N2) in 3
dimensions. Though the constants in front of these terms are small, it may still be
desirable to use a high-order boundary representation that costs O(Nd) operations to
obtain; this should also speed up evaluation of the interpolant significantly. The first
author plans to pursue this area of research. Finally, the authors plan to leverage
this node generation framework to investigate biological problems involving coupled
bulk-surface chemical transport.
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