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Allocation Strategies for High Fidelity Models in the Multifidelity Regime\ast 

Daniel J. Perry\dagger , Robert M. Kirby\dagger , Akil Narayan\ddagger , and Ross T. Whitaker\dagger 

Abstract. We propose a novel approach to allocating resources for expensive simulations of high fidelity models
when used in a multifidelity framework. Allocation decisions that distribute computational resources
across several simulation models become extremely important in situations where only a small num-
ber of expensive high fidelity simulations can be run. We identify this allocation decision as a
problem in optimal subset selection and subsequently regularize this problem so that solutions can
be computed. Our regularized formulation yields a type of group lasso problem that has been studied
in the literature to accomplish subset selection. Our numerical results compare the performance of
algorithms that solve the group lasso problem for algorithmic allocation against a variety of other
strategies, including those based on classical linear algebraic pivoting routines and those derived from
more modern machine learning--based methods. We demonstrate on well-known synthetic problems
and more difficult real-world simulations that this group lasso solution to the relaxed optimal subset
selection problem performs better than the alternatives.
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1. Introduction. A persistent challenge in uncertainty quantification is estimating the
effect of uncertain parameters on quantities of interest. A common approach to understanding
the effect of a parameter is to evaluate an ensemble of simulations for various parameter values.
This approach is reasonable when multiple runs of a simulation model or experiment are easily
obtained. Unfortunately, a simulation model or discretization that is more true-to-life, or has
higher fidelity, requires additional computational resources due to, for example, an increased
number of discrete elements or more expensive modeling of complex phenomena. For these
reasons, a high-fidelity model simulation can incur significant computation cost, and repeating
such a simulation a sufficient number of times to understand parameter effects can quickly
become infeasible.
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Recent work has introduced an effective solution to this problem by using multiple fidelities
of simulation models where less-expensive, lower-fidelity versions of the high-fidelity model are
used to learn the parametric structure of a simulation. This structure is utilized to choose
a small parameter ensemble at which high-fidelity runs are assembled, providing insight into
the finer details and effects of the simulation parameters [23, 38]. One important decision
in this allocation process is which parameter values should be used in the less costly low-
and medium-fidelity simulations and which values are worth the more costly high-fidelity
simulation. This decision becomes extremely important for situations where it is physically
impossible to run the high-fidelity simulation more than a small number of times, say \scrO (10)
times.

By assuming the simulation realizations are elements in a Hilbert space, previous work
uses a Gram matrix associated to a parameter ensemble to learn the parametric structure.
Standard linear algebra tools, such as the Cholesky decomposition, are utilized to rank ``im-
portant"" parameter values where high-fidelity simulations are run.

The multifidelity situation is special among subset selection problems since we cannot add
additional elements to a high-fidelity subset due to the significant marginal cost of additional
computation. Thus choosing the best subset becomes quite critical in order to effectively
utilize a very small number of high-fidelity simulations. While the classical linear algebraic
approaches mentioned previously perform reasonably well, these approaches ignore the exten-
sive work done in subset selection in a more general context in both the data analysis and the
machine learning literature [10, 5, 3, 4, 25, 1].

Our main contributions in addressing this problem are as follows:
\bullet Our work includes substantial experimental comparisons with a broad range of subset
selection algorithms. These include classical methods, such as randomized sampling,
single-layer Gaussian processes, and pivoted numerical linear algebra routines, along
with more modern machine learning--based strategies, such as leverage sampling and
neural networks. We conclude that a particular group orthogonal matching pursuit
(GOMP) algorithm yields superior results for the problems we consider.
\bullet We apply existing GOMP approximation theory to a single-fidelity approximation
problem, providing justification for the competitive performance of GOMP compared
to other algorithms in the context of subset selection. Our analysis does not directly
apply to the multifidelity method we investigate but provides a first step toward un-
derstanding group matching pursuit approaches for this multifidelity strategy.
\bullet We empirically show that the GOMP multifidelity procedure is effective when ap-
plied to a variety of nontrivial large-scale problems in computational science, such as
compressible fluid dynamics and structural topology optimization. In particular, we
observe that GOMP-based methods yield superior results in almost every situation we
have tried.

We note that there are many alternative approaches to tackling the multifidelity problem, and
these alternatives are substantially different in scope, applicability, and goals. For example,
the authors of [24] use additive corrections to combine high-fidelity and low-fidelity quantities
of interest into predictions; the authors of [19, 28] use a multilevel Gaussian process strategy
to build Gaussian process predictors from models at different hierarchies; and the authors of
[26] use a multilevel Monte Carlo prediction strategy for expectations of scalar quantities of



ALLOCATION STRATEGIES FOR THE MULTIFIDELITY REGIME 205

interest to devise a resource allocation strategy. In contrast to these approaches, our strategy
uses low-fidelity parametric variation to guide allocation of high-fidelity effort but does not
require any transformation operators between levels (such as, e.g., additive corrections). A
direct comparison between our strategy and alternative multifidelity approaches is beyond the
scope of this paper, and so we leave such a comparison for future work.

2. Previous work. We will now consider the multifidelity proxy model introduced in [23]
and further studied in [38]. The authors of [23] proposed using samples from a low-fidelity
model to inform the parameter selection of the much more costly high-fidelity samples and
to compute the reconstruction weights of the high-fidelity proxy model based on those low-
fidelity samples. The weights are computed from the Gramian (also known as the Gram
matrix or inner product matrix) of the low-fidelity samples, and so the resulting model can be
considered a nonparametric model with weights derived from the low-fidelity Gramian. For
simplicity, we will consider only a two-level (``bifidelity"") situation with only a single low- and
high-fidelity model. However, this procedure can be applied to many levels [23].

2.1. Gramian nonparametric multifidelity algorithm. We consider the following general
multifidelity setup: Let z \in D \subset \BbbR q, q \geq 1, be a common parametric input into two simula-
tions models of differing fidelities. We use uL and uH to denote the outputs of the low- and
high-fidelity models, respectively, with uL(z) a vector-valued output of the low-fidelity model
evaluated at parameter value z. The models produce outputs in vector spaces V L and V H ,
respectively. To summarize our notation,

uL : D \rightarrow V L, uH : D \rightarrow V H .

The vectors uL and uH are assumed to represent any spatial/temporal effects of interest. The
multifidelity regime occurs when uH is more faithful to reality than uL but requires greater
computational effort to simulate. That is,\bigm\| \bigm\| uH(z) - u(z)

\bigm\| \bigm\| \ll \bigm\| \bigm\| uL(z) - u(z)
\bigm\| \bigm\| , Cost

\bigl( 
uH(z)

\bigr) 
\gg Cost

\bigl( 
uL(z)

\bigr) 
,(1)

where u(z) represents reality,1 and Cost(\cdot ) is the requisite computational burden of evaluating
the argument. In practice, the assumptions (1) frequently imply that the dimensions of the
vector spaces satisfy

dimV L = dL \ll dH = dimV H ,

but it is not necessary to assume this and the multifidelity algorithm does not require this
assumption. A concrete example of the above situation is the following: Consider Poisson's
equation on a domain \Omega \subset \BbbR 2:

 - \bigtriangleup xu(x, z) = f(x, z), x \in \Omega , z \in D,

1We are intentionally being vague in defining u(z) and the norms in (1). Such relations can be established
through formal means, such as convergence of discretizations of mathematical models, or through more informal
means, such as expert belief or knowledge in superiority of the high-fidelity model.
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where\bigtriangleup x denotes the Laplacian with respect to the x variable. One may compute appropriate
solutions to this problem with finite element methods and suppose that uL and uH are two
finite element solutions computed on different meshes: uL is computed on a relatively coarse
mesh with mesh size parameter T , and uH is computed on a relatively fine mesh with mesh
size parameter t\ll T . Since the total number of elements on a mesh in two dimensions scales
like 1/T 2 or 1/t2, this implies that the number of degrees of freedom for uH , dH \sim 1/t2, is
much larger than that for uL, dL \sim 1/T 2. Assuming the polynomial degree p of approximation
within each element is the same on both meshes, a standard a priori finite element analysis
yields the estimate\bigm\| \bigm\| u - uL

\bigm\| \bigm\| 
L2(\Omega )

\leq CT p+1,
\bigm\| \bigm\| u - uH

\bigm\| \bigm\| 
L2(\Omega )

\leq Ctp+1

for a constant C. Since t\ll T , and assuming the estimate above is sharp, this is an instance
of the situation (1), where the unspecified norm in that equation is the L2 norm on \Omega , and the
cost function refers to computational cost. However, we note that our procedure applies to
the more abstract situation (1) and our procedure is not limited to a particular discretization,
e.g., finite element methods.

Due to the high computational cost, the number of high-fidelity simulations is limited to
m, with m = \scrO (10) being a common bound. In contrast, the low-fidelity model is much more
computationally affordable, with n\gg m low-fidelity simulations available.

Let \gamma = \{ z1, . . . , zn\} be a set of sample points in D, which define matrices

\bfita L
j = uL (zj) , \bfitA L =

\bigl[ 
\bfita L
1 \bfita L

2 . . . \bfita L
n

\bigr] 
\in \BbbR dL\times n,

\bfita H
j = uH (zj) , \bfitA H =

\bigl[ 
\bfita H
1 \bfita H

2 . . . \bfita H
n

\bigr] 
\in \BbbR dH\times n.

Let S \subset [n] denote a generic set of column indices, and for \bfitA \in \BbbR d\times n having columns \bfita j we
define

S =
\bigl\{ 
j1, . . . , j| S| 

\bigr\} 
, \bfitA S =

\bigl[ 
\bfita j1 \bfita j2 . . . \bfita j| S| 

\bigr] 
.

The authors of [23] showed that the structure of \bfitA L can be used to identify a small number
of column indices S \subset [n], | S| = m, so that \bfitA L

S can be used to form a rank-m approximation
to \bfitA L, and \bfitA H

S can be used to form a rank-m approximation to \bfitA H . Precisely, they form the
approximations

\bfitA L \approx \bfitA L
S

\bigl( 
\bfitA L

S

\bigr) \dagger 
\bfitA L, \bfitA H \approx \bfitA H

S

\bigl( 
\bfitA L

S

\bigr) \dagger 
\bfitA L,(2)

where \bfitA \dagger is the Moore--Penrose pseudoinverse of \bfitA . An important observation in the above
approximations is that the representation for \bfitA H requires only \bfitA H

S , i.e., it only requires
m = | S| evaluations of the high-fidelity model. The construction of S is performed in a
greedy fashion, precisely as the first m ordered pivots in a pivoted Cholesky decomposition of\bigl( 
\bfitA L
\bigr) T

\bfitA L. While \bfitA H only represents uH on a discrete set \gamma , the procedure above forms the
approximation

(3) uH(z) \approx 
m\sum 
i=1

ci(z)u
H(zji),
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where the coefficients ci are the expansion coefficients of uL(z) in a least-squares approximation
with the basis

\bigl\{ 
uL(zji)

\bigr\} m
i=1

. Thus, the above approximation to the high-fidelity simulation

may actually be evaluated at any location z \in D if uL(z) is known. This procedure has the
following advantages:

\bullet Once m high-fidelity simulations have been computed and stored, the mathematical
construction of the approximation (3) to the high-fidelity model is tantamount to
evaluating the coefficients ci(z), the latter of which has computational complexity
depending only on the low-fidelity model; cf. (3). Explicitly constructing the vector

uH(z) \in \BbbR dH naturally requires an m-fold addition of length-dH vectors as in (3).
\bullet The subset S is identified via analysis of the inexpensive low-fidelity model, so that a
very large set \gamma may be used to properly capture the parametric variation over D.
\bullet It is not necessary for the spatiotemporal features of the low-fidelity to mimic those
of the high-fidelity model. Section 6.2 in [23] reveals that uL and uH may actually be
entirely disparate models, yet the approximation (3) can be accurate. However, these
are empirical observations, and a deeper understanding of precisely how disparate low-
and high-fidelity models can be is an open problem.
\bullet The cost of evaluating (3) can be split into two portions: an ``offline"" stage, where
the ensemble \{ uN (zji)\} mi=1 is compiled and stored, and an ``online"" stage, where the
coefficients ci must be computed for a given z. The offline stage requires m high-
fidelity simulations and n \gg m low-fidelity model evaluations, and is thus expensive;
the online stage requires only a single low-fidelity model evaluation, uL(z), from which
the coefficients ci are computed. Thus, this procedure can be efficient when one
requires an approximation to the high-fidelity model at M \gg m values of z.

2.2. Subset selection. The critical portion of the previous section's algorithm is the
identification of the column subset S. In order to guarantee convergence of the high-fidelity
approximation in an appropriate norm on V H , one must also have some correlation between
the parametric variation of the high- and low-fidelity models. Theorem 4.4 of [23] gives the
conditions which can guarantee quantitative proximity of the multifidelity surrogate and the
high-fidelity model. These conditions are, admittedly, difficult to verify. In this paper, we
assume such parametric correlation exists and focus exclusively on the problem of identification
of S. Abstractly, this is a problem of subset selection among the n columns of \bfitA L, and thus
this problem focuses entirely on the low-fidelity model. To emphasize this and to simplify
notation, we dispense with the L and H superscripts, hereafter writing

\bfitA \leftarrow \bfitA L, \bfita j \leftarrow \bfita L
j .

The subset selection problem, identification of S, is an allocation problem. That is, given
an accurate but expensive high-fidelity simulation, how do we allocate high-fidelity compu-
tational resources across the set of possible simulations \gamma ? Noting the approximations (2),
one way to accomplish this is to choose S in a way that captures as much variation in the
low-fidelity model as possible.

Definition 2.1. The column subset selection problem (CSSP). Find the column subset ma-
trix C = AS, where C \in \BbbR d\times m, S \in \BbbR n\times m is a column selection matrix, and the m \leq n
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columns of C are a subset of the n columns of A, so that

r = \| R\| 2F = \| A - CC\dagger A\| 2F(4)

is minimized.

The matrix \bfitS above mirrors the subset S discussed earlier, and \bfitC = \bfitA S . The exact CSSP
is at present conjectured to be NP-complete [31] and, if this were true, requires the evaluation
of all subsets of size m. However, there have been a large variety of strategies proposed to
address the CSSP; we summarize a selection of these strategies below:

\bullet Leverage sampling [4, 25, 11, 29]. The singular value decomposition (SVD) of A is
computed or approximated, and this information is used to choose a column subset of
\bfitA , either randomly or deterministically. Leverage sampling has attractive theoretical
guarantees, e.g., \| A - CC\dagger A\| 2F \leq (1 + \epsilon )\| A - A\bfk \| 2F , where C is chosen according
to the leverage score and m is \scrO (1/\epsilon ). (The best rank-k matrix \bfitA k is defined by
the Eckart--Young--Mirsky theorem.) In our results section, we observe that leverage
sampling on our datasets is less competitive than other sampling techniques.
\bullet The CUR matrix decomposition [21]. This performs a column (C) and row (R) subset

selection on \bfitA , resulting in an element-based decomposition of a matrix, so that A \approx 
CUR, where U = C\dagger AR\dagger . The best known CUR matrix error bounds are obtained
by using leverage sampling for the column and row subset selection [21]; for that
reason, we consider our experimental comparison to leverage sampling and random
sampling as sufficient to characterize related methods such as the CUR decomposition
technique.
\bullet Deterministic interpolative decompositions (IDs) [10]. These are similar in spirit to

CUR; ID methods frequently use a Gram--Schmidt-based column-pivoted QR method
for subset selection, resulting in an approximation A \approx CB, where C is a column
subset of A and B is a coefficient matrix that minimizes the approximation error.
(For example, \bfitB = \bfitC \dagger \bfitA is a possible choice for \bfitB .) In this paper, we will use the
pivoted QR method as an exemplar of deterministic ID algorithms.
\bullet Pivoted QR decompositions [13, 15]. One historical use of these routines was to select
a column subset in order to reliably compute the least-squares solution of a linear
system. For the CSSP, we run a pivoted QR routine and then sample the columns
in order identified by the pivots [9, 25]. QR-based subset selection has a much worse
known theoretical guarantee with respect to the rank-k tail bound \| A - A\bfk \| 2F than
leverage sampling, but empirically we have observed that it performs much better.
The authors of [23, 38] propose using a pivoted Cholesky routine in a manner that is
algebraically equivalent to a pivoted QR method. Alternative linear algebraic pivoting
strategies can be used as approaches to the CSSP, such as partial or full pivoted LU
[14]. However, besides their mention in [38] as a possible direction, we have not
observed their use in existing CSSP work.

We note that [1] showed a different type of bound for a general greedy strategy, of which the
pivoted QR, LU, and Cholesky methods are specific instances. The theoretical bound shown
for the general greedy strategy is \| CC\dagger A\| 2F \geq (1 - \epsilon )\| DD\dagger A\| 2F , whereD is the optimal subset
with rank(D) = k (defined by Definition 2.1), and C is a computed rank-m approximation,



ALLOCATION STRATEGIES FOR THE MULTIFIDELITY REGIME 209

where m \sim 16k. Table 1 below gives more precise estimates. This bound is also of interest
because large values of \| CC\dagger A\| 2F are related to small values of \| A - CC\dagger A\| 2F . Working
in the matrix Frobenius norm \| \cdot \| F is a common choice since this generally leads to easier
analysis. The analysis in this manuscript can be used to provide estimates in the Frobenius
norm; we expect estimates in other norms to be significantly more complicated and leave
investigation of other norms to future work.

All the strategies above are described as applied to a set of Euclidean vectors, but each
only requires a set of elements in a Hilbert space. Consequently, by using the same Hilbert
space assumptions from prior work [23], we are able to make use of a broad class of CSSP
algorithms for the allocation portion of the multifidelity procedure under consideration.

3. Allocation strategies for multifidelity simulation. In this section, we start by reformu-
lating a regularized version of the CSSP as a mixed-norm constrained least-squares problem.
This relaxation of the problem opens up to us a variety of different solution techniques. We
then present some theoretical justifications for why GOMP is competitive for the CSSP. We
follow this by a theoretical discussion of how various methods we investigated compared,
against each other and to GOMP, in terms of error guarantees, number of columns, and
asymptotic runtime to achieve those guarantees.

3.1. Relaxation of the exact subset problem. We now reformulate a regularized version
of the CSSP as a mixed-norm constrained least-squares problem. The goal of the discussion
below is to write a relaxed version of the residual minimization for the CSSP as an optimization
problem over a residual; such a formulation naturally suggests the usage of group matching
algorithms for residual minimization, where groups are matrix columns.

Each column of the subset matrix C is taken from the full dataset, and therefore cj \in 
\{ ai| i = 1, . . . n\} . This representation can be formulated so that the residual matrix can be
expressed as R = \bfitA  - C \~B, where \~B \in \BbbR m\times n is a coefficient matrix that essentially combines
the coreset elements, or atoms, via weights. Each data point is therefore approximated as

(5) ai \approx C\~bi,

and the residual is

r = \| \bfitR \| 2F =
\sum 
i

\| ai  - C\~bi\| 22 = \| A - C \~B\| 2F = \| A - AB\| 2F ,(6)

where B \in \BbbR n\times n is given by \bfitB = \bfitS \~\bfitB . In other words, \bfitB is formed from \~\bfitB by inserting
rows of zeros associated to columns of \bfitA that are not chosen in \bfitC . The smaller matrix \~B is
a submatrix of the larger, more sparse B, where m specific (nonzero) rows are preserved.

Instead of building B from \~B, we are interested in solving for B directly, which minimizes
r. The optimum of the objective \| A - AB\| 2F would result in B = I; however, if we constrain
or regularize B so that it is row-sparse, as described above, then we can compute a matrix
B with the desired properties. This leads to the regularized formulation for column subset
selection,

(7) arg min
\bfB \in \BbbR n\times n

\| A - AB\| 2F + \lambda \| BT \| 0,0,
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where \| M\| 0,0 =
\sum 

i \| M:,i\| 0 is a mixed \ell 0,0 norm that induces column sparsity. Note the
equivalence of the objective in (7) to the CSSP objective in (4) above, where AB = CC\dagger A,
and the columns selected for C correspond to the nonzero rows of B. Because of the mixed
\ell 0,0 norm, we still have an NP-complete problem. However, in this new form, we can relax
the mixed norm penalty to an \ell 2,1 norm, where \| M\| 2,1 =

\sum 
i \| M:,i\| 2:

(8) B\ast = arg min
\bfB \in \BbbR n\times n

\| A - AB\| 2F + \lambda \| BT \| 2,1.

This relaxed form also induces row sparsity of \bfitB and is more amenable to numerical methods
for its solution; see, e.g., [36, 35]. We have made two relaxations of the CSSP: the first is the
introduction of \lambda , and the second relaxes the mixed \ell 0,0 norm to an \ell 2,1 norm. In general,
we therefore neither expect the solution to (8) to match the solution of (7), nor do we expect
that it recovers the optimal CSSP solution. However, in Theorems 3.1 and 3.2 below, we give
sufficient conditions for specialized cases where this relaxation recovers the CSSP solution.

The type of problem shown in (8) is known in the optimization literature as a group
lasso problem [36]. Group lasso problems have been well studied, and there are a variety of
algorithms available for their solution. For the results in this paper, we use GOMP. Although
this is a greedy algorithm and not optimal in general, it performs well for selecting subsets
of columns [20]. Two other methods that have demonstrated efficiency in solving this type
of optimization are the group least angle regression (GLARS) method and the alternating
direction method of multipliers (ADMM) [36, 6, 12]. We have found GOMP and GLARS to
be the most useful overall for the exploration of various coreset sizes, while ADMM is well
suited to extremely large datasets [12, 7]. The GOMP algorithm is simpler than GLARS, and
since numerical tests on our particular datasets suggest no predictive advantage of one over
the other, we have opted to concentrate on GOMP here. Some discussion that compares these
differences between some of these group optimization problems is present in [36], but we are
unaware of quantitative results comparing how well approximate solvers for (8) perform.

While GOMP can be computed over a discrete data matrix \bfitA , it only really makes use
of the inner products of the data vectors, so that the algorithm only assumes a Hilbert
space over the data points. This means that the approach can be used in the context of
continuous simulation vectors uL(zi) as long as they exist in a proper Hilbert space. A
pseudocode presentation of GOMP for column subset selection with continuous vectors is
shown in Algorithm 1. The algorithm takes the input vectors, u(\gamma ), as well as two parameters,
\lambda and \epsilon , to control the sparsity and the precision, respectively (Algorithm 1, line 1). We
initialize the coefficient matrix, B, to be the zero matrix and the active set, \scrA , to be empty
(line 4). Now, until the sparsity level or the error precision is satisfied, we loop and do the
following in each iteration: (re)compute the residual matrix based on the current coefficient
matrix (line 7), recompute the group correlations based on the residual matrix (line 8), find
the unused element with maximum group correlation and add it to the active set (lines 9
and 13), and recompute the coefficient matrix (line 14). Note that the inner product matrix
Q is computed using the appropriate inner product for the space. The residual matrix R
is actually the residual-correlation matrix, as it represents the inner product of the residual
with the input functions. For example, considering line 7, each entry Ri,j = \langle u(zi), r(zj)\rangle =
\langle u(zi), u(zj)  - 

\sum N
k=1 bj,ku(zk)\rangle , where r(zj) represents the residual at sample point zj . The



ALLOCATION STRATEGIES FOR THE MULTIFIDELITY REGIME 211

Algorithm 1 Group orthogonal matching pursuit for subset selection of continuous vectors.

1: Input u(\gamma ) - input vectors, \lambda - sparsity parameter, \epsilon - precision parameter
2: Output B \in \BbbR m\times p, coefficient matrix, \scrA , the subset indices
3: procedure GOMP(u(\gamma ), \lambda , \epsilon )
4: Set Qij = \langle u(zi), u(zj)\rangle , the inner product matrix
5: Initialize \scrA = \emptyset , B = 0
6: while \| BT \| 2,1 < 1

\lambda do
7: R = Q - QB  \triangleleft update residual
8: ci = | | Ri| | 2
9: i\ast = argmaxi c\scrA c  \triangleleft element with max group correlation

10: if \bfitc i\ast \leq \epsilon then
11: Break
12: end if
13: \scrA = \scrA \cup \{ i\ast \} 
14: B\scrA = Q\dagger 

\scrA ,\scrA Q\scrA ,:  \triangleleft recompute coefficient matrix
15: end while
16: return B,\scrA 
17: end procedure

sparsity parameter \lambda only controls the stopping criterion and is not used in the subset selection
procedure.

3.2. Group orthogonal matching pursuit. We now present some theoretical justification
for why GOMP is competitive for the CSSP. Our two results are Theorems 3.1 and 3.2. In
particular, Theorem 3.2 shows that GOMP can identify a small representative column subset
under some assumptions on the matrix and the representative set.

Let \bfitA \in \BbbR d\times n be a matrix whose n columns consist of snapshot or feature vectors. We
assume that the columns of \bfitA have unit norm, i.e., if \bfita j is the jth column of \bfitA , then we
assume that

\| \bfita j\| 2 = 1.(9)

Our goal is to construct a low-rank approximation to every feature (column) in \bfitA using linear
combinations of a (small) subset of feature vectors in \bfitA . As described in the previous section,
our strategy for accomplishing this is to solve the following optimization problem for the
matrix \bfitB \in \BbbR n\times n:

min \| \bfitA  - \bfitA \bfitB \| 2F + \lambda 
\bigm\| \bigm\| \bfitB T

\bigm\| \bigm\| 
2,1

,(10)

where

\bigm\| \bigm\| \bfitB T
\bigm\| \bigm\| 
2,1

=
n\sum 

j=1

\| \bfitb j,:\| 2 ,



212 DANIEL J. PERRY, ROBERT M. KIRBY, AKIL NARAYAN, AND ROSS T. WHITAKER

and \bfitb j,: is the jth row of \bfitB . The mixed norm \| \cdot \| 2,1 promotes column sparsity of its argument.
In the context of the product \bfitA \bfitB , column sparsity of \bfitB T implies that a small number of
columns of \bfitA are used to approximate the remaining columns.

Because we solve (10) using a GOMP algorithm, we proceed to rewrite this problem in
the language of GOMP algorithms. Let \bfita i, i \in [n], denote the ith column of \bfitA . We call a set
of (column) indices S \subset [n] a basis set for \bfitA if

span
\bigl\{ 
\bfita i

\bigm| \bigm| i \in S
\bigr\} 
= range (\bfitA ) .

Basis sets are not unique in general. A complement set of indices equals [n]\setminus S for a given
basis set S. Our first result is a consistency result: given a basis set that satisfies reasonable
assumptions, GOMP can identify this set.

Theorem 3.1. Let \bfitA \in \BbbR d\times n have columns \bfita i \in \BbbR d, and let S\mathrm{g} \subset [n] be a basis set for \bfitA .
For each j \in [n], there is a unique expansion of \bfita j in columns of the basis set:

\bfita j =
\sum 
i\in S\mathrm{g}

Di,j\bfita i.(11a)

Use the elements Di,j to define the matrix \bfitD . If both conditions

\=D := max
j\in [n]\setminus S\mathrm{g}

\sum 
i\in S\mathrm{g}

| Di,j | < 1, \epsilon > 0,(11b)

are satisfied, then GOMP, i.e., Algorithm 1, terminates after at most | S\mathrm{g}| steps. At termina-
tion, the algorithm identifies a subset of S\mathrm{g} if fewer than | S\mathrm{g}| steps are taken and identifies S\mathrm{g}

if | S\mathrm{g}| steps are taken.

Proof. For any matrices \bfitA and \bfitB of appropriate size, the following identity holds:

vec
\bigl( 
\bfitB T\bfitA T

\bigr) 
= (\bfitA \otimes \bfitI n) vec

\bigl( 
\bfitB T
\bigr) 
,

where \otimes is the Kronecker product, and vec (\cdot ) is the vectorization (vertical concatenation of
columns) of its argument. Defining \bfitg := vec

\bigl( 
\bfitB T
\bigr) 
, \bfitf := vec

\bigl( 
\bfitA T
\bigr) 
, and \bfitH = (\bfitA \otimes \bfitI n), we

can write our desired relation \bfitA \approx \bfitA \bfitB in vectorized format:

\bfitH \bfitg \approx \bfitf .(12)

The goal of (10), aiming to promote row sparsity of \bfitB , is now translated into a group sparsity
of entries of \bfitg = vec

\bigl( 
\bfitB T
\bigr) 
. Each group of elements in \bfitg corresponds to an individual row of

\bfitB . We seek to prove that GOMP applied to this system recovers the basis groups. Our main
tool to accomplish this is Corollary 1 in [20]; this corollary shows that a version of GOMP
in that reference identifies the correct groups. We will first show this for our case and then
explain how this can be used to conclude the identification of correct groups for Algorithm 1.

We will let G denote a generic subset of [n2]. We define the groups Gi \subset [n2], i = 1, . . . , n,
as sets of n sequential indices,

Gi = \{ n(i - 1) + 1, n(i - 1) + 2, . . . , ni\} ,
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and thus G1, . . . , Gn partition [n2]. We denote by \bfitH G the matrix \bfitH restricted to the G-
indexed columns. (Recall that G is a subset of [n2] and H has n2 columns.) The basis
columns S\mathrm{g} can be translated into a set of basis groups G\mathrm{g}:

S\mathrm{g} \subset [n] =\Rightarrow G\mathrm{g} \subset [n2], G\mathrm{g} = \cup i\in S\mathrm{g}Gi.

The complement of S\mathrm{g} in [n], and the associated set G\mathrm{d}, are defined accordingly:

S\mathrm{d} := [n]\setminus S\mathrm{g}, G\mathrm{d} = \cup i\in S\mathrm{d}
Gi.

We use \bfitA S to denote selection of the S-indexed columns of \bfitA and \bfitH G to denote selection
of the G-indexed columns of \bfitH . Under the assumption (9), we have \bfitH T

Gj
\bfitH Gj = \bfitI n for each

group j = 1, . . . , n.
Row sparsity of \bfitB means that we wish to choose a small (sparse) number of groups Gj .

Our next step is to show that the GOMP algorithm in [20] applied to (12) identifies groups
of indices associated to the column indices S\mathrm{g}. Consider the matrix

\bfitM = \bfitA T
S\mathrm{g}
\bfitA S\mathrm{g} .

Since S\mathrm{g} is a set of basis indices, then \bfitM is invertible. This implies

\bfitH \dagger 
G\mathrm{g}

=
\bigl( 
\bfitA S\mathrm{g} \otimes \bfitI n

\bigr) \dagger 
= \bfitA \dagger 

S\mathrm{g}
\otimes \bfitI n =

\Bigl( 
\bfitM  - 1\bfitA T

S\mathrm{g}

\Bigr) 
\otimes \bfitI n.

Then

\bfitH \dagger 
G\mathrm{g}

\bfitH G\mathrm{d}
=
\Bigl( \Bigl( 

\bfitM  - 1\bfitA T
S\mathrm{g}

\Bigr) 
\otimes \bfitI n

\Bigr) 
(\bfitA S\mathrm{d}

\otimes \bfitI n) =
\Bigl( 
\bfitM  - 1\bfitA T

S\mathrm{g}
\bfitA S\mathrm{d}

\Bigr) 
\otimes \bfitI n.

Define \bfitD := \bfitM  - 1\bfitA T
S\mathrm{g}
\bfitA S\mathrm{d}

\in \BbbR s\times (n - s), and note that it is comprised of the entries Di,j defined
in (11a). We need to introduce a mixed vector norm. Let q \in \BbbN be arbitrary; for a vector
\bfitx \in \BbbR qn, we define

\bfitx =

\left(     
\bfitx 1

\bfitx 2
...
\bfitx q

\right)     \in \BbbR qn, \bfitx j \in \BbbR n =\Rightarrow \| \bfitx \| 2,1 =
q\sum 

j=1

\| \bfitx j\| 2 .

Given such a vector \bfitx , we use notation \bfitx j to mean a length-n vector from the elements of \bfitx 
as above. We have

\| (\bfitD \otimes \bfitI n)\bfitv \| 2,1 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n - s\sum 
j=1

(\bfitd j \otimes \bfitv j)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2,1

\leq 
n - s\sum 
j=1

\| \bfitd j \otimes \bfitv j\| 2,1

=
n - s\sum 
j=1

s\sum 
i=1

| Di,j | \| \bfitv j\| 2 \leq 

\Biggl( 
max

1\leq j\leq n - s

s\sum 
i=1

| Di,j | 

\Biggr) 
n - s\sum 
j=1

\| \bfitv j\| 2 = \| \bfitD \| 1 \| \bfitv \| 2,1.
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Chaining together these results with the assumption (11b), we have shown that\bigm\| \bigm\| \bigm\| \bfitH +
G\mathrm{g}

\bfitH G\mathrm{d}

\bigm\| \bigm\| \bigm\| 
\ast 2,1

:= sup
\bfitv \in \BbbR (n - s)n\setminus \{ \bfzero \} 

\| (\bfitD \otimes \bfitI n)\bfitv \| 2,1
\| \bfitv \| 2,1

< 1,

where we have used \| \cdot \| \ast 2,1 to denote the norm induced by the \| \cdot \| 2,1 norm on vectors, and not
the mixed \ell 2,1 elementwise norm on matrices. Under this condition, Corollary 1 in [20] shows
that the GOMP algorithm in that reference applied to \bfitH \bfitg \approx \bfitf identifies the basis groups in
\bfitd , equivalently that the GOMP algorithm identifies the basis columns of \bfitA . This is almost
the result we require: Our GOMP method, Algorithm 1, is almost identical to the algorithm
in [20], the only difference being the presence of an additional regularization parameter \lambda 
that influences the stopping criterion. Without this criterion, Algorithm 1 coincides with the
algorithm in [20]. Therefore, Algorithm 1 selects the same groups and differs only in the
termination.

Since the algorithm in [20] identifies S\mathrm{g} under our assumptions, Algorithm 1 also identifies
this set if it takes | S\mathrm{g}| steps. Furthermore, Algorithm 1 takes at most | S\mathrm{g}| steps since at step
| S\mathrm{g}| +1, the residual vanishes and the while loop terminates. Finally, the fact that Algorithm
1 identifies S\mathrm{g} after | S\mathrm{g}| steps implies that if it terminates before | S\mathrm{g}| steps due to the \lambda 
stopping criterion, then the identified set at termination must be a subset of S\mathrm{g}.

The condition (11b) on the Di,j is a nontrivial requirement, both on the matrix \bfitA and
on a basis set S\mathrm{g}, and it is difficult to verify in practice. This restriction is essentially an
identification of classes of matrices for which we can guarantee that GOMP can be effective.
In addition, since the set S\mathrm{g} defining a basis group is not unique for a given matrix, many
choices of S\mathrm{g} may not satisfy (11b). One significant disadvantage of this analysis is that the
condition (11b) cannot be checked before the set S\mathrm{g} has been identified.

For \bfitA \in \BbbR d\times n, assuming d \leq n and that \bfitA has full rank, we require | S\mathrm{g}| = d in order to
satisfy the relation (11a). However, d can be very large, and so in practice we will identify a set
of features S with size | S| < d; this suggests that (11a) can only be satisfied approximately in
this case. Following the analysis in [20], we can provide a robust version of the above theorem,
showing the success of GOMP when the relation (11a) is satisfied only approximately.

We require a little more notation to proceed: With \bfitA and S\mathrm{g} as in Theorem 3.1, let \bfitA S\mathrm{g}

be as defined in the proof of that theorem, i.e., the submatrix of \bfitA formed from the columns
indexed by S\mathrm{g}. Now define the smallest eigenvalue of \bfitA T

S\mathrm{g}
\bfitA S\mathrm{g} :

\=\lambda := \lambda 
\Bigl( 
\bfitA T

S\mathrm{g}
\bfitA S\mathrm{g}

\Bigr) 
= min

\bfitv \in \BbbR | S\mathrm{g}| \setminus \{ \bfzero \} 

\bigm\| \bigm\| \bigm\| \bfitA T
S\mathrm{g}
\bfitA S\mathrm{g}\bfitv 

\bigm\| \bigm\| \bigm\| 
2

\| \bfitv \| 2
> 0,(13)

where the inequality is true since the columns of \bfitA S\mathrm{g} are a basis for range(\bfitA ).

Theorem 3.2. Let \bfitA \in \BbbR d\times n have normalized columns \bfita i \in \BbbR d, and let S\mathrm{g} \subset [n] be a basis
set for \bfitA such that the columns of \bfitA satisfy

\bfita j =
\sum 
i\in S\mathrm{g}

Di,j\bfita i + \bfitn j ,(14a)
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and assume that each \bfitn j \in \BbbR d for j = [n]\setminus S\mathrm{g} has independent and identically distributed
components, each a normal random variable with mean 0 and variance \sigma 2. For any \eta \in 
(0, 1/2), let the stopping tolerance \varepsilon in Algorithm 1 satisfy

\varepsilon >
\sigma 
\sqrt{} 
2 \cdot n \cdot d log(2 \cdot n \cdot d/\eta )

1 - \=D
.(14b)

Assume that the Di,j satisfy (11b) and further that they satisfy

min
i\in S\mathrm{g}

\sqrt{}    n\sum 
j=1

D2
i,j >

\varepsilon 
\surd 
8

\=\lambda 
.(14c)

Then, with probability at least 1 - 2\eta , GOMP identifies the set S\mathrm{g} and computes a solution \bfitB 
satisfying

max
i,j
| Bi,j  - Di,j | \leq \sigma 

\sqrt{} 
2 log(2| S\mathrm{g}| /\eta )

\=\lambda 
.

Proof. Let \bfitD be the matrix formed from the elements Di,j , which is row-sparse, having
nonzero entries only when i \in S\mathrm{g}. As before, we seek a computational approximation \bfitB to
the (unknown) \bfitD . The model (14a) results in the following linear system to determine \bfitB :

\bfitA \bfitB \approx \bfitA = \bfitA \bfitD +\bfitN ,

where \bfitN is a concatenation of the columns \bfitn j . (We define \bfitn i = 0 for i \in S\mathrm{g}.) Following the
proof of Theorem 3.1, the vectorization of the transpose of the above equation is

\bfitH \bfitg = \bfitf + \bfitn ,

where \bfitn = vec
\bigl( 
\bfitN T

\bigr) 
and \bfitf = vec

\bigl( 
\bfitD T\bfitA T

\bigr) 
. The above equation holds when \bfitg has group

sparsity defined by the set S\mathrm{g}. We seek to show that GOMP applied to this system, having
knowledge only of \bfitH and \bfitf +\bfitn , can identify groups of \bfitg corresponding to the column indices
S\mathrm{g} for \bfitA .

The system above is simply a ``noisy"" version of GOMP, where \bfitn is a noise vector. We
seek to apply Theorem 3 in [20] to show the conclusions. Assumptions (14) and (11b) are
among the stipulations of this theorem. The remaining stipulation is

\lambda \mathrm{m}\mathrm{i}\mathrm{n}

\Bigl( 
\bfitH T

G\mathrm{g}
\bfitH G\mathrm{g}

\Bigr) 
\leq 1,(15)

where \lambda \mathrm{m}\mathrm{i}\mathrm{n} (\cdot ) denotes the minimum eigenvalue of the symmetric matrix input. We can show
this via applications of Kronecker product properties. First, we have

\bfitH T
G\mathrm{g}

\bfitH G\mathrm{g} =
\bigl( 
\bfitA S\mathrm{g} \otimes \bfitI n

\bigr) T \bigl( 
\bfitA S\mathrm{g} \otimes \bfitI n

\bigr) 
=
\Bigl( 
\bfitA T

S\mathrm{g}
\bfitA S\mathrm{g}

\Bigr) 
\otimes (\bfitI n\bfitI n) .
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If \lambda i, i = 1, . . . , | S\mathrm{g}| , are the eigenvalues of \bfitA T
S\mathrm{g}
\bfitA S\mathrm{g} , then they are also the eigenvalues of\bigl( 

\bfitA T
S\mathrm{g}
\bfitA S\mathrm{g}

\bigr) 
\otimes (\bfitI n\bfitI n), each having multiplicity n. Thus,

\lambda \mathrm{m}\mathrm{i}\mathrm{n}

\Bigl( 
\bfitH T

G\mathrm{g}
\bfitH G\mathrm{g}

\Bigr) 
= \lambda \mathrm{m}\mathrm{i}\mathrm{n}

\Bigl( 
\bfitA T

S\mathrm{g}
\bfitA S\mathrm{g}

\Bigr) 
= \=\lambda ,

with \=\lambda defined in (13). The matrix \bfitA T
S\mathrm{g}
\bfitA S\mathrm{g} is positive-definite and has diagonal entries equal

to 1 since the columns \bfita i are normalized. Thus,

| S\mathrm{g}| = trace
\Bigl( 
\bfitA T

S\mathrm{g}
\bfitA S\mathrm{g}

\Bigr) 
=

| S\mathrm{g}| \sum 
i=1

\lambda i \geq | S\mathrm{g}| \=\lambda ,

so that \=\lambda \leq 1, showing (15). Having shown this, we may apply Theorem 3 in [20], which
yields the conclusion of the theorem.

Note that (14a) can be satisfied with | S\mathrm{g}| < d even if \bfitA has full rank. When the columns of
\bfitA are feature vectors that are outputs of scientific models, then the assumption that columns
are perturbed by random noise is not realistic. However, the main purpose of Theorem 3.2 is
to show that GOMP is robust to relaxations of (11a).

3.3. Theoretical discussion. We describe briefly how the various methods we have in-
vestigated compare in terms of error or projection norm guarantees, number of columns, and
asymptotic runtime to achieve those guarantees. We present certain results that we believe
are relevant; the results we review are not meant to be comprehensive.

In Table 1, the relationship between \epsilon and m for deterministic leverage score sampling
assumes a power-law distribution, parameterized as \ell i = 1

i1+\eta , on the leverage scores. The
algorithms Cholesky, QR, LU, and GOMP are all greedy algorithms, and thus are analyzed
using results from [1], which analyzes a general greedy column subset algorithm. For QR, we
report the multiplicative error reported in [15], although the results from [1] apply as well.

We observe among the results we compile that leverage sampling has the most attractive
theoretical error bounds because the bound is multiplicative and depends on the level of error,
\epsilon , which is a satisfactory metric in applications. The rest of the methods have the same error
bound from [1], which is not directly related to the best rank-k approximation. In addition,
QR has a multiplicative relationship to the best rank-k approximation, but the coefficient
grows exponentially with respect to k.

In summary, the various algorithms we list in Table 1 can in theory be effective in choosing
subsets. While the theoretical projection and error bounds do not allow us to conclude in
practice which algorithm is superior, we aim to demonstrate in the results section that, for a
variety of multifidelity problems, the GOMP strategy appears to be more effective than the
rest.

4. Experimental results.

4.1. Methods compared. We use a collection of methods from both the literature in pre-
vious work on multifidelity simulation approximation and in the more general CSSP literature.
Previous work in multifidelity simulation approximation has primarily used pivoted Cholesky
(chol) for subset selection, although the authors have alluded to the possibility of using other
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Table 1
Theoretical comparison among the subset selection methods discussed here. Each method computes a size-m

subset that can achieve a multiplicative-type bound relative to the optimal size-k subset, where m depends on
k and an error tolerance \epsilon . \bfC is the computed subset matrix of rank m using the indicated algorithm, and \bfD 
is the optimal subset matrix of rank k, where optimal means with respect to the projection error committed in
the norm used in the ``Theoretical error"" column. \epsilon is an error tolerance, and \eta is a weighting parameter for
leverage scores.

Algorithm Runtime Theoretical error m = m(k, \epsilon )

Leverage [25] \scrO (n3) \| \bfA  - \bfC \bfC \dagger \bfA \| 2F \leq (1 + \epsilon )\| \bfA  - \bfA \bfk \| 2F m = max
\bigl( \bigl( 

2k
\epsilon 

\bigr) 1
1+\eta ,

\bigl( 
2k
\eta \epsilon 

\bigr) 1
\eta , k

\bigr) 
Cholesky [1] \scrO (n2m) \| \bfC \bfC \dagger \bfA \| 2F \geq (1 - \epsilon )\| \bfD \bfD \dagger \bfA \| 2F m = 16k

\epsilon \sigma \mathrm{m}\mathrm{i}\mathrm{n}(DD\dagger )

QR [15] \scrO (n2m) \| \bfA  - \bfC \bfC \dagger \bfA \| 2 \leq 
\bigl( 
1 +

\surd 
n - k \cdot 2k

\bigr) 
\| \bfA  - \bfA \bfk \| 2 m = k

LU [1] \scrO (n2m) \| \bfC \bfC \dagger \bfA \| 2F \geq (1 - \epsilon )\| \bfD \bfD \dagger \bfA \| 2F m = 16k
\epsilon \sigma \mathrm{m}\mathrm{i}\mathrm{n}(DD\dagger )

GOMP [1] \scrO (n2m2) \| \bfC \bfC \dagger \bfA \| 2F \geq (1 - \epsilon )\| \bfD \bfD \dagger \bfA \| 2F m = 16k
\epsilon \sigma \mathrm{m}\mathrm{i}\mathrm{n}(DD\dagger )

Table 2
Summary of methods used in the empirical comparison for choosing resource allocation.

Abbreviation Algorithm

rand uniform random
lev deterministic leverage score [25]
qr pivoted QR [15]
chol pivoted Cholesky [23]
lu partially pivoted LU [14]
gomp group orthogonal matching pursuit (section 3.1)
rank-k best rank-k approximation [14]

pivoted decomposition methods, such as partially pivoted LU decomposition (lu) and pivoted
QR decomposition (qr). All of these decomposition methods have a general approach of select-
ing the element with the largest residual norm after removing the contribution from previous
selected elements, with the exception of LU, which does this but using the element with the
maximum residual element magnitude (rather than the full norm). From the CSSP literature,
we compare against the leverage score sample (lev) that makes use of the SVD of the Gram
matrix to make the selection. Finally, we compare against the proposed method, grouped
orthogonal matching pursuit (gomp), which was explained in detail in section 3.1. We also
include results using a uniformly random selection (rand) and a best rank-k approximation
(rank-k) as contextual benchmarks. Here, rank-k means the best approximating matrix of
rank k measured in the \ell 2 or Frobenius norm. The Eckart--Young--Mirsky theorem gives an
explicit construction of this matrix as a truncated SVD of the full matrix. All methods used
are summarized in Table 2.

We report the error as a squared \ell 2 error normalized by the sum of squared \ell 2 norms

of the original data, E =
\sum 

i \| \bfX i - \~\bfX i\| 22\sum 
i \| \bfX i\| 22

, where Xi is the ith simulation and \~Xi is the proxy

estimation for the ith simulation.

4.2. Burgers' equation. We use the viscous Burgers equation to evaluate the method in a
well-studied and familiar setting. We introduce uncertain perturbations to the left boundary
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condition and the viscosity parameter, similar to the setting studied in [38].
Specifically, we use

ut + uux = \nu uxx, x \in ( - 1, 1),(16)

u( - 1) = 1 + \delta , u(1) =  - 1,(17)

where \nu \sim U(0.1, 1) and \delta \sim U(0, 0.1) are both uniform random variables in their respective
ranges. This same problem with only the boundary perturbation (fixed viscosity) was studied
in [38] because it is extremely sensitive to boundary perturbations [34]. We found that adding
a second element of uncertainty around the viscosity parameter, \nu , makes the problem more
interesting from the perspective of attempting a linear approximation.

4.2.1. Setup. We sampled this parameter space using 400 total samples by taking 20
uniform grid samples within the boundary perturbation range, (0, 0.1), and 20 uniform grid
samples within the viscosity perturbation range, (0.1, 1.0). For each parameter sample pair,
we ran the low-fidelity and high-fidelity simulations for a set number of t = 1.5\times 106 simulation
steps, resulting in 400 different simulation results for the low-fidelity model and another 400
different simulation results for the high-fidelity model.

4.2.2. Analysis. The ultimate goal is to understand how each subset selection method
performs using the low-fidelity for selection, while the error is computed with respect to the
high-fidelity estimation. To test this, we use each method to select a subset and reconstruction
weights using the low-fidelity dataset, and then we test the reconstruction error in both the
low-fidelity samples and the high-fidelity samples.

We observed that all methods improved with each additional sample available, but certain
methods do better overall and some outperform all others when the number of samples is
extremely small. This latter case is important for our setting because we are in the setting
where only a few samples can be computed in the high-fidelity model. We found that overall,
deterministic leverage-score sampling performed the worst, even after a relatively large number
of samples have been found. Note, however, that leverage sampling is frequently used in the
context of very large datasets, and in this particular experiment we have access to only 400
samples. Thus, leverage sampling may be a good strategy for column subset selection if more
data were available or when a larger number of subsamples are selected. In this experiment,
random sampling appears to do better on average than deterministic leverage score sampling.
However, when we look at the worst-case example from a random subset, we see that all
other methods do better for small subsets. This last point is important when considering
an allocation strategy of only a few high-cost simulations because while on average random
does well it can do quite poorly in specific cases. The LU-based partial pivoting sampling
approach did better than random but worse overall than the remaining methods. In all of
our experiments, QR and Cholesky-based sampling performed nearly identically. This can be
understood as follows: When acting on a symmetric positive-definite matrix like the Gramian,
the QR and Cholesky pivoting strategies become nearly equivalent. Finally, the proposed
GOMP-based sampling approach performs the best overall, and particularly for a very small
subset setting. These results are summarized in Figure 1, which shows the reconstruction
error in the low-fidelity model and the high-fidelity model against the exact solution.
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Figure 1. Burgers' equation: Reconstruction error among subset methods for solutions to Burgers' equation.
Left: the reconstruction error of the rest of the low-fidelity simulation dataset when using the indicated subset
chosen using various methods. Right: the reconstruction error but for the high-fidelity simulations with the
subset chosen using the low-fidelity samples.

The right-hand panel of Figure 1 (the high-fidelity error plot) only showcases errors from
this multifidelity procedure, and not from, e.g., a best rank-k approximation on the high-
fidelity ensemble of solutions. Our focus here is on the empirical study of the quality of
high-fidelity subset selection using the low-fidelity data; under this focus, the shown plots are
the most relevant and the error study of a high-fidelity rank-k approximation falls out of scope.
Instead of subset selection quality, one can ask about how using the low-fidelity model in the
reconstruction procedure affects the accuracy. In other words, this is a question about how
the approximation to \bfitA H in (2) would compare with an approximation using ``high-fidelity""
coefficients. In other words, it is a question concerning the accuracy of

\bfitA H \approx \bfitA H
S

\bigl( 
\bfitA H

S

\bigr) \dagger 
\bfitA H vs. \bfitA H \approx \bfitA H

S

\bigl( 
\bfitA L

S

\bigr) \dagger 
\bfitA L,

once S has been determined. The effect of this approximation is not the central goal of this
paper, and so we leave this question for future investigation. However, we note that this
question has been investigated in some recent work [16, 18]. The remaining figures in this
manuscript therefore focus mainly on studies pertaining to the quality of the subset selection.

4.3. Double pendulum. We consider a classic double pendulum problem. A similar prob-
lem was also considered in [23], and we use the same setup and assumptions here. The problem
is parameterized by the two pendulum angles, \theta 1, \theta 2, the lengths of the pendulums, \ell 1, \ell 2, and
the mass of each pendulum, m1,m2, as well as the gravity coefficient, g. The high-fidelity
model corresponds to the solution of equation (6.5) in [23] parameterized by (m2, \ell 2) using a
strong stability preserving Runge--Kutta method. The low-fidelity model uses the same pa-
rameterization but a corresponding linear approximation; see equation (6.7) in [23] for details.
In contrast to [23], we use a Euclidean inner product for the examples shown here.
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4.3.1. Setup. For the high-fidelity model, we use a time-step \Delta t = 10 - 2 until T = 15,
resulting in a high-fidelity time-series vector of size 1501. The low-fidelity space uses \Delta t = 0.25
until T = 15, resulting in a 61-dimensional time-series vector. The uncertain parameter m2 is
sampled along the interval [0.25, 0.75], and \ell 2 is sampled from the range [0.25, 4]. We sample
the low-fidelity model using 20 uniform grid samples along each parameter range, resulting in
400 simulations.

4.3.2. Analysis. For this example, we observed a much larger gap between the lowest
and highest performers. This gap indicates that subset selection choice matters more for this
problem, probably due to the more strongly nonlinear relationship exhibited here than in the
Burgers example above.

The error observed in the low-fidelity model, shown in the left-hand side of Figure 2 on the
left, demonstrates that the GOMP-based approach achieves superior performance in almost
every subset size, until the number of samples becomes so large that the choice of subset
selection does not matter. Using the low-fidelity subset choices in computing reconstructions
for the high-fidelity model, shown in the right-hand side of Figure 2, achieves similar improve-
ments. In the high-fidelity case, the model errors are much larger, making any gains more
important.

A random subset selection does quite well on average in comparison to these deterministic
approaches. However, we emphasize again that in the worst case a random subset can do quite
poorly, as shown in the results, which makes it a risky strategy for simulation allocation. How-
ever, we note that rarely would making the allocation of a single high-fidelity simulation based
purely on a random selection make sense, due to the risk of any specific subset performing
quite poorly. While in expectation the random case performs well, any specific random subset
may not, unless the subset size becomes large enough that the subset selection algorithm is
no longer important. However, having arbitrarily large numbers of high-fidelity simulations is
typically not possible for real-world situations.

4.4. Compressible flow simulation. Compressible flow simulations are used to study how
fluids act while flowing in and around obstacles. Understanding these situations in detail
is vital in many domains, especially in engineering scenarios where compressibility effects
are important. We present here results from a 2D compressible flow simulation around a
cylindrical object. The simulation finds a solution to the compressible Navier--Stokes equation,
which for two dimensions can be written as

(18)
\partial q

\partial t
+

\partial f

\partial x
+

\partial g

\partial y
= 0,

where q is a vector of conserved variables, and f = f(q,\nabla q) and g = g(q,\nabla q) are the vectors
of the fluxes. These can be rewritten as

(19) f = fi  - fv, g = gi  - gv,

where fi, gi are the inviscid fluxes as given in [17] and fv, gv are the corresponding viscous
fluxes. The viscous fluxes take the form

(20) fv =

\left(    
0
\tau xx
\tau yx

u\tau xx + v\tau yx + kTx

\right)    , gv =

\left(    
0
\tau xy
\tau yy

u\tau xy + v\tau yy + kTy

\right)    ,
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Figure 2. Double pendulum: Reconstruction error among subset methods for solutions to a double pendulum
problem. Left: the reconstruction error of the rest of the low-fidelity simulation dataset when using the indicated
subset chosen using various methods. Right: the reconstruction error but for the high-fidelity simulations with
the subset chosen using the low-fidelity samples.

where \tau is the stress tensor,

(21) \tau xx = 2\mu 
\Bigl( 
ux  - 

ux + uy
3

\Bigr) 
, \tau yy = 2\mu 

\Bigl( 
vy  - 

ux + uy
3

\Bigr) 
, \tau xy = \tau yx = \mu (vx + uy),

with \mu the dynamic viscosity and k the thermal conductivity. The corresponding solution is
well known, and we refer the reader to classic texts for appropriate background, such as [22].

We are specifically interested in two uncertain parameters, the Reynolds number, Re,
which relates the velocity of the fluid to the viscosity of the fluid, and the Mach number,
Ma, which relates the speed of the fluid to the local speed of sound. We ran the simulations
using the compressible flow module of the Nektar++ suite [8]. In the simulation, we use the
following relationships between the Reynolds number and dynamic viscosity and between the
Mach number and the farfield velocity:

(22) \mu =
\rho \infty u\infty 
Re

, u\infty = Ma

\sqrt{} 
\gamma p\infty 
\rho \infty 

,

where p\infty , \rho \infty , u\infty denote the farfield pressure, density, and x-component of the velocity,
respectively, and \gamma is the ratio of specific heats. An example of a single time point in one of
the simulations is shown in the left-hand side of Figure 3.

4.4.1. Setup. We evaluated the Reynolds number, Re, and Mach number, Ma, parame-
ters at regular intervals with five samples between 200 and 450, and six samples between 0.2
and 0.45, respectively. For a single parameter pair, we ran the simulation for 1\times 107 steps to
achieve one unit of nondimensionalized simulation time, and for each time-step we recorded
four values at 15 spatial locations in the immediate vicinity of the cylinder. The spatial loca-
tions are shown visually in Figure 3. We are primarily interested in the fluid flow simulation
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Figure 3. Compressible flow simulation. Left: an example of one of the compressible flow simulations
used in this experiment, showing the entire field of mass-density (\rho ) values. The simulation models a fluid
flowing past a cylinder; we are specifically interested in the mass-density and energy values that emerge in the
immediate wake of the cylinder. Right: a zoomed-in diagram showing the location of the 15 sample points taken
from each simulation for the analysis. These points were specifically positioned in the immediate wake of the
cylinder. The location of this diagram is shown by the rectangle in the image on the left.

after it transitions into a steady shedding regime, so we ignore any of the time-steps in the
startup regime, which for this problem we observed to be at 30\% of the steps, or 4\times 104 steps.
This results in a feature vector with 6\times 104 time-steps and 15\times 4 = 60 values for each step.

Once the simulation transitions from the transient regime, all of these simulation sample
points are periodic signals whose form depends nonlinearly on the parameters chosen. To
align the signals, we detect the period length, find the cyclic peak, and translate all signals so
that the first peak aligns. We then crop all signals to a single period size. The cropping was
done to ensure a nice decay of singular values in the ensemble. A sample of a single positional
point and variable but for various Reynolds and Mach numbers is shown in Figure 4 for
reference. The corresponding Hilbert space is induced by the inner produce of these period
length signals.

We ran both the low- and high-fidelity simulations over the specified parameter values in
order to compute the proxy approximation error using the various subset selection methods.

4.4.2. Analysis. The results of the comparison in terms of how each of the subset selection
methods perform are shown in Figure 5. Here we observe slightly differing results in the high-
fidelity vs. low-fidelity errors. In the low-fidelity case, the methods perform similar to previous
experiments. The GOMP, Cholesky, QR, and leverage methods all perform the same after
a certain number of samples, and all perform better than random sampling. For the high-
fidelity results, we observed that Cholesky and QR perform similarly to random, while GOMP
performs the best. One of the primary differences between GOMP and QR is that GOMP
performs selection based on residual correlation in the Hilbert space, while QR uses residual
magnitude. These results indicate that the correlation becomes more indicative than the
magnitude of high-fidelity sample importance for this type of simulation data; this is another
reason to consider GOMP when choosing the subset selection technique.

4.5. Structure topology optimization. A structure topology optimization (STO) problem
involves solving a nonconvex optimization problem for the optimal material placement to
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Figure 4. Compressible flow simulation point samples over time. Top: samples of the mass-density field
at a single positional point (1.5, 0.0), which is located in the immediate wake of the cylinder in Figure 3. The
differing signal shapes are due to changes in the Reynolds and Mach numbers of the simulation; the figure shows
10 randomly sampled Reynolds--Mach pairs. Bottom: same as above but from the energy field.

satisfy a physical property such as stiffness or maximum stress. STO has emerged as a
powerful tool in designing various high performance structures, from medical implants and
prosthetics to jet engine components [32, 30, 37]. The optimization shown here is a canonical
STO problem in which the optimization finds the best material layout in the design space in
order to maximize the stiffness (or, equivalently, minimizing the deflection or compliance) of
the structure subject to a material volume constraint. The response of the structure for a
set of loading and boundary conditions is typically computed/simulated via the FEM. The
topology optimization yields a solution in the form of binary maps that indicate material
placement.

The low- and high-fidelity models are binary map outputs; see the left-hand side of Figure
6. Our multifidelity procedure does not operate on the binary maps themselves but instead
on a signed distance transform of the binary maps. To perform linear approximations, we
compute signed distance transform (SDT) fields from binary maps and use these fields in the
linear reconstruction. The SDT fields can be thresholded to recover binary maps; see the
right-hand side of Figure 6 right for examples. All errors reported in this section are errors
in the SDT fields. Figure 6 shows that thresholded SDT reconstructions can provide some
macroscopic information about structures but can lose a substantial amount of small-scale
structure.
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Figure 5. Projection error among subset methods for solutions to compressible flow problems. Left: the
reconstruction error of the rest of the low-fidelity simulation dataset when using the indicated subset chosen
using various methods. Right: the reconstruction error for the high-fidelity simulations with the subset chosen
using the low-fidelity samples.

Additional details of the specific optimization and example implementations can be found
in [2].

The problem considered here is parameterized by three variables, the vertical position of
the loading, p, the loading angle, \theta , and the filter size, \rho , which controls the scale of contiguous
blocks in the material placement. This is summarized in Figure 7.

4.5.1. Setup. The topology optimization takes place on a 2D rectangular grid of size
n\mathrm{r}\mathrm{o}\mathrm{w}\times n\mathrm{c}\mathrm{o}\mathrm{l}. In this experiment, the position variable, p, was restricted to p \in [ - 0.5n\mathrm{r}\mathrm{o}\mathrm{w}, 0.5n\mathrm{r}\mathrm{o}\mathrm{w}]
corresponding to the extent of the right boundary depicted in Figure 7. The angle param-
eter was restricted to \theta \in [0, \pi ] corresponding to the full range between pointing straight
down to straight up. The filter parameter was restricted to \rho \in [1.1z, 2.5z] corresponding
to the scale of features allowed in the final simulation, where z is the appropriate ratio co-
efficient depending on the resolution sx, sy. We sampled the three parameter spaces in a
uniformly random way until 1000 sample triples were found. Those triples were then used to
run 1000 separate topology simulations. Low fidelity corresponds to the problem solved with
n\mathrm{r}\mathrm{o}\mathrm{w} = 40, n\mathrm{c}\mathrm{o}\mathrm{l} = 80, z = 1, and high fidelity corresponds to the problem solved on a much
larger region, n\mathrm{r}\mathrm{o}\mathrm{w} = 80, n\mathrm{c}\mathrm{o}\mathrm{l} = 160, z = 2.

4.5.2. Analysis. Our analysis takes into account both the low-fidelity and the high-fidelity
spaces. Specifically, we analyze how well the subset selected by each method works to recon-
struct the remaining low-fidelity samples. We also consider how the method reconstructs the
high-fidelity samples using the same subset.

We observed that the GOMP approach performed the best for any subset size examined.
The QR and Cholesky methods also performed quite well in the low-fidelity reconstruction
error. The average of random method performed relatively well initially, but then all other
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SDT original SDT reconstruction SDT thresholded Original Linear reconstruction

Figure 6. STO. Left 2 columns: Binary maps output from both low- and high-fidelity solutions. Each row
shows the low- and high-fidelity solutions using the same parameters; note the variety of changes in the solution
just by moving from a lower resolution domain to a higher resolution domain. Right 5 columns: illustration of
SDT fields resulting from binary maps output from the optimization process. The first column shows the SDT
fields from the original binary maps (fourth column). The second column shows the SDT reconstruction, which
is subsequently thresholded to obtain the binary structure (fifth column). For reference, the third column shows
thresholding of the first-column SDT field.

θ

p

ρ

Figure 7. STO diagram. The loading on the right edge is parameterized by a vertical position, p, and a
loading angle, \theta , and the filter size, \rho , which controls the length scale in the topology optimization.

methods perform better at larger subset sizes.
The high-fidelity case was more different for this dataset than in the previous simulations

examined. Specifically, we note that the GOMP maintains the position as the best performer;
however, it also gains a considerable edge in the larger subset sizes. Surprisingly, Cholesky
and QR perform well at first but then perform worse as the subset size grows. The aver-
age of random subsets does better than the LU and leverage approaches. The performance
comparison among the different methods is summarized in Figure 8.

The poorer performance of QR for larger subset sizes, we hypothesize, is due to the larger
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Figure 8. STO. Reconstruction error among subset methods. Left: the reconstruction error of the rest of
the low-fidelity simulation dataset when using the indicated subset chosen using various methods. Right: the
reconstruction error for the high-fidelity simulations with the subset chosen using the low-fidelity samples.

set of differences between the low- and high-fidelity solutions in this dataset. Because of the
nonconvex nature of the topology optimization problem, we observe some larger differences
in the various solutions; an example is shown in Figure 6. We hypothesize that because
GOMP bases the decision of using a subset element largely on overall correlation with the
remaining data point, rather than simple residual error magnitude, it is able to capture the
more important trends of the samples which carry over to the high-fidelity case.

Our previous analysis has focused on the subset size. A larger subset size for the same
error ultimately translates into a higher runtime cost to obtain the same approximation error.
To make this relationship more clear, we also compared the methods directly using simulation
runtime and reconstruction error.

A popular alternative approach to generating proxy functions for applications in uncer-
tainty analysis of simulations is to use a Gaussian process (GP) regression to estimate unseen
simulations results (see, e.g., [19, 28, 27]). However, a GP approach relies on a large number
of high-fidelity simulations from which to derive the proxy function. This is directly at odds
with computationally constrained high-fidelity problems. We illustrate this point by including
a GP proxy using the same, small number of samples used in the multifidelity approach.

We also consider an alternative neural-network-based proxy method proposed specifically
for topology optimization in [33]. In [33], the authors proposed training a standard feed-
forward neural network, also known as a multilayered perceptron (MLP), as a proxy for the
exact solution given the problem constraints. They first reduce the dimension of the dataset
to an 80-dimensional space using PCA and then train the MLP to regress to the PCA weights
given the problem constraints. We implemented their approach and got comparable results
for the same number of solution designs used in their training (400). However, this approach
also assumes the availability of sufficient data to train the model, which is not always the case
in the high-fidelity models in the wild. To compare, we used both an MLP-based approach
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with no PCA reduction and an MLP training on the PCA weights where the space was chosen
to capture 90\% of the singular value energy. The results are summarized in Figure 9. The
left-hand side of Figure 9 compares all the methods on a log-scale. Because of the lack of
training data, the MLP model performs quite poorly. The GP model performs much better
initially than the MLP model on the fewer number of samples, but after reaching between
10--15 samples the two become quite similar in performance. Both the GP and the MLP
models accrue considerable error because the limited samples do not sufficiently represent the
high-fidelity space. The right-hand side of Figure 9 shows only the multifidelity methods on
a linear scale. Note that it is difficult to directly compare results here with those in Figure 8
because this plot shows an average cost and runtime over 50 smaller datasets of size 500 each,
which results in much smaller error overall. However, the relative performance of the methods
is generally the same.

In contrast, the Gramian-weighted nonparametric proxy method introduced in [23] per-
forms well using only a small number of high-fidelity samples because it makes direct use of
the low-fidelity structure through the low-fidelity Gramian. In considering the choice in how
the subset selection of the nonparametric proxy method is done, we found similar advantages
in using a GOMP-based subset to the previous examples considered. Specifically, we note that
given the same amount of high-fidelity simulation time we can improve the error considerably
over previous methods. Our comparison in Figure 9 between our multifidelity methods (lev,
qr, chol, lu, gomp) and surrogate methods (MLP, MLP-pca, GP) is not quite a comparison on
an even playing field: The cost of training the multifidelity and surrogate methods is compa-
rable, but evaluating the multifidelity approximations requires a low-fidelity evaluation, which
can be more expensive than evaluation of a neural network or GP surrogate. However, this
example illustrates that in our situation neural networks and GPs cannot be trained on only
high-fidelity data with reasonable cost. In scenarios when the high-fidelity model is expensive,
it is thus more difficult to accurately train surrogate models, and it is in this regime when the
multifidelity approximation can be useful.

There are some significant differences between the observed reconstruction error perfor-
mance among the different subset methods. For the topology optimization problem, these
differences can be seen easily by viewing the subsets of solutions chosen and considering the
differences. Figure 10 shows the first 15 subsets chosen by each of the methods in order of
selection. Note that QR and Cholesky chose the same subsets for this dataset, and for brevity
we only show QR. All of the methods select a similar solution initially, one of the solid beam
structure solutions. This is consistent with our understanding of each of the methods, as the
leverage method is selecting the sample with the most statistical leverage, QR, Cholesky, and
LU are selecting the sample with the largest residual, and GOMP is selecting the sample with
the largest correlation with all the samples. Note how QR selects a sample with some slant,
and this probably results in a larger magnitude image, while GOMP selects a beam with a
straight orientation, and this is probably higher correlated with more samples. The methods
start to differentiate after a few samples: Statistical leverage continues to select samples with
similar large beam structures because those solutions also have a large statistical leverage
score (leverage scores do not take into account prior samples like the other methods). The
order of the QR and Cholesky selections is interesting because, as the first sample was slanted
one way, the residual error indicated that a slant the other way was the next best accord-
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Figure 9. STO. Average reconstruction error (vertical axis) vs. high-fidelity simulation runtime (horizontal
axis) among subset methods over an ensemble of 50 random datasets containing 500 samples each; the standard
deviation of the ensemble error is shown in dashed error bars around each point. The ``error"" is the relative
\ell 2 vector error averaged over all samples. From left to right, each point indicates the number of high-fidelity
simulations used to obtain the approximation, and the vertical and horizontal location is the average error and
average time to simulation, respectively, over the 50 dataset realizations for that number of simulations. Left:
a log-scale comparison including a GP, an MLP, and an MLP training on PCA projections (MLP-pca) similar
to [33]. Right: a linear-scale view of the same results but only showing the multifidelity techniques.

ing to the magnitude criteria. After the slanted beams, other solutions with large beams
in them as well as small lattices were chosen, probably because these also resulted in large
residual magnitudes. The GOMP approach, in contrast, selected two large beam solutions,
and then selected a solution made entirely of lattices, probably because that distribution of
material more highly correlated with the remaining residuals. We hypothesize that because
GOMP uses residual correlation instead residual magnitude, it is able to do better in the
high-fidelity space even if there are some differences between low- and high-fidelity solutions
for the topology optimization problem.

5. Conclusion. We have investigated a novel approach to determine a design of experi-
ments for high-fidelity simulations in a multifidelity framework. Low-rank multifidelity tech-
niques require a step that identifies an appropriate allocation of scarce computational resources
in a parametric high-fidelity model. Existing methods accomplish this allocation by using a
particular greedy technique to select a small subset from a large candidate. For the purposes
of performing this multifidelity approximation, we explore and compare many existing alter-
native subset selection techniques that are popular in statistics and machine learning. We
find that a GOMP algorithm can consistently yield superior results on challenging datasets.

We provide first-principles motivation of the problem and the choice of GOMP, and we
present analysis suggesting that GOMP can be effective for this task. Our numerical results
show substantial improvement in the multifidelity error per simulation cost. The GOMP
algorithm was compared to previous allocation strategies as well as existing column subset
selection problem solutions on several simulation datasets. This work thus investigates an
unexplored connection between the multifidelity allocation problem and the classic subset
selection problem in the machine learning and data mining domains. Our analysis provides



ALLOCATION STRATEGIES FOR THE MULTIFIDELITY REGIME 229

Leverage QR LU GOMP

Figure 10. STO samples: the samples chosen (in order) by each algorithm. Because Cholesky and QR
select the same samples, we only show the results for QR in the interest of space. Note that all methods select
samples with a large primary beam first and then become quite different afterwards. The differences are caused
by how the methods make the next selection; for example, GOMP uses max correlation with residual, while
QR/Cholesky use max residual magnitude.

a first step to understanding the apparent superiority of the GOMP strategy, but a more
rigorous analysis requires further investigation.
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