

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. S\mathrm{C}\mathrm{I}. C\mathrm{O}\mathrm{M}\mathrm{P}\mathrm{U}\mathrm{T}. \mathrm{c}\bigcirc 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 3, pp. C97--C123

\bfE \bfF \bfF \bfI \bfC \bfI \bfE \bfN \bfT \bfM \bfA \bfT \bfR \bfI \bfX -\bfF \bfR \bfE \bfE \bfH \bfI \bfG \bfH -\bfO \bfR \bfD \bfE \bfR \bfF \bfI \bfN \bfI \bfT \bfE \bfE \bfL \bfE \bfM \bfE \bfN \bfT
\bfE \bfV \bfA \bfL \bfU \bfA \bfT \bfI \bfO \bfN \bfF \bfO \bfR \bfS \bfI \bfM \bfP \bfL \bfI \bfC \bfI \bfA \bfL \bfE \bfL \bfE \bfM \bfE \bfN \bfT \bfS \ast

DAVID MOXEY\dagger , ROMAN AMICI\ddagger , \mathrm{A}\mathrm{N}\mathrm{D} MIKE KIRBY\ddagger

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . With the gap between processor clock speeds and memory bandwidth speeds contin-
uing to increase, the use of arithmetically intense schemes, such as high-order finite element methods,
continues to be of considerable interest. In particular, the use of matrix-free formulations of finite
element operators for tensor-product elements of quadrilaterals in two dimensions and hexahedra
in three dimensions, in combination with single-instruction multiple-data instruction sets, is a well-
studied topic at present for the efficient implicit solution of elliptic equations. However, a considerable
limiting factor for this approach is the use of meshes comprising of only quadrilaterals or hexahedra,
the creation of which is still an open problem within the mesh generation community. In this arti-
cle, we study the efficiency of high-order finite element operators for the Helmholtz equation with
a focus on extending this approach to unstructured meshes of triangles, tetrahedra, and prismatic
elements using the spectral/hp element method and corresponding tensor-product bases for these
element types. We show that although performance is naturally degraded when going from hexahe-
dra to these simplicial elements, efficient implementations can still be obtained that are capable of
attaining 50\% through 70\% floating point operations of the peak of processors with both AVX2 and
AVX512 instruction sets.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . SIMD vectorization, high-order finite elements, spectral/hp element method, high-
performance computing

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65N30, 65Y05, 68W10

\bfD \bfO \bfI . 10.1137/19M1246523

\bfone . \bfI \bfn \bft \bfr \bfo \bfd \bfu \bfc \bft \bfi \bfo \bfn . The development of robust, efficient solvers which utilize high-
order or spectral/hp element methods is an area of considerable interest at present.
The use of higher order polynomial expansions within elements carries a number of
benefits as seen from two main perspectives. Numerically, these methods exhibit far
lower levels of numerical dispersion and dissipation at higher polynomial orders. This
makes them a particularly well-suited approximation choice in areas such as computa-
tional fluid dynamics, where the accurate time-advection of energetic structures such
as vortices is a key concern [27]. However, perhaps the most appealing property of
these methods in recent years has been their computational performance, particularly
with respect to the present hardware landscape. Although the cost per degree of free-
dom in terms of algorithmic floating point operations (FLOPS) increases substantially
with polynomial order, the use of higher order expansions leads to formulations of the
underlying equations of state that involve dense, compact kernels for key finite ele-
ment operators, such as inner products and derivatives. This is important from the
perspective of modern hardware, where increasingly the bottleneck in performance

\ast Submitted to the journal's Software and High-Performance Computing section February 25,
2019; accepted for publication (in revised form) March 16, 2020; published electronically May 26,
2020.

https://doi.org/10.1137/19M1246523
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : The work of the first author was supported by the PRISM project through EPSRC

under grant EP/R029423/1. The work of the second and third authors was supported by the AFRL
through grant FA8650-17-C-5269.

\dagger College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, Devon,
EX17 1EJ, UK (d.moxey@exeter.ac.uk).

\ddagger Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT 84112
(amicir@gmail.com, kirby@cs.utah.edu).

C97

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/19M1246523
mailto:d.moxey@exeter.ac.uk
mailto:amicir@gmail.com
mailto:kirby@cs.utah.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C98 DAVID MOXEY, ROMAN AMICI, AND MIKE KIRBY

is memory bandwidth as opposed to the clock speed of processors. The underlying
arithmetic intensity of the algorithm at hand (i.e., the number of FLOPS performed
for each memory operation) is therefore key to attaining optimal performance. This
is where high-order methods hold a significant advantage over lower-order methods.

This potential for increased performance is an aspect that has attracted consid-
erable attention in the last few years. In particular, examining three key concepts in
combination has yielded impressive computational results:

\bullet matrix-free implementations of finite element operators, which avoid the ex-
plicit construction of either large, assembled global matrices (as is standard
at lower orders) or even local, dense elemental operators (which is common
at higher orders);

\bullet the use of tensor products of one-dimensional basis functions to construct
quadrilateral and hexahedral elements to enable the use of sum-factorization
[20], which reduces operation counts substantially and makes matrix-free
methods computationally attractive; and

\bullet effective approaches for exploiting single-instruction multiple-data (SIMD)
vectorization in a manner that aligns with the inherent parallelism of the
finite element method in a computationally efficient manner. As modern
hardware now relies on wide SIMD instructions to achieve increasing levels
of computational power in newer generations of hardware, attaining peak
performance relies on the efficient usage of such instructions. This may be
done either transparently, by considering techniques such as compiler auto-
vectorisation, or more opaquely through the adjustment of data layout to
align more closely with the vectorized nature of SIMD instructions.

This combination can be seen in many recent publications and finite element codes.
Implementations inside deal.II consider this extensively within both continuous
Galerkin (CG) [2, 26] and discontinuous Galerkin (DG) settings [14, 13, 24] with vari-
ous application areas including the incompressible Navier--Stokes equations. Dune [6]
considers similar approaches for their Exa-DUNE implementation [4, 5]. Implementa-
tions utilizing a matrix-free approach without explicit SIMD vectorization (but with
efficient small matrix multiplication kernels which can adopt this approach) can also
be found in the incompressible fluid dynamics solver Nek5000 [15].

A limiting factor in this work, however, is that they rely on domains com-
prised solely of quadrilateral or hexahedral elements for two-dimensional and three-
dimensional simulations, respectively. This is a significant issue when simulating
complex geometries, since all-hexahedral mesh generation is an open problem even
for linear finite element calculations. Indeed, the issue is further exacerbated when
considering that, in order for the geometry to be accurately modeled, curvilinear
meshes that are boundary conforming are required, which is itself an area of consider-
able interest [39, 33]. Although nonconformal adaptive mesh refinement is a potential
route to deal with this issue (and is an approach considered in both deal.II [3] and
Nek5000 [35] in combination with the parallel \ttp \ttfour \tte \tts \ttt library [7]), this approach still
relies on an initial coarse grid, which can still at present be an issue for sufficiently
complex geometries.

The simulation of complex geometries at high-order is instead under consideration
by solvers including Nektar++ [8, 31] and PyFR [42], which use general, unstructured
meshes of symplicial or hybrid elements: triangles in two dimensions and triangular
prisms, tetrahedra, and square-based pyramids in three dimensions, potentially also
in combination with quadrilaterals and hexahedra. In particular, Nektar++ per-
mits the matrix-free evaluation of basic finite element operations which still utilize

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX-FREE OPERATORS FOR SIMPLICIAL ELEMENTS C99

sum-factorization even for non--tensor-product elements [40, 9, 32] through the use
of a hierarchical C0 basis introduced in [20]. Similarly, Berstein--B\'ezier basis func-
tions such as those studied extensively by Ainsworth [1] and Kirby [22] can leverage
the same structure for fast evaluation of finite element kernels. However, there is no
particular consideration of data layout and SIMD vectorization in the aforementioned
works; furthermore, for implicit solutions of elliptic problems such as the Poisson and
Helmholtz equations, Nektar++ typically uses local matrix generation combined with
static condensation to reduce operator counts.

The aim of this paper, therefore, is to consider the aforementioned C0 basis,
and other similar tensor-product basis choices, in the context of a matrix-free imple-
mentation of the Helmholtz operator for meshes of high-order unstructured elements.
Adopting a similar approach to the previously cited work and, in particular [2], we con-
sider a memory layout that interleaves elemental degrees of freedom to allow explicit
exploitation of SIMD vectorization. We combine this with hand-written kernels for
the key components of the Helmholtz operator, which make heavy use of intrinsics to
avoid the pitfalls of compiler auto-vectorization. The efficiency of these kernels is then
examined by considering their application to a number of two- and three-dimensional
geometries in various hardware architectures.

The paper is structured as follows. In section 2, we lay out basic theory and
background for high-order unstructured elements and the matrix-free evaluation of
the Helmholtz operator. In section 3, we discuss the particulars of implementation.
Section 4 applies these kernels to a variety of geometries in order to detail their
performance properties. Finally, we conclude with a brief discussion of the results
and future work in section 5.

\bftwo . \bfT \bfh \bfe \bfo \bfr \bfy \bfa \bfn \bfd \bfb \bfa \bfc \bfk \bfg \bfr \bfo \bfu \bfn \bfd . The starting point for this article is the consid-
eration of a finite element decomposition of the Helmholtz equation

(2.1) \nabla 2u - \lambda u = f(x)

on a domain \Omega \subset \BbbR d for d = 2, 3, with \lambda > 0 being a positive constant, and u, f : \Omega \rightarrow
\BbbR scalar functions denoting the desired solution and forcing term, respectively. For
simplicity of implementation, we assume homogeneous Neumann boundary conditions
on the boundary \partial \Omega . We select the Helmholtz equation as a representative elliptic
problem that demonstrates various building-block finite element operators, as well as
itself playing a significant role in the solution of more complex systems of equations.
A prominent example of this is an implicit-explicit operator splitting scheme for the
incompressible Navier--Stokes equations [21], which is widely used and implemented
within a number of high-order codes [35, 15, 8, 14]. This scheme involves the solution
of a Poisson equation for pressure and d Helmholtz equations to perform a correction
step for each velocity component. Efficient techniques for the evaluation and solution
of these equations are therefore highly desired.

As in any other finite element decomposition, the starting point is to consider
the tessellation of the domain \scrT (\Omega) into discrete elements \Omega e \in \scrT (\Omega). In two dimen-
sions, we consider elements of potentially curvilinear triangles and quadrilaterals; in
three dimensions, hexahedra, triangular prisms, and tetrahedra. In this paper, we are
mostly concerned with the evaluation of finite element operators without considera-
tion of elemental connectivity. By focusing on elemental operations, the techniques we
propose are amenable to a wide range of schemes, including DG and CG discretiza-
tions, for both conformal and nonconformal meshes. However, for the purposes of
demonstration and discussion of basis choice later, we consider a conformal grid of
elements and select test functions from a space of continuous, piecewise polynomial
functions given by

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C100 DAVID MOXEY, ROMAN AMICI, AND MIKE KIRBY

\scrD (\Omega) = \{ u \in C0(\Omega) | u| \Omega e \in \BbbP k(\Omega e),\forall \Omega e \in \scrT (\Omega)\} ,

where \BbbP k(\Omega e) denotes an appropriate polynomial space for each element type. This
comes from using the definition of a basis of polynomial functions \phi p : \Omega \mathrm{s}\mathrm{t} \rightarrow \BbbR within
reference elements \Omega \mathrm{s}\mathrm{t} \subseteq [- 1, 1]d. For example a reference triangle is defined as

\Omega \mathrm{s}\mathrm{t} = \{ (\xi 1, \xi 2) | \xi 1, \xi 2 \in [- 1, 1], \xi 1 + \xi 2 \leq 0\} ,

where \xi is used to denote a coordinate position within \Omega \mathrm{s}\mathrm{t}. Subsequently we choose
a basis \phi p(\xi) which form a basis of the polynomial space

\BbbP P (\Omega \mathrm{s}\mathrm{t}) = span\{ \xi p1\xi q2\xi r3 | (\xi 1, \xi 2, \xi 3) \in \Omega e, (pqr) \in \scrI \} ,

where the index set \scrI defines the spanning polynomial space for each element type.
For the elements we consider here, these are given by

\scrI \mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d} = \{ (pqr) | 0 \leq p \leq P, 0 \leq q \leq Q, r = 0\}
\scrI \mathrm{t}\mathrm{r}\mathrm{i} = \{ (pqr) | 0 \leq p \leq P, 0 \leq p+ q \leq Q, r = 0, P \leq Q\}
\scrI \mathrm{h}\mathrm{e}\mathrm{x} = \{ (pqr) | 0 \leq p \leq P, 0 \leq q \leq Q, 0 \leq r \leq R\}
\scrI \mathrm{p}\mathrm{r}\mathrm{i} = \{ (pqr) | 0 \leq p \leq P, 0 \leq q \leq Q, 0 \leq p+ r \leq P, P \leq R\}
\scrI \mathrm{t}\mathrm{e}\mathrm{t} = \{ (pqr) | 0 \leq p \leq P, 0 \leq p+ q \leq Q, 0 \leq p+ q + r \leq R, P \leq Q \leq R\}

with P , Q and R defining a possibly heterogeneous polynomial order for each coordi-
nate direction. Finally, N(P, e) = | \scrI | defines the number of local degrees of freedom
contained within each element.

In order to construct a discrete representation u\delta \in \scrD (\Omega) of the scalar function
u, we follow a standard approach and construct a sub- or iso-parametric polynomial
mapping \chi e : \Omega \mathrm{s}\mathrm{t} \rightarrow \Omega e, using the same selection of basis functions \phi p, to define
both the world-space coordinates x \in \Omega e of a given element, as well as the elemental
shape functions \phi ep = \phi p \circ (\chi e) - 1 and the corresponding polynomial space \BbbP k(\Omega e).
These shape functions can then be used within expansions (alongside appropriate
projections) to construct discrete representations u\delta of the form

(2.2) u\delta (x) =

| \scrT (\Omega)| \sum
e=1

N(P,e)\sum
n=1

\^uen\phi
e
n(x).

For a C0 basis, appropriate conditions need to be imposed on \^uep to ensure continuity of
the global basis functions, typically through the use of an appropriate global assembly
operation [28]. This can be viewed as a nonsquare matrix-vector multiplication by
an assembly matrix \scrA , so that the vector of all element local coefficients \bfitu l and the
corresponding global modes of the system \bfitu g are connected through the relationship
\bfitu g = \scrA \bfitu l and \bfitu l = \scrA T\bfitu g.

Finally then, proceeding in a standard fashion and recalling the use of homoge-
neous Neumann boundary conditions, we multiply (2.1) by a test function v \in \scrD (\Omega),
integrate both sides, and apply the divergence theorem to arrive at the weak form

(\nabla u,\nabla v)\Omega + \lambda (u, v)\Omega = - (f, v)\Omega ,

where

(u, v)\Omega =

\int
\Omega

u(x)v(x) dx.

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX-FREE OPERATORS FOR SIMPLICIAL ELEMENTS C101

Substituting an expansion for u and v of the form of (2.2) and considering a single
element of the mesh, the left-hand side leads to the of a discrete Helmholtz matrix
\bfitH e with

[\bfitH e]pq =

\int
\Omega e

\lambda \phi ep(x)\phi
e
q(x) +\nabla \phi ep(x) \cdot \nabla \phi eq(x) dx

=

\int
\Omega \mathrm{s}\mathrm{t}

\bigl[
\lambda \phi p(\xi)\phi q(\xi) + (\bfitJ e) - 1\nabla \phi p(\xi) \cdot (\bfitJ e) - T\nabla \phi eq(\xi)

\bigr]
| \bfitJ e| d\xi ,(2.3)

where \bfitJ e is the corresponding Jacobian matrix of the coordinate transformation \chi e(\xi).

\bftwo .\bfone . \bfO \bfp \bfe \bfr \bfa \bft \bfo \bfr \bfe \bfv \bfa \bfl \bfu \bfa \bft \bfi \bfo \bfn . Obtaining solutions to (2.1) relies on finding so-
lutions to the linear system \bfitH \^\bfitu g = \bfitf , where \bfitf denotes the vector of coefficients
resulting from the projection of the forcing function f(x) onto the global modes that
span \scrD (\Omega), \^\bfitu g is a corresponding vector of global coefficients for the unknown solu-

tion, and \bfitH = \scrA [\bigoplus N\mathrm{e}\mathrm{l}

e=1 \bfitH
e]\scrA T the globally assembled Helmholtz matrix. In parallel

execution, where memory is distributed across multiple computational nodes, the ex-
plicit construction of \bfitH is generally infeasible. Solutions to this system are therefore
commonly found using iterative Krylov-type solvers, and in this specific case, the
symmetry of the system leads to the preconditioned conjugate gradient method being
a popular choice [43]. The action of the matrix-vector multiplication \bfitH \^\bfitu g is therefore
evaluated in a manner which gives the same mathematical outcome but without the
explicit construction of the matrix. The main costs in solving this system can there-
fore be attributed to the time spent in evaluation of \bfitH ; communication costs in the
distributed assembly of the operator and the reductions necessary for iterative meth-
ods; and preconditioner performance that governs the number of iterations required
for convergence. In this paper, we only consider the effect of operator evaluation,
since for large problems this is frequently the dominant cost in computation [43].
Evaluation of \bfitH can be performed in a number of ways, each of which yield different
performance characteristics:

\bullet Assembly of a process-local sparse matrix \bfitH combined with a distributed
assembly. In the past this has been demonstrated to yield good performance
at lower polynomial orders [40].

\bullet Assembly of local, dense, elemental matrices \bfitH e. The direct sum
\bigoplus N\mathrm{e}\mathrm{l}

e=1 \bfitH
e

may be evaluated element-by-element using a series of dense linear algebra
routines from, for example, BLAS (e.g., \ttd \ttg \tte \ttm \ttv). This can then be com-
bined with a process-local and distributed assembly operation to evaluate \scrA ,
thereby evaluating the action of \bfitH without explicitly constructing the full
global system.

\bullet Optionally, elemental matrices can be combined with static condensation, in
which degrees of freedom are associated with either the boundary or interior of
the element. A Schur complement technique is then applied to solve a system
comprising of the ``shell"" of degrees of freedom lying on the boundary. This is
then coupled with an embarrassingly parallel solve for interior degrees of free-
dom on each element, which can be precomputed for additional performance.
As this system is considerably smaller than that arising from the full element,
particularly in three dimensions owing to favorable surface-to-volume ratios,
this can result in substantial cost savings, particularly when combined with
a suitable preconditioner (see [17]). However, it does require the choice of a
local basis that admits a boundary/interior decomposition; common choices
such as Lagrange basis with appropriate nodes admit this decomposition, but,

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C102 DAVID MOXEY, ROMAN AMICI, AND MIKE KIRBY

e.g., the Legendre basis does not. Furthermore, the tensor-product structure
for general elements is lost under this operation, meaning that local matrix
generation is required. The exception to this is for Cartesian quadrilateral
and hexahedral elements, which can use appropriate factorizations to recover
this structure [19].

\bullet Finally, where the local elemental basis is constructed from a tensor product
of one-dimensional functions, the sum-factorization technique can be applied
to construct a matrix-free operator evaluation, to explicitly preclude the con-
struction of\bfitH e. As an example, given a one-dimensional basis \phi p(\xi) for a seg-
ment, a basis for a quadrilateral can be formed as \phi pq(\xi 1, \xi 2) = \phi p(\xi 1)\phi q(\xi 2).
Evaluation of an expansion at a given point can then be represented as

u(\xi 1, \xi 2) =

P\sum
p=0

P\sum
q=0

\^upq\phi p(\xi 1)\phi q(\xi 2) =

P\sum
p=0

\phi p(\xi 1)

\Biggl[
P\sum
q=0

\^upq\phi q(\xi 2)

\Biggr]
,

where the brackets denote the use of a temporary storage. At a given dimen-
sion d, and considering a tensor product of quadrature or solution points that
require evaluation, this technique substantially reduces operator evaluations
from \scrO (P 2d) to \scrO (P d+1). We note that in this matrix-free setting, pre-
conditioning poses a problem as many traditional techniques (e.g., algebraic
multigrid or incomplete LU) typically rely on the presence of a globally as-
sembled sparse matrix. However, for elliptic problems, the use of p-multigrid
techniques for high-order simulations is particularly prevalent in the litera-
ture at present (see, e.g., [25]). By using a pointwise Jacobi-type smoother,
performant preconditioning can be achieved in a matrix-free manner.

The relative performance of these approaches, specifically on modern hardware,
has been considered previously in separate work (e.g., [26]) but only for quadrilateral
and hexahedral elements that readily admit the definition of a tensor-product basis.
Although in theory these element types can be used in arbitrary complex geome-
tries, the generation of unstructured hexahedral and quadrilateral meshes is presently
an open problem. In this paper, we therefore aim to consider the effectiveness of
this matrix-free evaluation in the context of simplicial-type elements such as trian-
gles, tetrahedra, and prisms, which more readily align with current mesh generation
capabilities. To do this requires the selection of a basis permitting tensor product
decomposition, which we discuss in the following section.

\bftwo .\bftwo . \bfC \bfh \bfo \bfi \bfc \bfe \bfo \bff \bfp \bfo \bfl \bfy \bfn \bfo \bfm \bfi \bfa \bfl \bfb \bfa \bfs \bfi \bfs . The selection of the polynomial basis on
each element is a key consideration of this paper. Much of the prior work considered
in section 1 exploits the use of a tensor product of one-dimensional nodal Lagrange
basis functions, where on the standard segment [- 1, 1], these are defined as

(2.4) \ell p(\xi) =
\prod

0\leq q\leq P
q \not =p

\xi - \^\xi q
\^\xi p - \^\xi q

,

where \^\xi q \in [- 1, 1] denote a set of P+1 points. Frequently, these are chosen to align or
collocate with an underlying quadrature (e.g., Gauss or Gauss--Lobatto points). This
``classical"" nodal spectral element approach yields the performance benefit of trivial
interpolations, making the mass matrix diagonal (albeit without an exact integration
of its entries) and reducing the cost of Helmholtz operator evaluations. Although
this approach can readily be extended to higher dimensional tensor-product elements,

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX-FREE OPERATORS FOR SIMPLICIAL ELEMENTS C103

a formulation of these basis functions inside hybrid or simplicial elements such as
triangles and tetrahedra leads to a set of basis functions that lack the tensor prod-
uct structure required to enable the use of sum factorization. More details on this
approach can be found in, e.g., [18].

To arrive at a tensor product formulation, we follow standard practice [20] and
employ the use of a square-to-triangle Duffy transformation [12] to define two inde-
pendent coordinate directions over which to perform the decomposition (or otherwise
use other similar mappings, e.g., [36]). This process is shown in Figure 1. Analytically,
for a triangle this mapping is defined as

\eta 1 = 2
1 + \xi 1
1 - \xi 2

 - 1, \eta 2 = \xi 2.

Although this mapping introduces a singularity, this can be mitigated (without a
loss of convergence order) using an appropriate choice of quadrature, as we outline
in section 2.3. Multiple applications of this transformation can be used to arrive at
similar coordinate spaces for higher dimensional elements. The evaluation of integrals
such as (2.3) then takes place on the collapsed coordinate space, leading to a double
application of the chain rule so that

\nabla u\delta (x) = \bfitG \bfitJ e\nabla u\delta (\eta).

Specifically, for the elements we consider here, we have that

\bfG \mathrm{t}\mathrm{r}\mathrm{i} =

\left[2

1 - \eta 2
1 + \eta 1
1 - \eta 2

0 1

\right] , \bfG \mathrm{p}\mathrm{r}\mathrm{i}\mathrm{s}\mathrm{m} =

\left[
2

1 - \eta 3
0

1 + \eta 1
1 - \eta 3

0 1 0
0 0 1

\right] ,

\bfG \mathrm{t}\mathrm{e}\mathrm{t} =

\left[
4

(1 - \eta 2)(1 - \eta 3)
2(1 + \eta 1)

(1 - \eta 2)(1 - \eta 3)
2(1 + \eta 1)

(1 - \eta 2)(1 - \eta 3)
0

2

1 - \eta 3
1 + \eta 2
1 - \eta 3

0 0 1

\right] .
The integrals in (2.3) are then evaluated over the collapsed coordinates \eta as opposed
to standard coordinates \xi .

\eta = (\eta 1, \eta 2) \in [- 1, 1]2
collapsed element

\xi = (\xi 1, \xi 2) \in \Omega \mathrm{t}\mathrm{r}\mathrm{i}
\mathrm{s}\mathrm{t}

standard element

\chi e(\xi)

x = (x1, x2) \in \Omega e

curvilinear element

Fig. 1. Illustration of the three coordinate systems used in the representation of a high-order
triangle. A representative equally spaced distribution of points is used to highlight the distribution
of quadrature points in the resulting high-order element.

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C104 DAVID MOXEY, ROMAN AMICI, AND MIKE KIRBY

With these coordinates in place, we may define two common choices of basis
functions which permit tensor-product decompositions and that we will consider in
this work. The first are Dubiner-type basis functions [11], which form an orthogonal
modal basis on the elemental space. For example, the triangular Dubiner basis is of
the form

\psi pq(\eta) =
\surd
2P (0,0)

p (\eta 1)\underbrace{} \underbrace{}
\psi a

p(\eta 1)

P (2p+1,0)
q (\eta 2)(1 - \eta 2)p\underbrace{} \underbrace{}

\psi b
pq(\eta 2)

,

where P (\alpha ,\beta) denotes the standard Jacobi polynomial and the indices p and q lie in the
indexing set \scrI \mathrm{t}\mathrm{r}\mathrm{i}. It is clear that, under a different indexing strategy where the limits
on inner summations now rely on outer summations, this basis can be decomposed
into the product of two one-dimensional functions for \eta 1 and \eta 2, respectively. For
example the interpolation of a expansion at a point \eta can be expressed as

u\delta (\eta) =
P\sum
p=0

\psi ap(\eta 1)

\Biggl[
Q - p\sum
q=0

\^upq\psi
b
pq(\eta 2)

\Biggr]
.

Triangular prisms and tetrahedra admit similar decompositions.
The second choice of tensor product basis is that presented in [37] and [20] and

used in Nektar++, in which ``standard"" linear finite element modes which are 1 at
each vertex and linearly decay to zero at other vertices, are augmented with a set of
orthogonal interior high-order polynomials. This leads to a basis that is not strictly
orthogonal within across the entire basis for each element but allows a natural route
to impose C0 connectivity and a separation into boundary and interior modes. For
completeness, this basis and its use in the various elemental expansions is defined in
Appendix A.

\bftwo .\bfthree . \bfD \bfi \bfs \bfc \bfr \bfe \bft \bfe \bfe \bfv \bfa \bfl \bfu \bfa \bft \bfi \bfo \bfn \bfo \bff \bft \bfh \bfe \bfH \bfe \bfl \bfm \bfh \bfo \bfl \bft \bfz \bfo \bfp \bfe \bfr \bfa \bft \bfo \bfr . To discretely evaluate
(2.1), a final point of concern is that of quadrature, as the evaluation of the weak
Helmholtz matrices requires an integration over each element. With the selection of
an appropriate quadrature we obtain

(2.5) [\bfitH]pq \approx
NQ\sum
n=1

\nabla \phi p(\eta n)\bfitJ e(\eta n) - 1| \bfitJ e(\eta n)| wn\bfitJ e(\eta n) - T\nabla \phi q(\eta n),

where \eta n denotes the distribution of quadrature points and wn the corresponding
weights. For tensor-product elements, common choices of quadrature include Gauss--
Lobatto points to allow accurate and fast integration. This naturally incorporates
tensor product orderings of quadrature points and thereby enables sum-factorization
to be used in either forward projections to polynomial space or interpolation from
polynomial to physical space.

On the other hand, the other element types do not typically utilize such quadra-
ture, instead opting for cubature-type rules that lose this structure, such as those seen
in [18]. In the formulation of a collapsed coordinate \eta , however, we may opt to use
a similar distribution of Gauss points in each collapsed coordinate direction. Indeed,
an appropriate choice of quadrature in the direction of the collapsed coordinate also
permits us to effectively deal with the singularity that occurs as a function of collaps-
ing vertices. Typically this is accomplished with appropriately weighted Gauss--Radau
points, which exclude the endpoints corresponding to the collapsed vertices. This also
allows us to use one fewer integration point in this direction, owing to the increased

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX-FREE OPERATORS FOR SIMPLICIAL ELEMENTS C105

accuracy of integration compared to Gauss--Lobatto points. An illustrated distribu-
tion of quadrature in the resulting world-space element, which describes this process
for a triangle and the effects of the Duffy transform, can be viewed in Figure 1.

Finally, one further choice that must be made is the number of quadrature points
to select in each coordinate direction. As noted previously, for the classical Lagrange
interpolants of (2.4), one might opt to select Q = P + 1 quadrature points, so as
to recover a diagonal mass matrix. For more complex models such as the Navier--
Stokes equations, higher orders of quadrature are frequently used to exactly integrate
nonlinear terms (such as the convection operator) or highly curvilinear elements where
\bfitJ e is a now a high-order polynomial [23, 29]. In this work, we opt to exactly integrate
the mass matrix but omit any over-integration effects, so that we select Q = P + 2
Gauss--Lobatto points in coordinate directions that are not collapsed, and Q = P +1
Gauss--Radau points in coordinate directions that are collapsed.

\bfthree . \bfM \bfa \bft \bfr \bfi \bfx -\bff \bfr \bfe \bfe \bfS \bfI \bfM \bfD \bfi \bfm \bfp \bfl \bfe \bfm \bfe \bfn \bft \bfa \bft \bfi \bfo \bfn . The main challenge in designing ef-
ficient tensor-product matrix-free algorithms for simplicial elements is the increased
complexity of data layout and indexing as opposed to standard tensor-product ele-
ments. For example, tetrahedral expansions are represented by the summation

(3.1) u\delta (\xi) =

P\sum
p=0

Q - p\sum
q=0

R - p - q\sum
r=0

\^upqr\phi
a
p(\eta 1)\phi

b
pq(\eta 2)\phi

c
pqr(\eta 3).

The full form of summations for each element type is given in Appendix A. Although
the dependency of indexes here is clearly more complex than is seen in the hexahedron,
and will likely result in performance degradation owing to this property, our aim is
to quantify this and determine whether highly performant implementations are still
attainable in a simplicial element setting.

In this section, we give a brief overview of our implementation choices which
we believe permits an efficient evaluation of the discrete Helmholtz operator from
(2.5) for unstructured elements. The main result of this work is to consider this
implementation in section 4, where it will be evaluated on different architectures of
varying SIMD widths.

\bfthree .\bfone . \bfD \bfa \bft \bfa \bfl \bfa \bfy \bfo \bfu \bft \bfa \bfn \bfd \bfS \bfI \bfM \bfD \bfs \bft \bfr \bfa \bft \bfe \bfg \bfy . The implementation of the matrix-
free problem in (2.5) is done in a standalone benchmarking utility for the Helmholtz
operator, although the initial construction of basis data, their derivatives, quadrature
points, and weights as well as other ancillary functions such as mesh connectivity and
parallelization is performed using the Nektar++ framework [8, 31]. The main purpose
of this utility is to examine the use of explicit SIMD instructions in order to achieve
optimal performance for kernels which evaluate the Helmholtz operator. As the name
implies, these instructions allow more than one data entry to be operated on (through,
e.g., multiplication or addition) during a single CPU cycle. On modern hardware, this
typically takes the form of 4 or 8 FLOPS in a single cycle using either 256-bit or 512-
bit advanced vector instructions (AVX), denoted as AVX2 and AVX512, respectively.
Furthermore, the use of one or more fused-multiply add (FMA) units, which combine
the multiplication and addition operation a\cdot b+c into a single cycle, further enhance the
potential FLOPS available. In order to attain the maximum peak performance of these
architectures, codes must be written using these important instruction sets in mind.

The precise way in which SIMD can be used in finite element formulations has
been the consideration of various previous studies. Broadly, SIMD may be applied in
three different ways:

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C106 DAVID MOXEY, ROMAN AMICI, AND MIKE KIRBY

\bullet Assuming the data regarding expansion coefficients are stored in an element-
by-element ordering, we may choose to iterate over either 4 or 8 degrees of
freedom at a time and load them into a vector register. The main drawback
for this method is that the number of degrees of freedom is rarely divisible
by the vector width, and so padding must be used for each element. This
approach can be seen in [4, 5].

\bullet We may alternatively choose to combine element data into groups correspond-
ing to the vector width of the architecture, as is seen in, e.g., [14, 13, 26, 24, 2]
and visualised in Figure 2. For example, on an AVX2 machine with a 256-bit
vector width corresponding to 4 double-precision floating point numbers, we
may group 4 elements so that their data are interleaved in memory. In this
case, no padding per element is required; however, if the number of elements
is not divisible by the vector width then a small and indeed negligible degree
of padding will be required to mask the missing elements.

\bullet Alternatively, if considering problems involving the function u and its three-
dimensional gradient \nabla u, as would appear in, e.g., the DG method, the four
components (u, \partial xu, \partial yu, \partial zu) can be loaded into a single AVX register. How-
ever the limiting factor here is the restriction to three-dimensional DG, as well
as the need to combine this approach with these previously mentioned in order
to capitalize on wider vector widths such as AVX512.

(a) contiguous layout (b) interleaved layout

Fig. 2. Contiguous vs. interleaved memory layout for a group of four elements, denoted by
different coloured blocks. Arrows denote the memory storage direction.

For simplicial-type elements, the interdependence of mode indices in each coor-
dinate direction means that the first choice above is vastly more difficult than the
second and, in all likelihood, more expensive, since each contraction would require a
different amount of padding as a function of the mode number. Moreover, since we
wish to make use of a C0 basis, rather than a DG setting in which derivatives are
desirable, as well as to consider three-dimensional problems and the use of AVX512,
it is clear that the third choice here is not desirable either. We therefore adopt the
second approach, where we interleave element data into groups corresponding to the
vector width of the architecture. The same strategy is used to interleave storage
of basis data and associated structures on the standard element such as quadrature
points and weights. This allows us to act on the group of elements simultaneously
in, for example, interpolation of the polynomial data at some point in an element,

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX-FREE OPERATORS FOR SIMPLICIAL ELEMENTS C107

as well as other storage required for, e.g., the Jacobian \bfitJ e and its determinant. The
difference between a ``standard"" contiguous ordering of element degrees of freedom
and this interleaved ordering is highlighted in Figure 2.

We additionally note that several performance optimizations can be made de-
pending on whether the reference-to-world mapping \chi e is affine or nonlinear. In
the former case, elements are planar-faced and parallelepipeds in the case of hex-
ahedral/prismatic/quadrilateral elements, whereas the latter gives the flexibility of
curvature to adapt to an underlying geometry. However, the affine case leads to ele-
mental Jacobian matrices \bfitJ e that are constant, meaning that the d2 entries and its
determinant can be stored once per element. In the nonlinear case, we store these
entries at each quadrature point, meaning that far more memory is required to store
the mapping data in this case. The benchmarking code considers these two cases sep-
arately and optimizes through the use of both template programming and appropriate
pointer arithmetic to reduce the memory footprint and/or FLOPS required in kernel
evaluations. We refer to these two cases as regular and deformed, respectively, in the
discussion below. We note that in some previous studies, further optimization can be
made for Cartesian formulations, as each element has the same Jacobian determinant.
Since here we consider generally unstructured meshes where this will not be the case,
we do not consider this approach in this work.

In terms of other memory considerations, we also note that adjustments were
made throughout the code to ensure that any allocated memory are aligned to the
appropriate cache line sizes, to ensure the use of more optimal aligned vector loading
instructions. Additionally, basis functions, which can be thought of mathematically
as entries in a two dimensional array \bfitB where [\bfitB]ij = \phi i(\xi j) are stored in one
dimensional flat arrays, indexed by both mode and quadrature point. The index over
quadrature point is always the fastest index. This was done to align with the memory
access pattern of the inner product kernel, described in the subsequent section, which
is the most frequently computed kernel within the Helmholtz operator. For basis
functions comprising multiple directions, such as the Dubiner basis \phi pq, the last index
is stored first so as to align with the layout of elemental degrees of freedom and ensure
contiguous memory access.

\bfthree .\bftwo . \bfP \bfr \bfo \bfg \bfr \bfa \bfm \bfm \bfi \bfn \bfg \bfc \bfo \bfn \bfs \bfi \bfd \bfe \bfr \bfa \bft \bfi \bfo \bfn \bfs . We make a number of deliberate design
decisions in the implementation which are noted in this section. As noted in [2, 5]
and elsewhere, autovectorization of code using a compiler is still a relatively difficult
problem. Reliance on a compiler alone to generate efficient SIMD code for even
relatively simple loop structures is therefore not usually possible. This is an important
factor in performance, since clearly as many AVX and FMA instructions as possible
are required to ensure good CPU utilization. Additionally, however, performance
penalties are incurred when frequent transitions are made between different kinds
of vector and legacy instructions are mixed; the density of these instructions can
therefore be maintained through the use of intrinsics.

To this end, our benchmarking code is written using C++ and makes use of com-
piler intrinsics to ensure the consistent and dense use of vector instructions. Template
programming, alongside operator overloading and a custom data type that encapsu-
lates the vector width of the processor and common vector operations on such data, is
used to produce accessible code without the need to call intrinsics functions directly
but retain performance. The vector data structure contains explicit support for FMA
instructions to enable these to be used where possible. Decompilation of the resulting

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C108 DAVID MOXEY, ROMAN AMICI, AND MIKE KIRBY

object code was performed to ensure that no additional instructions were inserted due
to the use of this technique.

Further to this, templates were used more generally within kernels to improve
the compiler's ability to unroll loops and handle the complex structure of the nested
loops of the form of (3.1) occurring within the operator evaluations. Specifically,
template parameters include the polynomial order and number of quadrature points
in each coordinate direction, the vector width being used and whether the element
is deformed or regular. In testing, we found the use of templating on these parame-
ters gave significant 20\% to 30\% improvements in execution times for more complex
loop structures found in triangles, prisms, and tetrahedra. To enhance usability and
preclude the necessity for recompilation due to a change in polynomial order, a jump
table is used to select precompiled kernels from a range of common polynomial orders
between 1 \leq P \leq 10.

As noted in [32], the Helmholtz operator can be decomposed into a combination
of three routines:

\bullet \ttB \ttw \ttd \ttT \ttr \tta \ttn \tts : performs a backwards transformation (polynomial interpolation)
onto the physical space, defined by (2.2), given the elemental coefficients \^\bfitu
and standard basis functions \bfitB ;

\bullet \ttI \ttn \ttn \tte \ttr \ttP \ttr \tto \ttd \ttu \ttc \ttt : calculates the L2 inner product (\cdot , \cdot)\Omega given a vector \bfitu de-
noting the function at a set of coordinates in physical space, along with
quadrature weights \bfitw and the basis (or its derivatives).

\bullet \ttT \tte \ttn \tts \tto \ttr \ttD \tte \ttr \tti \ttv \tta \ttt \tti \ttv \tte : calculates the partial derivatives of a polynomial expan-
sion at physical points \bfitu , as represented on a tensor-product of Gauss quad-
rature points, given the one-dimensional derivative matrix \bfitD and appropriate
mapping derivatives (\bfitJ e) - 1.

The combination of these operations can be seen in Algorithm 3.1 for the
Helmholtz operator. In the subsequent section, we will also consider their perfor-
mance as standalone operators, as examined in [32, 40, 9].

\bfthree .\bfthree . \bfC \bfo \bfr \bfr \bfe \bfc \bft \bfi \bfo \bfn \bff \bfo \bfr \bfitC \bfzero \bfm \bfo \bfd \bfi fi\bfe \bfd \bfb \bfa \bfs \bfi \bfs . As a final remark on implementation,
we give a brief note on the consideration of an effect of the tensor product storage of
the modified C0 basis, as described in [20]. This choice of basis relies on an additional
correction step in evaluating the modes of an expansion corresponding to any vertex
or edge mode that have been collapsed under the Duffy transform. As an example,
consider a linear expansion of the C0 basis on a triangle, which is given by

1\sum
p=0

1 - p\sum
q=0

\^upq\phi pq(\eta) =

1\sum
p=0

1 - p\sum
q=0

\^upq\phi
a
p(\eta 1)\phi

b
pq(\eta 2).

Furthermore, we have that

\phi a0(\eta 1) =
1 - \eta 1

2
, \phi a1(\eta 1) =

1 + \eta 1
2

, \phi b01(\eta 1) =
1 + \eta 2

2
.

The first two modes in this expansion recover the standard linear finite element modes
for a triangle; namely,

\phi 00(\eta) =
\xi 1 - \xi 2

2
, \phi 10(\eta) =

1 + \xi 1
2

.

However the mode corresponding to the collapsed vertex under this combination,
where p = 0 and q = 1, is given by

\phi 01(\eta) =
1 - \eta 1

2

1 + \eta 2
2
\not = 1 + \xi 2

2

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX-FREE OPERATORS FOR SIMPLICIAL ELEMENTS C109

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone . Overview of the matrix free evaluation of the Helmholtz operator.

\bfp \bfr \bfo \bfc \bfe \bfd \bfu \bfr \bfe Helmholtz(\^\bfitu , w,\bfitB ,\bfnabla \bfitB ,\bfitD , (\bfitJ e) - 1, | \bfitJ e|)
\bff \bfo \bfr each element group \bfd \bfo

\bfitu \leftarrow BwdTrans(\^\bfitu ,\bfitB)
\bfito \bfitu \bfitt \leftarrow \lambda \cdot InnerProduct(\bfitu ,\bfitB , w, | \bfitJ e|)
\bfitD \bfitu \leftarrow TensorDerivative(\bfitu ,\bfitD , (\bfitJ e) - 1)
\bfi \bff element is deformed \bft \bfh \bfe \bfn

\bff \bfo \bfr each quadrature point \^\xi n \bfd \bfo
calculate Helmholtz metric \bfitM = (\bfitJ e) - 1(\bfitJ e) - T

\bfitD \bfitu [n]\leftarrow \bfitM \bfitD \bfitu [n]
\bfe \bfn \bfd \bff \bfo \bfr

\bfe \bfl \bfs \bfe
calculate element constant metric \bfitM = (\bfitJ e) - 1(\bfitJ e) - T

\bff \bfo \bfr each quadrature point \^\xi n \bfd \bfo
\bfitD \bfitu [n]\leftarrow \bfitM \bfitD \bfitu [n]

\bfe \bfn \bfd \bff \bfo \bfr
\bfe \bfn \bfd \bfi \bff

\bfe \bfn \bfd \bff \bfo \bfr
\bff \bfo \bfr each dimension d \bfd \bfo

\bfito \bfitu \bfitt \leftarrow \bfito \bfitu \bfitt +InnerProduct(\bfitD \bfitu d, \partial d\bfitB , w, | \bfitJ e|)
\bfe \bfn \bfd \bff \bfo \bfr

\bfe \bfn \bfd \bfp \bfr \bfo \bfc \bfe \bfd \bfu \bfr \bfe

as desired for a linear finite element mode. The reason is that there is a missing
contribution arising from the collapsed vertex where \eta 1 = \eta 2 = 1. By constructing an
additional mode from the tensor product basis that corresponds to this contribution,
namely,

1 + \eta 1
2

1 + \eta 2
2

,

we can correct for this omission to modify the mode so that

\phi 01(\eta) =

\biggl(
1 - \eta 1

2
+

1 + \eta 1
2

\biggr)
1 + \eta 2

2
=

1 + \xi 2
2

.

The \ttB \ttw \ttd \ttT \ttr \tta \ttn \tts and \ttI \ttn \ttn \tte \ttr \ttP \ttr \tto \ttd \ttu \ttc \ttt kernels therefore need to be modified in order to
take this correction step into account. For a triangle, this amounts to a single cor-
rection of the mode corresponding to the top vertex. For the prismatic element, this
is required at all modes corresponding to the top collapsed edge. Finally, for the
tetrahedron, this is required for the two collapsed vertices as well as a collapsed edge.
Naturally, these corrections add additional FLOPS to the overall evaluation but have
the potential to be masked by memory accesses if they occur within a particularly
memory-bound regime. In the subsequent section, we will determine the overhead in
terms of throughput of degrees of freedom that is incurred by the choice of this basis.

\bffour . \bfR \bfe \bfs \bfu \bfl \bft \bfs . In this section, we perform hardware tests of the SIMD Helmholtz
implementation of the previous section. After describing the hardware used for test-
ing, as well as our methodology for the tests, we will consider three methods of
evaluation of the Helmholtz kernel. The first will observe the throughput of evalua-
tion, i.e., the number of degrees of freedom that can be processed by the Helmholtz
kernel per second. We will then aim to more rigorously quantify the performance

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C110 DAVID MOXEY, ROMAN AMICI, AND MIKE KIRBY

of the kernel in terms of the percentage of peak performance through a roofline and
attained GFLOPS/s analysis. Finally, we consider the effects of the C0 basis correc-
tion described in the previous section.

\bffour .\bfone . \bfH \bfa \bfr \bfd \bfw \bfa \bfr \bfe \bfa \bfn \bfd \bft \bfe \bfs \bft \bfm \bfe \bft \bfh \bfo \bfd \bfo \bfl \bfo \bfg \bfy . Tests have been conducted on two
CPU models with varying SIMD vector widths in order to evaluate the effectiveness
of the implementations across hardware architectures. An outline of the key hardware
characteristics can be found in Table 1. In particular we consider tests on both
a Broadwell architecture, with a 256-bit AVX2 SIMD (8 DP FLOPS/cycle) and a
Skylake architecture, with a 512-bit AVX512 SIMD (16 DP FLOPS/cycle). Both
CPUs in these tests support two FMA units, doubling their FLOPS/cycle count to
16 and 32, respectively. Only a single node is considered in this work, and execution
is performed using solely MPI parallelization.

Table 1
Specifications for Intel CPUs used for testing of SIMD evaluation.

Model \bfX \bfe \bfo \bfn \bfE \bffive -\bftwo \bfsix \bfnine \bfseven \bfv \bffour \bfX \bfe \bfo \bfn \bfG \bfo \bfl \bfd \bfsix \bfone \bfthree \bfzero

Architecture Broadwell Skylake
SIMD width 256 bit 512 bit
Standard clock speed 2.3 GHz 2.1 GHz
AVX2 clock speed 2.0 GHz 1.7 GHz
AVX512 clock speed - 1.3 GHz
L3 cache size 46080 KB 22528 KB
Cores per socket 18 16
Sockets per node 2 2
Max node GFLOPS/s (AVX) 1152 870
Max node GFLOPS/s (AVX512) - 1331
Peak memory bandwidth 110 GB/s -

For each element type under consideration, structured meshes of the domain
\Omega = [0, 1]d were generated using the Gmsh mesh generation software [16]. The num-
ber of elements generated is designed to be divisible by both the number of cores on
each node as well as the vector width of the architecture. In this manner, data are
not padded to align to vector widths and furthermore when running across all cores
the mesh is perfectly partitioned and therefore each core theoretically performs equal
computational work. In order to examine the balance between memory bandwidth
and floating point computations at different polynomial orders, mesh sizes were also
adjusted to ensure that the memory footprint of all elemental degrees of freedom ex-
ceed the L3 cache size reported in Table 1. On Broadwell nodes, \ttg \ttc \ttc version 6.3.0 was
used to compile the code using the compiler flags -\ttm \tta \ttr \ttc \tth =\ttn \tta \ttt \tti \ttv \tte -\ttf \ttu \ttn \ttr \tto \ttl \ttl -\ttl \tto \tto \ttp \tts

and run using OpenMPI 2.0.2. On Skylake nodes, we use the \ttg \ttc \ttc compiler version
6.4.0 and run using Intel MPI 2018. Power governors for the machines were set to
\ttp \tte \ttr \ttf \tto \ttr \ttm \tta \ttn \ttc \tte mode to ensure optimal performance, and MPI ranks were pinned to
individual cores to ensure memory allocation in the appropriate NUMA region and
prevent excessive memory transfer between sockets. As well as ensuring the dedicated
use of these nodes, all tests results below report average times for around 1 minute
of kernel executions per polynomial order and element type in order to mitigate any
underlying machine noise or lag due to other processes.

\bffour .\bftwo . \bfT \bfh \bfr \bfo \bfu \bfg \bfh \bfp \bfu \bft \bfa \bfn \bfa \bfl \bfy \bfs \bfi \bfs . In this first section, we consider the performance of
the Helmholtz kernels from the perspective of throughput, i.e., the number of degrees
of freedom processed by the kernels per second of execution. All of the tests in this

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX-FREE OPERATORS FOR SIMPLICIAL ELEMENTS C111

section consider only the modified C0 basis. However, as we do not consider the
effects of full C0 connectivity here (i.e., in the assembly of the overall system), in this
sense ``degrees of freedom"" can be equated with the total number of local degrees of
freedom at a given polynomial order P , i.e.,

(4.1) N\mathrm{d}\mathrm{o}\mathrm{f} =

N\mathrm{e}\mathrm{l}\sum
e=1

N(P, e).

Figure 3 outlines the throughput analysis for both two- and three-dimensional ele-
ments on the Broadwell architecture. A number of immediate trends can be identified.

1 2 3 4 5 6 7 8 9 10

Polynomial order p

109

6× 108

2× 109

3× 109

T
h

ro
u

gh
p

u
t

(D
o
F

/s
)

Quad (regular)

Quad (deformed)

Tri (regular)

Tri (deformed)

1 2 3 4 5 6 7 8 9 10

Polynomial order p

108

109

T
h

ro
u

gh
p

u
t

(D
oF

/s
)

Tet (regular)

Tet (deformed)

Prism (regular)

Prism (deformed)

Hex (regular)

Hex (deformed)

Fig. 3. Throughput analysis of the Helmholtz implementation for two-dimensional (top) and
three-dimensional (bottom) elements on the Broadwell E5-2697v4 processor, for regular and deformed
geometries.

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C112 DAVID MOXEY, ROMAN AMICI, AND MIKE KIRBY

In terms of regular elements, which have the least amount of memory required
for the operator evaluations, there is a clear hierarchy of performance between dimen-
sions and element type. Two-dimensional elements outperform three-dimensional, and
overall the ``naturally"" tensor product quadrilateral and hexahedral elements outper-
form their simplicial counterparts. The prismatic element, which has greater tensor
product structure than the tetrahedron, owing to the single direction of collapsed
coordinates, sees this represented through a moderate performance increase over the
tetrahedron. There is a further clear trend in the data for regular elements, in that
throughput monotonically decays as polynomial order is increased. This is indicative
that the kernels are performant mostly in a FLOPS-bound regime: i.e., the increase
in polynomial order is matched by a corresponding increase in computational work
and thus a decrease in throughput.

On the other hand, deformed curvilinear elements exhibit a richer spectrum of
performance characteristics. One immediately clear conclusion is that the introduc-
tion of curvature into the kernel leads to a significant drop in throughput, as can be
anticipated from the increased memory storage required to represent the curvilinear
mapping \chi e and its spatially variable Jacobian \bfitJ e. This is a characteristic observed
in other matrix-free implementations such as [26]. However, at moderate polyno-
mial orders, there is generally either a mild increase in throughput from the linear
order, or at least a reduction in the rate of decrease compared against their regu-
lar element counterparts. This is indicative that these operations are more memory
bound, as the lack of decrease in throughput indicates the increased computational
work is masked by memory transfer. The exception to this is at higher polynomial
orders, where the rate of decrease matches regular elements, indicating that the in-
creased computational effort has now pushed these cases into a more FLOPS-bound
regime.

\bffour .\bftwo .\bfone . \bfS \bfk \bfy \bfl \bfa \bfk \bfe \bfA \bfV \bfX \bffive \bfone \bftwo \bft \bfh \bfr \bfo \bfu \bfg \bfh \bfp \bfu \bft . To examine the effect of SIMD vector
width on performance, we also consider throughput on the Skylake architecture. In
particular, this architecture supports both 256- and 512-bit SIMD through AVX2 and
AVX512 instruction sets. In theory and neglecting implementation-specific issues,
the change from 256-bit to 512-bit SIMD implies a theoretical doubling of available
FLOPS and potential for doubling of throughput. Observing this rise in throughput
should therefore point towards the efficiency of implementation. Importantly, how-
ever, we note that on Skylake processors this doubling of performance is not possible,
as the AVX512 base clock speed (1.3 GHz) is considerably reduced in comparison to
the AVX2 base clock speed (1.7 GHz) by around 25\%, so as to ensure the processor sits
within the intended thermal envelope. This leads to a total theoretical performance
increase of around 53\%, as seen from the processor statistics in Table 1.

Figure 4 shows the relative throughput of AVX2 versus AVX512 on the Sky-
lake hardware for both regular and deformed three-dimensional elements. For regular
elements, where the regime is mostly FLOPS-bound, a ratio of 40\% to 45\% improve-
ment can be seen across most polynomial orders. Deformed elements, on the other
hand, exhibit less improvement at lower polynomial orders, presumably due to the
increased memory footprint of this regime. However, at higher orders, similar per-
formance increases can be observed as in the regular element case. The conclusions
from these figures therefore is that kernel efficiency appears to be high; however, in
the next section we will confirm this assertion through a more rigorous roofline model
analysis.

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX-FREE OPERATORS FOR SIMPLICIAL ELEMENTS C113

1 2 3 4 5 6 7 8 9 10

Polynomial order p

108

109

T
h

ro
u

gh
p

u
t

(D
oF

/s
)

Tet (AVX512)

Tet (AVX2)

Prism (AVX512)

Prism (AVX2)

Hex (AVX512)

Hex (AVX2)

1 2 3 4 5 6 7 8 9 10

Polynomial order p

108

2× 108

3× 108

4× 108

6× 108

T
h

ro
u

gh
p

u
t

(D
oF

/s
)

Tet (AVX512)

Tet (AVX2)

Prism (AVX512)

Prism (AVX2)

Hex (AVX512)

Hex (AVX2)

Fig. 4. Throughput comparison of the Helmholtz kernel for three-dimensional elements, com-
paring the use of AVX versus AVX512 instructions for regular (top) and deformed (bottom) element
types.

\bffour .\bftwo .\bftwo . \bfC \bfo \bfm \bfp \bfa \bfr \bfi \bfs \bfo \bfn \bfa \bfg \bfa \bfi \bfn \bfs \bft \bfo \bft \bfh \bfe \bfr \bfw \bfo \bfr \bfk . In terms of determining the general
implementation efficiency, one possibility is to try to compare throughput results
against other studies in the literature, since these are generally reported in most other
work in this area. We note that the general order of magnitude of\sim 109 DoF/second in
terms of throughput attained for quadrilaterals and hexahedral elements on Broadwell
hardware is very similar to that seen in other existing studies such as [26]. However,
specific comparison to other work in the literature is complex due to the rich variety
of choices in terms of implementation and numerical setup that can be considered

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C114 DAVID MOXEY, ROMAN AMICI, AND MIKE KIRBY

on a study-by-study basis, as well as the specific hardware under consideration. For
example, the aforementioned work can capitalize on the symmetricity of Lagrangian
basis functions defined on Gauss--Lobatto points to reduce computational work (the
``even-odd"" decomposition), which we do not consider here. Additionally, most other
work in this area considers only the matrix-free evaluation of the Laplacian operator,
which has one fewer mass-matrix evaluation than the Helmholtz operator. In our
experiments, evaluation of the Laplacian leads to around a 10\% to 20\% increase in
throughput, so again can be seen to be roughly similar to existing work in this area.

\bffour .\bfthree . \bfR \bfo \bfo fl\bfi \bfn \bfe \bfa \bfn \bfa \bfl \bfy \bfs \bfi \bfs . To more adequately quantify the performance of the
kernel implementation in relation to the theoretical peak performance of the hardware,
in this section we consider an analysis of the computational performance by examining
the commonly-used roofline performance model [41]. This model considers that the
two main performance bottlenecks in algorithmic implementation are FLOPS/s and
memory bandwidth. By considering arithmetic intensity \alpha of the algorithm as the
main independent variable, one can then consider a ``roofline"" of performance defined
by

Max GFLOPS/s = min(peak GFLOPS/s, peak memory bandwidth\times \alpha).

Although this model has limitations, such as the lack of modelling of CPU caching
effects, generally it is recognized as a straightforward and visual way through which to
judge the potential of algorithms in attaining full utilization of the available FLOPS
in relation to memory bandwidth limits.

To capture performance data required for this model, namely, FLOPS/s and mem-
ory bandwidth, we make use of the Likwid performance monitoring and benchmarking
suite [38], which uses either per-core or socket-based ``uncore"" hardware counters to
determine key performance characteristics. Tests were performed using Likwid ver-
sion 4.3.0 and the \ttM \ttE \ttM \ttD \ttP performance group used to record memory bandwidth and
GFLOPS/s attained using the \ttl \tti \ttk \ttw \tti \ttd -\ttm \ttp \tti \ttr \ttu \ttn utility for parallel execution. Likwid
was also used to determine the peak memory bandwidth of the computational node,
recorded in Table 1, using \ttl \tti \ttk \ttw \tti \ttd -\ttb \tte \ttn \ttc \tth with the \tts \ttt \ttr \tte \tta \ttm \ttm \tte \ttm \tta \ttv \ttx \ttf \ttm \tta test.

The results of this analysis are presented in Figure 5. This figure displays recorded
arithmetic intensity against GFLOPS/s for each shape at a range of polynomial orders
between 1 \leq P \leq 10. A general trend between all simulations, which is not presented
on the figure for clarity, is a steady increase in arithmetic intensity as polynomial order
is increased, so that marker points from left to right generally denote simulations at
increasing polynomial order. From the figure, it is evident that in all cases there is a
clear distinction here between the FLOPS-bound regular elements and the memory-
bound deformed elements, which was highlighted in the previous section in terms of
throughput trends.

Furthermore, these roofline models allow us to firmly validate the efficiency of
the implementation. In the case of deformed elements, simulations are close to the
memory-bandwidth imposed roofline, aside from at higher polynomial orders where
the simulations tend to become more FLOPS-bound. Similarly, for regular elements,
the results clearly indicate that simulations are running at FLOPS counts that require
heavy use of vectorization and consistent use of FMA, particularly in two dimensions.
We also note that, when not limited by memory bandwidth, FLOPS counts are typ-
ically within 50\% to 70\% of the peak attainable. To highlight this, we consider the
GFLOPS/s attained in Helmholtz evaluation of a regular tetrahedron in Figure 6 as a

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX-FREE OPERATORS FOR SIMPLICIAL ELEMENTS C115

1
4

1
2 1 2 4 8 16 32 64 128 256

Arithmetic intensity

32

64

128

256

512

1024

G
F

L
O

P
S

Peak FLOPS, 2.0 GHz with FMA/AVX2

without FMA

without vectorisation

Quad (regular)

Quad (deformed)

Tri (regular)

Tri (deformed)

1
4

1
2 1 2 4 8 16 32 64 128 256

Arithmetic intensity

32

64

128

256

512

1024

G
F

L
O

P
S

Peak FLOPS, 2.0 GHz with FMA/AVX2

without FMA

without vectorisation

Tet (regular)

Tet (deformed)

Prism (regular)

Prism (deformed)

Hex (regular)

Hex (deformed)

Fig. 5. Roofline analysis of the Helmholtz implementation for two-dimensional (top) and three-
dimensional (bottom) elements on the Broadwell E5-2697v4 processor, for both regular and deformed
geometries.

typical example of performance in this regime. This figure additionally highlights the
same trend of increased performance through use of AVX512 instructions observed in
the previous section and Figure 4.

Returning to the roofline plots, another clear observation is that simplicial ele-
ments result in broadly larger arithmetic intensity as the element type is made more
compact; that is, tetrahedra offer greater arithmetic intensity than prisms, and prisms
offer greater arithmetic intensity than hexahedra. Although it may appear somehow

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C116 DAVID MOXEY, ROMAN AMICI, AND MIKE KIRBY

1 2 3 4 5 6 7 8 9 10
P

0

200

400

600

800

G
F

L
O

P
/s

Tet (Broadwell)

Tet (Skylake, AVX2)

Tet (Skylake, AVX512)

Fig. 6. GFLOPS/s of Helmholtz operator between the three architectures under consideration
for regular tetrahedral elements.

counterintuitive to observe this trend, the overall memory footprint of these elements
reduces as the element is made more compact. At the same time, for the C0 basis,
the use of repeated Duffy transformations leads to more corrections in tetrahedra
than prisms and thus offers the opportunity to increase FLOPS further for the same
memory transfer.

\bffour .\bffour . \bfE ff\bfe \bfc \bft \bfo \bff \bfc \bfo \bfr \bfr \bfe \bfc \bft \bfi \bfo \bfn \bfi \bfn \bfm \bfo \bfd \bfi fi\bfe \bfd \bfitC \bfzero \bfb \bfa \bfs \bfi \bfs . As a final consideration
for implementation of tensor-product kernels for simplicial elements, in this section
we examine the use of the orthogonal Dubiner-type basis in place of the C0 basis.
It is worth emphasizing that the orthogonal basis is frequently used in popular DG
formulations for various systems of equations, which further generalize the findings of
this study beyond simply the C0 formulation.

Figure 7 highlights the difference in throughput between the two choices of basis.
As can be expected, it is clear that the use of the orthogonal basis results in a higher
throughput of degrees of freedom, as no additional corrections of the form of sec-
tion 3.3 are required. Further to this, as the number of modes that require correction
increases as we move from triangle to prism to tetrahedron, so too does the gap in
performance.

In Figure 8, we consider the effects of the orthogonal basis in the context of the
roofline model. For simplicity of observation, we consider only regular elements and
omit quadrilateral and hexahedral elements. Comparing against the results from the
modified C0 basis in Figure 5, it is clear that the peak FLOPS attained is roughly
comparable (or slightly higher) than that previously observed. However, at the same
time, arithmetic intensity has been somewhat reduced in this regime, as viewed by
the distinct shift to the left of all results, owing to the lack of correction step required
in this basis.

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX-FREE OPERATORS FOR SIMPLICIAL ELEMENTS C117

1 2 3 4 5 6 7 8 9 10

Polynomial order p

109

T
h

ro
u

gh
p

u
t

(D
oF

/
s)

Tet (modified)

Tet (orthogonal)

Prism (modified)

Prism (orthogonal)

Tri (modified)

Tri (orthogonal)

Fig. 7. Throughput analysis to examine the correction step used within the C0 basis, against
the orthogonal basis in which no correction is necessary.

1
4

1
2 1 2 4 8 16 32 64 128 256

Arithmetic intensity

32

64

128

256

512

1024

G
F

L
O

P
S

Peak FLOPS, 2.0 GHz with FMA/AVX2

without FMA

without vectorisation

Tet (orthogonal)

Prism (orthogonal)

Tri (orthogonal

Fig. 8. Roofline analysis of the Helmholtz implementation for simplicial elements on the Broad-
well E5-2697v4 processor using an orthogonal basis.

\bffour .\bffive . \bfE ff\bfe \bfc \bft \bfo \bff \bfitC \bfzero \bfa \bfs \bfs \bfe \bfm \bfb \bfl \bfy \bfo \bfp \bfe \bfr \bfa \bft \bfi \bfo \bfn . All of the results of the previous
sections have focused on the implementation of elementally-local kernels; i.e., without
the consideration of how basis functions across elements are connected as part of
the appropriate CG or DG function space. In this section, we perform a further
series of tests to incorporate the effects of global assembly in a C0 setting, so that

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C118 DAVID MOXEY, ROMAN AMICI, AND MIKE KIRBY

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bfone . Overview of the evaluation of the global Helmholtz operator.

\bfp \bfr \bfo \bfc \bfe \bfd \bfu \bfr \bfe GlobalHelmholtz(\^\bfitu g, w,\bfitB ,\bfnabla \bfitB ,\bfitD , (\bfitJ e) - 1, | \bfitJ e| ,\scrA)
\^\bfitv g \leftarrow 0 \triangleleft zero resulting output vector \^\bfitv g
\bff \bfo \bfr each element group e \bfd \bfo

\^\bfitu l \leftarrow \scrA T \^\bfitu g[e] \triangleleft global-to-local into small, reused temporary storage \^\bfitu l
\^\bfitu l \leftarrow Helmholtz(\^\bfitu l, w,\bfitB ,\bfnabla \bfitB ,\bfitD , (\bfitJ e) - 1, | \bfitJ e|)
\^\bfitv g \leftarrow \^\bfitv g +\scrA \^\bfitu l \triangleleft assembly of local contributions from group e

\bfe \bfn \bfd \bff \bfo \bfr
\^\bfitv g \leftarrow gsmpi(\^\bfitv g,\scrA) \triangleleft perform parallel assembly

\bfe \bfn \bfd \bfp \bfr \bfo \bfc \bfe \bfd \bfu \bfr \bfe

basis functions are forced to be continuous across elemental boundaries. This is
imposed through the local-to-global mapping \scrA . Since this operation incurs a memory
indirection, we expect to see a reduction in throughput and achieveable FLOPS.

In order to examine this effect, the benchmarking utility leverages the graph
partitioner SCOTCH [10] to perform the initial domain decomposition, so as to
give each processor equal work and minimize communication costs between MPI
ranks. Additionally, for assembly across processors, we use the \ttg \tts \ttl \tti \ttb gather-scatter
library (described briefly in [30]) which is part of the Nek5000 spectral element
solver [15]. The global Helmholtz operator is then performed in the manner described
in Algorithm 4.1.

To highlight the performance effects arising from the assembly operator, we per-
form the same throughput and roofline tests as in the previous sections. Throughput
is measured using the same definition as before; i.e., we measure the number of lo-
cal degrees of freedom processed per second, so as to provide a common baseline for
comparison between the two schemes. Figure 9 shows the results from these tests
compared against the local elemental operators measured in the previous section. As
expected, all element types incur a reduction in throughput due to the additional cost
of assembly. Although there is a higher relative cost for assembly at lower polynomial
orders, likely owing to the larger number of elements and higher average node valencies
in this regime, there is a fairly constant drop in throughput across polynomial order
and element type, indicating that assembly costs are comparable between polynomial
orders. This is expected since, in these tests, mesh sizes vary with polynomial order
so as to keep the number of degrees of freedom relatively constant, meaning that com-
munication and memory indirection costs will be roughly equivalent. This trend is
also reflected in the roofline modeling, where all element types see a reduction in the
FLOPS obtained, as well as a shift to the left in terms of arithmetic intensity. Both
of these features can be attributed to the additional memory bandwidth required for
assembly.

\bffive . \bfC \bfo \bfn \bfc \bfl \bfu \bfs \bfi \bfo \bfn \bfs . In this paper, we have presented formulations of the Helmholtz
operator evaluation for simplicial elements that leverages explicit SIMD instructions,
sum-factorisation and tensor-product basis functions to achieve near-peak perfor-
mance across a range of both polynomial orders and AVX2 and AVX512 hardware
types. Formulations such as these are highly important in the context of simulation
across complex geometries, for which the generation of all-hexahedral meshes is still
an open challenge.

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX-FREE OPERATORS FOR SIMPLICIAL ELEMENTS C119

1 2 3 4 5 6 7 8 9 10

Polynomial order p

109

T
h

ro
u

gh
p

u
t

(D
oF

/
s)

Tet (global)

Tet (local)

Prism (global)

Prism (local)

Hex (global)

Hex (local)

1
4

1
2 1 2 4 8 16 32 64 128 256

Arithmetic intensity

32

64

128

256

512

1024

G
F

L
O

P
S

Peak FLOPS, 2.0 GHz with FMA/AVX2

without FMA

without vectorisation

Tet (global)

Tet (local)

Prism (global)

Tet (local)

Hex (global)

Hex (local)

Fig. 9. Throughput (top) and roofline (bottom) analysis of the Helmholtz implementation
for three-dimensional elements on the Broadwell E5 - 2697v4 processor for global C0 operator
evaluations.

It is clear and inevitable that simplicial element types will struggle to attain the
same performance of the more naturally tensor-product structure of quadrilateral and
hexahedral elements. With this said, in the worst case of regular elements which have
no curvature, prismastic and triangular elements in particular suffer a reduction of
throughput by only a factor of around 1.5 to 2 when compared against hexahedra and
quadrilaterals, respectively, depending on the polynomial order. Tetrahedra inevitably
suffer a more significant drop in throughput by a factor of around 5 to 8. This is
in line with expectations: since we use a square or cube of (collapsed) quadrature

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C120 DAVID MOXEY, ROMAN AMICI, AND MIKE KIRBY

points for all element types, and our meshes contain two or six times the number
of elements for triangles/prisms and tetrahedra, respectively, we see that evaluations
costs of a triangle are roughly equivalent to a quadrilateral, and a prism or tetrahedron
equivalent to a hexahedron.

On the other hand, deformed elements present a wider range of performance
characteristics, owing to a larger memory footprint due to the storage of a nonlinear
Jacobian \bfitJ e matrix at each quadrature point. Here, at low to moderate polynomial
orders, the difference in performance between the element types is considerably less
pronounced. In all cases, roofline modeling of the implementation has demonstrated
the high performance of resulting kernels as being within 50\% and 70\% of peak at-
tainable FLOPS across all architectures under consideration.

We note that the performance of prismatic elements is important in particular,
since for complex geometries in, e.g., fluid dynamics, meshes tend to be generated
using a combination of prismatic elements in the boundary layer, and tetrahedra
in the remainder of the interior [34]. The presence of a boundary layer comprising
prismatic elements can account for between 30\% and 50\% of the total element count,
indicating the potential for significant performance increases against standard full-
system or static-condensation solves.

Further to this, we have demonstrated that the choice of basis (between the mod-
ified C0 basis and orthogonal Dubiner basis) does impact on performance due to
the correction steps required for the C0 basis. However, this reduction in through-
put does not necessarily paint the full picture. In the context of CG, this perfor-
mance gap is likely recovered by the increased complexity of imposing continuity
through the assembly mapping \scrA for the Dubiner basis. In a DG setting, unlike
the orthogonal basis, the C0 basis offers a boundary-interior decomposition which
makes the introduction of face flux terms straightforward. On the other hand, ad-
ditional computational cost is required in order to impose this flux term on all de-
grees of freedom of the orthogonal basis, which does not have the boundary-interior
property.

Finally, we have examined the additional costs incurred in a global C0 assembly
operation. Our tests indicate that there is an expected reduction in performance
across element types and polynomial orders. We note that the use of structured
grids in this study represents a more favorable case for the simplicial element types,
where for complex geometries one may find much larger node valencies, requiring a
higher level of memory indirection and therefore further reductions in the observed
throughput. However, we do see that the trends observed in the local operator are
still seen in this regime.

In this light, there is a clear direction to pursue further research in this area. In
particular, there is the possibility to consider the application in a wider variety of use
cases, with a particular focus on elliptic solvers for the incompressible Navier--Stokes
equations but under a number of different discretization choices in order to examine
the resulting performance characteristics. Other areas of potential study include the
generalization of these results to other many-core architectures; in particular, the use
of graphics processing units in which vector widths are considerably larger than the
AVX512 instructions considered here.

\bfA \bfp \bfp \bfe \bfn \bfd \bfi \bfx \bfA . \bfM \bfo \bfd \bfi fi\bfe \bfd \bfitC \bfzero \bfb \bfa \bfs \bfi \bfs .
The modified C0 basis for the elements we consider in this work are defined using

three tensor product bases:

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX-FREE OPERATORS FOR SIMPLICIAL ELEMENTS C121

\phi ap(\xi) =

\left\{
1 - \xi
2 p = 0

1+\xi
2 p = 1\Bigl(
1 - \xi
2

\Bigr) \Bigl(
1+\xi
2

\Bigr)
P 1,1
p - 1(\xi) 2 \leq p < P

\phi bpq(\xi) =

\left\{
\phi q(\xi) p = 0 0 \leq q < P\Bigl(

1 - \xi
2

\Bigr) p
1 \leq p < P q = 0\Bigl(

1 - \xi
2

\Bigr) p \Bigl(
1+\xi
2

\Bigr)
P 2p - 1,1
q - 1 (\xi) 1 \leq p < P, 1 \leq q < P - p

\phi cpqr(\xi) =

\left\{

\phi qr(\xi) p = 0 0 \leq q < P

0 < r < P - q\Bigl(
1 - \xi
2

\Bigr) p+q
1 \leq p < P, 0 \leq q < P - p, r = 0\Bigl(

1 - \xi
2

\Bigr) p+q \Bigl(
1+\xi
2

\Bigr)
P 2p+2q - 1,r
r - 1 (\xi) 1 \leq p < P, 0 \leq q < P - p,

1 \leq r < P - p - q,
where P , Q, and R denote the polynomial order in each coordinate direction, and
P\alpha ,\beta p (\xi) is the standard Jacobi polynomial. Elemental expansions then take the form

u\delta \mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d}(\xi) =

P\sum
p=0

Q\sum
q=0

\^upq\phi
a
p(\xi 1)\phi

a
q (\xi 2)

u\delta \mathrm{t}\mathrm{r}\mathrm{i}(\xi) =

P\sum
p=0

Q - p\sum
q=0

\^upq\phi
a
p(\eta 1)\phi

b
pq(\eta 2)

u\delta \mathrm{h}\mathrm{e}\mathrm{x}(\xi) =

P\sum
p=0

Q\sum
q=0

R\sum
r=0

\^upqr\phi
a
p(\xi 1)\phi

a
q (\xi 2)\phi

a
r(\xi 3)

u\delta \mathrm{p}\mathrm{r}\mathrm{i}\mathrm{s}\mathrm{m}(\xi) =

P\sum
p=0

Q\sum
q=0

R - p\sum
r=0

\^upqr\phi
a
p(\eta 1)\phi

a
q (\eta 2)\phi

b
pr(\eta 3)

u\delta \mathrm{t}\mathrm{e}\mathrm{t}(\xi) =

P\sum
p=0

Q - p\sum
q=0

R - p - q\sum
r=0

\^upqr\phi
a
p(\eta 1)\phi

b
pq(\eta 2)\phi

c
pqr(\eta 3),

where \eta denote appropriate collapsed coordinates, and the above are amended with
appropriate corrections as noted in [20] and section 3.3.

\bfA \bfc \bfk \bfn \bfo \bfw \bfl \bfe \bfd \bfg \bfm \bfe \bfn \bft \bfs . We would like to thank M. Kronbichler for a number of
helpful discussions.

REFERENCES

[1] M. Ainsworth, G. Andriamaro, and O. Davydov, Bernstein--B\'ezier finite elements of ar-
bitrary order and optimal assembly procedures, SIAM J. Sci. Comput., 33 (2011), pp.
3087--3109.

[2] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data
structures for massively parallel generic adaptive finite element codes, ACM Trans. Math.
Softw., 38 (2011), 14.

[3] W. Bangerth, R. Hartmann, and G. Kanschat, Deal. II-- a general-purpose object-oriented
finite element library, ACM Trans. Math. Softw., 33 (2007), 24.

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

C122 DAVID MOXEY, ROMAN AMICI, AND MIKE KIRBY

[4] P. Bastian, C. Engwer, J. Fahlke, M. Geveler, D. G\"oddeke, O. Iliev, O. Ippisch,
R. Milk, J. Mohring, and S. M\"uthing, Hardware-based Efficiency Advances in the EXA-
DUNE Project, in Software for Exascale Computing-SPPEXA 2013-2015, Springer, New
York, 2016, pp. 3--23.

[5] P. Bastian, C. Engwer, D. G\"oddeke, O. Iliev, O. Ippisch, M. Ohlberger, S. Turek,
J. Fahlke, S. Kaulmann, and S. M\"uthing, EXA-DUNE: Flexible PDE Solvers, Numer-
ical Methods, and Applications, in European Conference on Parallel Processing, Springer,
New York, 2014, pp. 530--541.

[6] P. Bastian, F. Heimann, and S. Marnach, Generic implementation of finite element methods
in the distributed and unified numerics environment (DUNE), Kybernetika, 46 (2010),
pp. 294--315.

[7] C. Burstedde, L. C. Wilcox, and O. Ghattas, P4est: Scalable algorithms for parallel adap-
tive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33 (2011), pp. 1103--1133.

[8] C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo,
D. de Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mo-
hamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R. M. Kirby, and S. J. Sherwin,
Nektar++: An open-source spectral/hp element framework, Comput. Phys. Commun., 192
(2015), pp. 205--219.

[9] C. D. Cantwell, S. J. Sherwin, R. M. Kirby, and P. H. J. Kelly, From h to p efficiently:
Strategy selection for operator evaluation on hexahedral and tetrahedral elements, Comput.
Fluids, 43 (2011), pp. 23--28.

[10] C. Chevalier and F. Pellegrini, PT-Scotch: A tool for efficient parallel graph ordering,
Parallel Comput., 34 (2008), pp. 318--331.

[11] M. Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput., 6 (1991),
pp. 345--390.

[12] M. G. Duffy, Quadrature over a pyramid or cube of integrands with a singularity at a vertex,
SIAM J. Numer. Anal., 19 (1982), pp. 1260--1262.

[13] N. Fehn, W. A. Wall, and M. Kronbichler, Efficiency of high-performance discontinuous
Galerkin spectral element methods for under-resolved turbulent incompressible flows, Int.
J. Numer. Methods Fluids, 88 (2018), pp. 32--54.

[14] N. Fehn, W. A. Wall, and M. Kronbichler, Robust and efficient discontinuous Galerkin
methods for under-resolved turbulent incompressible flows, J. Comput. Phys., 372 (2018),
pp. 667--693.

[15] P. F. Fischer, An overlapping Schwarz method for spectral element solution of the incom-
pressible Navier--Stokes equations, J. Comput. Phys., 133 (1997), pp. 84--101.

[16] C. Geuzaine and J.-F. Remacle, GMSH: A 3-D finite element mesh generator with built-in
pre-and post-processing facilities, Int. J. Numer. Methods Engrg., 79 (2009), pp. 1309--1331.

[17] L. Grinberg, D. Pekurovsky, S. J. Sherwin, and G. E. Karniadakis, Parallel performance
of the coarse space linear vertex solver and low energy basis preconditioner for spectral/hp
elements, Parallel Comput., 35 (2009), pp. 284--304.

[18] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis, and Applications, Springer Science \& Business Media, New York, 2007.

[19] I. Huismann, J. Stiller, and J. Fr\"ohlich, Factorizing the factorization--a spectral-element
solver for elliptic equations with linear operation count, J. Comput. Phys., 346 (2017),
pp. 437--448.

[20] G. Karniadakis and S. Sherwin, Spectral/Hp Element Methods for Computational Fluid
Dynamics, Oxford University Press, Oxford, 2013.

[21] G. E. Karniadakis, M. Israeli, and S. A. Orszag, High-order splitting methods for the
incompressible Navier-Stokes equations, J. Comput. Phys., 97 (1991), pp. 414--443.

[22] R. C. Kirby, Fast simplicial finite element algorithms using Bernstein polynomials, Numer.
Math., 117 (2011), pp. 631--652.

[23] R. M. Kirby and G. E. Karniadakis, De-aliasing on non-uniform grids: Algorithms and
applications, J. Comput. Phys., 191 (2003), pp. 249--264.

[24] B. Krank, N. Fehn, W. A. Wall, and M. Kronbichler, A high-order semi-explicit discon-
tinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of
turbulent channel flow, J. Comput. Phys., 348 (2017), pp. 634--659.

[25] M. Kronbichler and W. A. Wall, A Performance Comparison of Continuous and Discon-
tinuous Galerkin Methods with Fast Multigrid Solvers, preprint, arXiv:1611.03029, 2016.

[26] M. Kronbichler and W. A. Wall, A performance comparison of continuous and discon-
tinuous Galerkin methods with fast multigrid solvers, SIAM J. Sci. Comput., 40 (2018),
pp. A3423--A3448.

[27] J.-E. W. Lombard, D. Moxey, S. J. Sherwin, J. F. A. Hoessler, S. Dhandapani, and
M. J. Taylor, Implicit large-eddy simulation of a wingtip vortex, AIAA J., 54 (2016),
pp. 506--518.

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://arxiv.org/abs/1611.03029

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

MATRIX-FREE OPERATORS FOR SIMPLICIAL ELEMENTS C123

[28] G. R. Markall, A. Slemmer, D. A. Ham, P. H. J. Kelly, C. D. Cantwell, and S. J.
Sherwin, Finite element assembly strategies on multi-core and many-core architectures,
Int. J. Numer. Methods Fluids, 71 (2013), pp. 80--97.

[29] G. Mengaldo, D. de Grazia, D. Moxey, P. E. Vincent, and S. J. Sherwin, Dealiasing tech-
niques for high-order spectral element methods on regular and irregular grids, J. Comput.
Phys., 299 (2015), pp. 56--81.

[30] K. Mittal, S. Dutta, and P. Fischer, Nonconforming Schwarz-spectral element methods for
incompressible flow, Comput. Fluids, 191 (2019), 104237.

[31] D. Moxey, C. D. Cantwell, Y. Bao, A. Cassinelli, G. Castiglioni, S. Chun, E. Juda,
E. Kazemi, K. Lackhove, J. Marcon, G. Mengaldo, D. Serson, M. Turner, H. Xu,
J. Peir\'o, R. M. Kirby, and S. J. Sherwin, Nektar++: Enhancing the capability and
application of high-fidelity spectral/hp element methods, Comput. Phys. Commun., (2019),
107110.

[32] D. Moxey, C. D. Cantwell, R. M. Kirby, and S. J. Sherwin, Optimizing the performance of
the spectral/hp element method with collective linear algebra operations, Comput. Methods
Appl. Mech. Engrg., 310 (2016), pp. 628--645.

[33] D. Moxey, D. Ekelschot, \"U. Keskin, S. J. Sherwin, and J. Peir\'o, High-order curvilinear
meshing using a thermo-elastic analogy, Computer-Aided Design, 72 (2016), pp. 130--139.

[34] D. Moxey, M. D. Green, S. J. Sherwin, and J. Peir\'o, An isoparametric approach to high-
order curvilinear boundary-layer meshing, Comput. Methods Appl. Mech. Engrg., 283
(2015), pp. 636--650.

[35] A. Peplinski, P. F. Fischer, and P. Schlatter, Parallel performance of h-type Adaptive
Mesh Refinement for Nek5000, in Proceedings of the Exascale Applications and Software
Conference 2016, ACM, 2016, 4.

[36] M. D. Samson, H. Li, and L.-L. Wang, A new triangular spectral element method I: Imple-
mentation and analysis on a triangle, Numer. Algorithms, 64 (2013), pp. 519--547.

[37] S. J. Sherwin and G. E. Karniadakis, A new triangular and tetrahedral basis for high-order
(hp) finite element methods, Int. J. Numer. Methods Engrg., 38 (1995), pp. 3775--3802.

[38] J. Treibig, G. Hager, and G. Wellein, Likwid: A lightweight performance-oriented tool
suite for x86 multicore environments, in Parallel Processing Workshops (ICPPW), 2010
39th International Conference On, IEEE, 2010, pp. 207--216.

[39] M. Turner, J. Peir\'o, and D. Moxey, Curvilinear mesh generation using a variational frame-
work, Computer-Aided Design, 103 (2018), pp. 73--91.

[40] P. E. Vos, S. J. Sherwin, and R. M. Kirby, From h to p efficiently: Implementing finite
and spectral/hp element methods to achieve optimal performance for low-and high-order
discretisations, J. Comput. Phys., 229 (2010), pp. 5161--5181.

[41] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual performance
model for multicore architectures, Commun. ACM, 52 (2009), pp. 65--76.

[42] F. D. Witherden, A. M. Farrington, and P. E. Vincent, PyFR: An open source framework
for solving advection--diffusion type problems on streaming architectures using the flux
reconstruction approach, Comput. Phys. Commun., 185 (2014), pp. 3028--3040.

[43] S. Yakovlev, D. Moxey, S. J. Sherwin, and R. M. Kirby, To CG or to HDG: A comparative
study in 3D, J. Sci. Comput., 67 (2016), pp. 192--220.

D
ow

nl
oa

de
d

09
/2

5/
20

 to
 1

55
.9

8.
13

1.
3.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

	Introduction
	Theory and background
	Operator evaluation
	Choice of polynomial basis
	Discrete evaluation of the Helmholtz operator

	Matrix-free SIMD implementation
	Data layout and SIMD strategy
	Programming considerations
	Correction for C0 modified basis

	Results
	Hardware and test methodology
	Throughput analysis
	Skylake AVX512 throughput
	Comparison against other work

	Roofline analysis
	Effect of correction in modified C0 basis
	Effect of C0 assembly operation

	Conclusions
	Appendix A. Modified C0 basis
	Acknowledgments
	References

