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SUMMARY

We discuss the discretization using discontinuous Galerkin (DG) formulation of an elliptic Poisson
problem. Two commonly used DG schemes are investigated: the original average flux proposed by
Bassi and Rebay (J. Comput. Phys. 1997; 131:267) and the local discontinuous Galerkin (LDG) (SIAM
J. Numer. Anal. 1998; 35:2440–2463) scheme. In this paper we expand on previous expositions
(Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer: Berlin, 2000;
135–146; SIAM J. Sci. Comput. 2002; 24(2):524–547; Int. J. Numer. Meth. Engng. 2003; 58(2):
1119–1148) by adopting a matrix based notation with a view to highlighting the steps required in
a numerical implementation of the DG method. Through consideration of standard C0-type expansion
bases, as opposed to elementally orthogonal expansions, with the matrix formulation we are able to
apply static condensation techniques to improve efficiency of the direct solver when high order
expansions are adopted. The use of C0-type expansions also permits the direct enforcement of
Dirichlet boundary conditions through a ‘lifting’ approach where the LDG flux does not require
further stabilization. In our construction we also adopt a formulation of the continuous DG fluxes
that permits a more general interpretation of their numerical implementation. In particular it allows
us to determine the conditions under which the LDG method provides a near local stencil. Finally a
study of the conditioning and the size of the null space of the matrix systems resulting from the DG
discretization of the elliptic problem is undertaken. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Although the original thrust of most discontinuous Galerkin research was the solution of
hyperbolic problems, the general proliferation of the DG methodology has also spread to the
study of parabolic and elliptic problems. For example, works such as Reference [1], in which
the viscous compressible Navier–Stokes equations were solved, required that a discontinuous
Galerkin formulation be extended beyond the hyperbolic advection terms to the viscous terms
of the Navier–Stokes equations. Concurrently, other discontinuous Galerkin formulations for
parabolic and elliptic problems were proposed [2–7].

In an effort to classify existing DG methods for elliptic problems, Arnold et al. published,
first in Reference [8] and then more fully in Reference [9], a unified analysis of discontinuous
Galerkin methods for elliptic problems. There have subsequently been several attempts to
provide performance information concerning the choice of continuous fluxes used in these
methods, both by the developers of different flux choices (e.g. References [2–7]) and by those
interested in flux choice comparisons and analysis (e.g. References [10–15]). For an overview of
many of the properties of the discontinuous Galerkin method, from the theoretical, performance
and application perspectives we refer the reader to the review article [16] and the references
therein.

Following the formulation of Arnold et al. [9], the second-order elliptic DG matrix systems
can be recast in terms of a larger first-order system through the introduction of an auxiliary
variable. Ultimately the system can be recombined to obtain the so-called primal form of
problem. Since this approach fits very naturally into the way the DG formulation is applied
to first-order hyperbolic problems, we will follow this construction in our exposition. In doing
so we still need to define a single valued flux at the elemental interfaces which in turn
determines the type of DG formulation. We will concentrate on two of the more commonly
used formulations currently being adopted from the set of ‘numerical fluxes independent of ∇uh’
[9], namely: Bassi–Rebay [1] and Local Discontinuous Galerkin (LDG) [4]. Specific details
regarding the theoretical foundations for the multi-dimensional LDG have been presented in
References [14, 17, 18]. We also note that the LDG has been successfully applied in the solution
of non-trivial elliptic problems such as the Stokes system [19] and the Oseen equations [20].

Building upon Reference [21], the primary motivation behind this paper is to illustrate how
to efficiently implement the multi-dimensional DG schemes and to compare the formulation
with the standard continuous Galerkin implementation. We have addressed the following issues
in our investigations of DG methods for elliptic problems:

• Whilst the paper by Arnold et al. [9] is very comprehensive and rigorous, it is directed
towards the mathematical understanding rather than the numerical implementation. For
example, their definition of the continuous elemental fluxes for a component of the
auxiliary variables is based on an average of elemental contributions of all components of
the auxiliary variables coupled through the edge normal. In Sections 3.2.3 and 3.2.4 we
introduce an equivalent numerical flux definition where the flux for a component of the
auxiliary variable is only dependent upon geometric information and the same component
of the auxiliary variable and so is amenable to matrix implementation.

• The DG formulation permits elementally discontinuous expansions to be adopted and so
we can consider using elementally orthogonal expansions which are numerically attractive
since elemental mass matrices are diagonal. However, the use of polynomial expansions
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with boundary-interior decompositions, designed to enforce C0 continuity in continuous
Galerkin methods, provide the following numerical benefits.

— Unlike the elemental orthogonal expansion, the C0-type expansions are amenable to
the application of static condensation techniques which lead to Schur complement
matrix systems with improved conditioning, particularly for higher order polynomial
approximations.

— When using an orthogonal basis, the common practice is to use a penalty method
to impose Dirichlet boundary conditions. When applying a C0-type basis with a
boundary-interior decomposition Dirichlet conditions can be directly imposed through
global lifting (or homogenization) as is commonly applied in continuous Galerkin
methods.

— Finally, we have observed that stabilization is not required in an LDG scheme when
Dirichlet boundary conditions are directly enforced through a lifting type operation
applicable when using C0-type expansion.

The paper is organized as follows: Section 2 provides a summary of the notation adopted
throughout the paper. Section 3 presents a full derivation of the discontinuous Galerkin formula-
tion applied to the elliptic diffusion operator with a variable diffusivity tensor. This presentation
starts from the continuous formulation to introduce topics such as stabilization, flux averaging
for the Bassi–Rebay and local discontinuous Galerkin (LDG) formulations and boundary condi-
tion enforcement. After the introduction of the continuous problem we formulate in Section 3.3
the discretization in terms of a matrix representation which is more amenable to a numerical
implementation of these schemes. In Section 3.4 we discuss different elemental polynomial
expansions that can be applied in the DG formulations. This allows us to consider how the
static condensation technique can be applied in a DG formulation in Section 3.5. In Section
4 we analyse the increased null space dimension of the DG formulation and associated condi-
tioning. Finally in Section 5 we discuss some numerical solutions of smooth and non-smooth
elliptic problems.

2. NOTATION

The following notation will be adopted in this paper.

2.1. Regions

x Cartesian co-ordinates, x = [x1, x2]T

� global computational domain
�� boundary of computational domain �
��D boundary of computational domain � with Dirichlet boundary conditions
��N boundary of computational domain � with Neumann boundary conditions
�e elemental region e in �, � =⋃Nel

e=1�
e

��e boundary of element e

��e
i ith boundary segment of boundary ��e, where ��e =⋃Ne

b

i=1��e
i and ��e

i ∩ ��e
j = ∅

when i �= j

ne outer normal to the boundary of element e, ne = [ne
1, n

e
2]T
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2.2. Variables

ue(x) primary solution variable in element e

qe
i (x) auxiliary solution variable in element e, i.e. qe

i = �ue/�xi

qe vector of auxiliary functions on an element �e, i.e. qe = [qe
1, qe

2, qe
3]T

q̃e vector of auxiliary functions on an element �e which are continuous over adjacent
elements

D diffusivity tensor D[i, j ] =Dij , 1 � i, j � 3

2.3. Integers

Nel number of elemental regions
Ne

b number of boundary segments (or faces) in element e

Ne
q number of elemental degrees of freedom in auxiliary variable qe(x)

Ne
u number of elemental degrees of freedom in primary variable ue(x)

2.4. Inner products

(u, v)�e inner product of the scalar functions u(x) and v(x) over element e, i.e.∫
�e u(x) v(x) dx

(a, b)�e inner product of two vector functions a(x) and b(x) over element e, i.e.
∫
�e a(x) ·

b(x) dx
〈u, v〉��e inner product along the boundary ��e of element e, i.e. 〈u, v〉��e = ∫

��e u(s)v(s) ds

=∑Ne
b

i=1 〈u, v〉��e
i〈u, v〉��e

i
inner product along the ith edge (face) of element boundary ��e

2.5. Discrete matrices and vectors

�e
j (x) j th expansion basis in element �e; j = 1, . . . , Ne

u (or Ne
q depending on variable).

û
e[j ] j th expansion coefficients for the primitive variable in element �e such that

ue(x) =∑Ne
u

j=1 û
e[j ]�j (x)

q̂
e

i
[j ] j th expansion coefficients for the ith auxiliary variable in element �e such that

qe
i (x) =∑Ne

q

j=1 q̂
e

i
[j ]�j (x)

Me elemental mass matrix, i.e. Me[i, j ] = (�i , �j )�e

De
k elemental weak derivative matrix of the expansion basis with respect to the xk

direction, i.e. De
k[i, j ] = (�i ,

��j

�xk
)�e

D̂
e

k elemental weak matrix of the kth component of the gradient of the expansion basis

multiplied by diffusivity tensor, i.e. D̂
e

k[i, j ] =
(

�e
i ,Dk1

�
�x1

�e
j + Dk2

�
�x2

�e
j

)
�e

D̃
e

k adjoint operator of D̂
e

k[i, j ], e.g. D̃
e

k[i, j ] =
(

�e
i ,

�
�x1

[
D1k�

e
j

]
+ �

�x2

[
D2k�

e
j

])
�e

E
e,f
kl elemental matrix of the inner product over ��e

l (edge l of element e) of basis �e
i

in element e with basis �f
j of element f weighted with the kth component of ne,

i.e. E
e,f
kl [i, j ] = 〈�e

i , �
f
j ne

k〉��e
l
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F
e,f
kl elemental matrix (for the kth flux) of the inner product over ��e

l such that

F
e,f
kl [i, j ] = 〈(ne

1D1k + ne
2D2k)�

e
i , �

f
j 〉��e

l

2.6. Elemental notation

e(i) the elemental index of the element adjacent to edge i of element e

e(i, j) the elemental index of the element adjacent to edge j of element e(i), i.e. the
element adjacent to edge i of element e

û
e(i) the expansion coefficients associated with element e(i)

û
e(i,j) the expansion coefficients associated with element e(i, j)

�e
i unique edge vector used in the LDG flux associated with edge i of element e

3. FORMULATION

In this section we introduce the discontinuous Galerkin formulation of the elliptic steady
diffusion problem with a variable diffusivity tensor. In Section 3.1 we define the strong and
auxiliary forms of the diffusion problem. In Section 3.2 we construct the weak form of the
auxiliary problem for the global domain. As is typical for a discontinuous Galerkin formulation
we then consider the weak construction at an elemental level as discussed in Section 3.2.1. In
the elemental formulation we note that a continuous flux at elemental boundaries is required
and this type flux is defined in Section 3.2.3 for two different DG methods: the classical
Bassi–Rebay and the local discontinuous Galerkin methods. Finally in Section 3.2.4 we discuss
the equivalence between the flux formulation adopted in the current work as compared to the
flux definition discussed in the widely cited work of Arnold et al. [9].

3.1. Problem definition

We consider the following steady diffusion or Poisson problem in a domain � with boundary
��, which is decomposed into a region of Dirichlet boundary conditions ��D and a region of
Neumann boundary conditions ��N

−∇ · (D∇u(x)) = f (x) x ∈ � (1)

u(x) = gD(x) x ∈ ��D (2)

[D∇u(x)] · n = gN(x) x ∈ ��N (3)

where ��D ∪ ��N = �� and ��D ∩ ��N = ∅. In the above we also consider the diffusivity
tensor D to be a symmetric positive definite matrix which may vary in space, i.e.

D = D(x) =
[
D11 D12

D21 D22

]

and D12 =D21.
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3.1.1. Auxiliary formulation. Equation (1) can be written in auxiliary or mixed form as two
first-order differential equations by introducing an auxiliary flux variable q, such that

q = D∇u(x) (4)

Substituting definition (4) into Equation (1) we obtain

−∇ · q = f (x) x ∈ � (5)

q = D∇u(x) x ∈ � (6)

u(x) = gD(x) x ∈ ��D (7)

q · n = gN(x) x ∈ ��N (8)

3.2. Weak form of the auxiliary formulation

Taking the inner product of Equations (5) and (6) with test functions v and w, respectively,
over the solution domain � we obtain

−
∫

�
v∇ · q dx =

∫
�

vf (x) dx (9)

∫
�

w · q dx =
∫

�
w · [D∇u(x)] dx =

∫
�

Dw · ∇u(x) dx (10)

where in the last equation we recall that D = DT. We assume T(�) is a two- or three-
dimensional tessellation of �. Let �e ∈T(�) be a non-overlapping element within the tessel-
lation such that if e1 �= e2 then �e1 ∩ �e2 = ∅. Let ��e denote the boundary of the element
�e and Nel denote the number of elements (or cardinality) of T(�). For a two-dimensional
problem we define the following two spaces:

Vh := {v ∈ L2(�) : v|�e ∈ P(�e) ∀�e ∈T}
�h := {� ∈ [L2(�)]2 : �|�e ∈ �(�e) ∀�e ∈T}

where P(�e) =TP (�e) is the linear polynomial space in a triangular region and P(�e) =
QP (�e) is the bilinear polynomial space for a quadrilateral region, defined as

TP (�e) = {xp

1 x
q

2 ; 0 �p + q �P ; (x1, x2) ∈ �e}

QP (�e) = {xp

1 x
q

2 ; 0 �p, q �P ; (x1, x2) ∈ �e}

Similarly �(�e) = [TP (�e)]2 or �(�e) = [QP (�e)]2. For curvilinear regions the expansions are
only polynomials when mapped to a straight-sided standard region [22].
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Let ve ∈ Vh and we ∈ �h denote scalar and vector test functions, respectively, defined on an
element �e. The integral forms of Equations (9) and (10) then reduce to finding ue ∈ Vh and
qe ∈ �h such that

−
∫

�e
ve∇ · qe dx =

∫
�e

ve f (x) dx ∀ve ∈ Vh (11)

∫
�e

we · qe dx =
∫

�e
Dwe · ∇ue(x) dx ∀we ∈ �h (12)

We note that the above system is not solvable as every element is now independent of
each other. In the standard Galerkin approach the global expansion is chosen to enforce suffi-
cient continuity, which is typically C0 for second-order problems, and then a global assembly
procedure [22] is necessary to combine the elemental contributions into a global description.
However in the discontinuous Galerkin formulation, continuity of flux of the primitive and
auxiliary variables is enforced between the elemental boundaries. To illustrate the type of flux
continuity adopted in the DG method we continue the problem formulation at an elemental
level as given in Equations (11) and (12).

3.2.1. Elemental formulation. The application of the divergence theorem to the individual ele-
mental contributions given by Equations (11) and (12) leads to∫

�e
∇ve · qe dx −

∫
��e

ve (qe · ne) ds =
∫

�e
ve f dx (13)

∫
�e

we · qe dx = −
∫

�e
(∇ · Dwe) ue dx +

∫
��e

([Dwe] · ne)ue ds (14)

In Equations (13) and (14), we note that the values of ue and qe are required on the
boundary of each element. In the absence of a direct enforcement of elemental continuity
through the expansion space definition, the local approximation will be discontinuous at the
boundary between two elements. We therefore denote a continuous flux on the boundary as ũe

for the ‘flux’ of the variable ue and q̃e for the ‘flux’ of the variable qe. The discontinuous
Galerkin formulation on every element can now be expressed as∫

�e
(∇ve · qe) dx −

∫
��e

ve(ne · q̃e) ds =
∫

�e
ve f dx (15)

∫
�e

(we · qe) dx = −
∫

�e
(∇ · Dwe) ue dx +

∫
��e

([Dwe] · ne)ũe ds (16)

Alternatively we can apply the divergence theorem going back the other way to obtain an
equivalent analytic form

−
∫

�e
ve(∇ · qe) dx +

∫
��e

ve (ne · [qe − q̃e]) ds =
∫

�e
ve f dx (17)

∫
�e

(we · qe) dx =
∫

�e
we · D∇ue dx +

∫
��e

([Dwe] · ne) [ũe − ue] ds (18)
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3.2.2. Stabilization. As we shall explore further in Section 4.1, stabilization is necessary when
using the Bassi–Rebay boundary fluxes. It can, however, also be introduced when other fluxes
are applied.

Typically stabilization can be introduced as a arbitrary penalization of the jump between the
solution along elemental boundaries. To incorporate this into the formulation we introduce the
notation e(l); 1 � l �Ne

b to denote the elements adjacent to edge l. This notation is highlighted
in Figure 1 where we show the adjacent element numbers e(1), e(2) and e(3) associated with
edges l = 1, 2 and 3 of triangular element e = e(0).

We can now introduce the stabilization factor �
∫
��e

l
ve(ue − ue(l)) ds which penalizes the

jump of the primitive function between elemental regions, where ��e
l is the boundary of

edge l of element e. This type of stabilization was previously adopted in the LDG formulation
presented in Reference [4] and originally used in the SIPG method [2], where � was also
considered as a function of the edge on which the jump was being penalized.

The weak discontinuous Galerkin elemental formulation (15) and (16) is modified to

∫
�e

(∇ve · qe) dx −
∫

��e
ve (ne · q̃e) ds + �

Ne
b∑

l=1

∫
��e

l

ve(ue − ue(l)) ds =
∫

�e
ve f dx (19)

∫
�e

(we · qe) dx = −
∫

�e
(∇ · Dwe) ue dx +

∫
��e

([Dwe] · ne) ũe ds (20)

where if � = 0, Equation (19) reduces to Equation (15). A similar modification can also be
applied to Equation (17). Throughout this work, we will consider only this form of stabilization.

We note that in Reference [23] an alternative jump term was presented using the lifting
operator re defined as∫

�
re(�) · � dx = −

∫
��e

l

� · {�} ds ∀� ∈ �h, � ∈ [L1(e)]2

e(1)

e(2)

e(3)

e = e(0)

l=1

l=2

l=3

Figure 1. Definition of element numbering e(l) which share an edge l with element e.
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where � is the domain over which the tessellation Th is defined, ��e
l denotes an edge within

that tessellation (which may be owned by one element or may be shared by two adjacent
elements) and the curly brackets indicate a jump. The penalization of a variable � is given by
the expression −�ere(�) which uses the aforementioned operator. Once again, a free parameter
�e allows this stabilizing factor to be tuned for the problem under consideration. As we will
demonstrate in the next section, this new stabilizing factor can be incorporated into the flux
definition.

3.2.3. Elemental boundary flux definition. Similar to the work of Arnold et al. [9], we define the
local discontinuous Galerkin (LDG) flux from which we can automatically obtain the Bassi–
Rebay choice. However, in contrast with the form adopted in Reference [9] which couples
every components of the auxiliary variables q, we construct an alternative approach where
each component of q remains uncoupled.

We can now define the continuous boundary fluxes ũe and q̃e as

ũe|��e
i
= �u|ei ue|��e

i
+ �u|ei ue(i)|��e

i
(21)

and

q̃e|��e
i
= �q |ei qe|��e

i
+ �q |ei qe(i)|��e

i
(22)

From a consistency point of view, fluxes across an edge shared by e and e(i) should satisfy
the constraints �u|ei + �u|ei = 1 and �q |ei + �q |ei = 1 where �u|ei , �u|ei , �q |ei , �q |ei are real-
valued scalars. Under this constraint, we define �u|ei , �u|ei , �q |ei , �q |ei by first introducing
a reference vector �e

i along each edge i of element e which is unique along an edge in the

sense that �e
i = �f

j if edge i in element e is adjacent to edge j of element f . We can now
adopt the following form for the coefficients:

�u|ei = 1
2 − �e

i · ne|��e
i

(23)

�u|ei = 1
2 − �e

i · ne(i)|��e
i

(24)

�q |ei = 1
2 + �e

i · ne|��e
i

(25)

�q |ei = 1
2 + �e

i · ne(i)|��e
i

(26)

We observe that the sign of the averaging in �u|ei and �q |ei (as well as �u|ei and �q |ei )

are reversed to introduce a ‘flip–flop’ nature of the fluxes where the bias of the continuous
flux for ũe is reversed to that for the continuous flux of q̃e. Finally, we also note that the
stabilization described in Section 3.2.2 can be incorporated directly into the continuous flux by
the following modification to Equations (25) and (26):

�q |ei = 1

2
+ �e

i · ne|��e
i
− �

ue|��e
i

ne
j |��e

i

qe
j |��e

i

j = 1, 2, 3 (27)
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�q |ei = 1

2
+ �e

i · ne(i)|��e
i
− �

ue(i)|��e
i

n
e(i)
j |��e

i

q
e(i)
j |��e

i

j = 1, 2, 3 (28)

The use of Equations (27) and (28) in Equation (15) or (17), is equivalent to applying
Equations (25) and (26) in Equation (19).

We can further express � (briefly dropping the subscript and superscript notation) in terms of
its magnitude |�| and an angle vector e� = [cos � sin �]T where � = tan−1(�1/�2), i.e. � = |�|e�.
Adopting this form when |�| = 0 and � = 0, we regain the classic (unstabilized) Bassi–Rebay
scheme. Alternatively if |�| �= 0 and � = 0 we obtain the family of LDG schemes. Setting
|�e

i | = 1/2 and

e�|ei =
{

ne|��e
i

if e<e(i)

−ne|��e
i

if e>e(i)
(29)

recovers the ‘flip–flop’ nature of the LDG flux (see Section 3.3.1) as exhibited in the dis-
continuous Galerkin LDG formulation for one-dimensional problems [12] and as discussed for
multi-dimensional problems in Reference [17]. For a given edge there are still two choices of
the vector given by Equation (29) and its negative. As we shall demonstrate in Section 4.1
defining �e

i = 1/2e� as per Equation (29) can lead to a LDG scheme which has a null space
larger than one for the solution of the Poisson equation in a periodic region. From the analysis
in this section the increase in the dimension of the null space appears to be related to situa-
tions where all the local edge vectors e�|ei in a single element point outwards. To avoid this
limitation we can determine the direction of �e

i by projecting on to an arbitrary global vector
g, i.e.

�e
i =

{ 1
2 e�|ei if g · �e

i � 0

− 1
2 e�|ei if g · �e

i <0
(30)

For a curved edge a similar philosophy to the above can be applied but the value of �q and
�q will now vary along the edge as the value of the normal varies.

3.2.4. Equivalence of fluxes. The continuous auxiliary fluxes q̃|e, given by Equation (22)
together with (25) and (26), are not identical to those proposed in the paper of Arnold
et al. [9] and used by other researchers. However, equivalence to the flux form presented
in the paper of Arnold et al. [9] is observed when both fluxes are projected into the normal
elemental direction as required by Equations (15) and (17). Using the previously introduced
notation, the auxiliary fluxes of the paper of Arnold et al. [9], denoted here by a subindex A,
can be written as

q̃e
A|��e

i
= 1

2 (qe|��e
i
+ qe(i)|��e

i
) + �e

i (n
e|��e

i
· qe|��e

i
+ ne(i)|��e

i
· qe(i)|��e

i
) (31)

Inserting Equations (25) and (26) into Equation (22) we can write the auxiliary flux adopted
in the current work as

q̃e|��e
i
= 1

2 (qe|��e
i
+ qe(i)|��e

i
) + (�e

i · ne|��e
i
)qe|��e

i
+ (�e

i · ne(i)|��e
i
)qe(i)|��e

i
(32)
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Recalling that ne|��e
i
= −ne(i)|��e

i
the inner product of the normal ne|��e

i
with Equation (31)

as

ne|��e
i
· q̃e

A|��e
i
= 1

2 ne|��e
i
· (qe|��e

i
+ qe(i)|��e

i
)

+ (ne|��e
i
· �e

i )(n
e|��e

i
· qe|��e

i
)

−(ne|��e
i
· �e

i )(n
e|��e

i
· qe|��e

i
) (33)

Equivalently the inner product of the normal, ne|��e
i
, with Equation (32) is

ne|��e
i
· q̃e

A

∣∣
��e

i
= 1

2 ne|��e
i
· (qe|��e

i
+ qe(i)|��e

i
)

+ (�e
i · ne|��e

i
)(ne|��e

i
· qe|��e

i
)

−(�e
i · ne|��e

i
)(ne|��e

i
· qe(i)|��e

i
) (34)

Clearly the first term corresponds to the classical Bassi–Rebay averaging and is the same in
Equations (33) and (34). The individual contributions, �e

i (n
e|��e

i
· q|��e

i
) and (�e

i · ne|��e
i
)q|��e

i
,

to the average fluxes (31) and (32) are not identical, but their projection into the normal edge
direction of these terms are equivalent as illustrated in Figure 2. It is important to stress that
the continuous auxiliary flux evaluation q̃e|��e

i
, using Equation (32) is more easily implemented

than the corresponding continuous auxiliary flux evaluation q̃e
A|��e

i
, using Equation (31) since

it only involves the inner products (�e
i ·ne|��e

i
) and (�e

i ·ne(i)|��e
i
). The scalar values from these

inner products immediately implies that each vector components is decoupled from each other.
In contrast, Equation (31) couples the difference components of vector qe|��e

i
and qe(i)|��e

i

and so does not permit each component of q̃e|��e
i

to be individually evaluated. Although the

q(  .n)ζ

n

(b)

q

ζ

(a)

(n.q)

(n.q) (n.  )ζ

n

(n.q) ζ

q

ζ

(  .n) ζ

(  .n)ζ (n.q)

Figure 2. Graphical equivalence of the projected two-dimensional LDG component of the auxiliary
fluxes such that the equality (n·q)(n·�e

i ) = (�e
i ·n)(n·q) is numerically preserved in our implementation:

(a) form adopted in Arnold et al. [9]; and (b) form adopted in this work.
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later projection of this flux into the normal direction would allow the components to be treated
independently.

3.2.5. Boundary condition enforcement. Up to this point we have only considered the elemental
formulation and how to enforce flux continuity between the solution variable and the auxiliary
fluxes. It is important to understand how boundary conditions may be enforced, as it modifies
some of the properties of the final primal matrix system which is solved.

There are two fundamental mechanisms to enforce Dirichlet boundary conditions. The first
is ‘strong enforcement’ or ‘lifting’ and the second is ‘weak enforcement.’ Strong enforcement
of the boundary conditions is accomplished through a global lifting of the boundary conditions.
We can demonstrate the global lifting process by the following example. Assume we wish to
solve the matrix system

Ax = f where x(��) = g(��) (35)

Since this is a linear problem we can decompose x into a known solution xD and an unknown
homogeneous solution xH such that

x = xD + xU xD(��) = g(��), xH(��) = 0

We can then insert this decomposition into Equation (35) and since xD is a known solution
(typically represented in the discrete approximation space) we can put this contribution on the
right-hand side to obtain the ‘lifted’ or ‘homogeneous’ problem

AHHxH = fH − (AHH + AHD)xD where xD(��) = 0 (36)

where the matrix superscripts H and D denote the degrees of freedom associated with the
homogeneous (zero on Dirichlet boundaries) and Dirichlet (non-zero on Dirichlet boundaries)
degrees of freedom, respectively. In solving the homogeneous problem (36) we therefore only
consider discrete expansions which are defined to be zero on a Dirichlet boundary. This reduces
the number of global degrees of freedom when compared to the weak enforcement of Dirichlet
boundary conditions. As in standard continuous Galerkin finite elements, the value of the
approximation on the boundary is ‘exact’ up to the lifting operator projection error.

Weak enforcement is accomplished through the introduction of the boundary flux term ũe in
Equation (16) for those elements adjacent to a Dirichlet boundary. This can be implemented
either by direct substitution or through the use of ‘ghost’ elements surrounding the boundary
elements in which the solution on the ghost elements is equal to the boundary condition.
The potential implementation advantage of ‘ghost’ elements is that the boundary flux term ũe

is computed as it would be for any other element/element interface. A few things to note
concerning the weak enforcement are that:

(1) Unlike the strong enforcement, weak enforcement does not remove boundary degrees of
freedom from the resultant matrix problem which has to be solved.

(2) Weak enforcement (as the name suggests) does not require that the boundary condition
be met exactly, but consistently approximated. That is, the boundary condition value is
reached in the limit of increasing spatial resolution and the order of convergence is the
same as the convergence of the interior scheme.
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(3) One must take care to guarantee that the boundary condition value is applied in an LDG
formulation, i.e. that the flip–flop is designed so that the specified boundary values are
introduced into the matrix problem.

Arnold et al. [9], as well as most DG practitioners, typically apply a weak enforcement of
Dirichlet boundary conditions.

Neumann or natural boundary conditions are handled in an analogous manner to the weak
enforcement in general. The Neumann boundary value is substituted directly into elements
adjacent to Neumann boundaries as the boundary flux term q̃e in Equation (15).

3.3. Discrete matrix representation

To get a better appreciation of the implementation of the different DG approaches we now
consider the matrix representation of Equations (15)–(16) and (17)–(18) which is more amenable
to a numerical implementation of the method. We start by approximating ue(x) and qe(x) =
[q1, q2]T by a finite expansion in terms of the basis �e

j (x) of the form

ue(x) =
Ne

u∑
j=1

�e
j (x) û

e[j ] qe
k (x) =

Ne
q∑

j=1
�e

j (x)q̂
e

k
[j ]

3.3.1. Matrix form of the auxiliary equations. Following a standard Galerkin formulation we
set the scalar test functions ve to be represented by �e

i (x) where i = 1, . . . , Ne
u , and let our

vector test function we be represented by ek�i where e1 = [1, 0]T and e2 = [0, 1]T. Inserting
the finite expansion of the trial functions into Equation (15) with the flux form (25)–(26), the
equation for every test function �i becomes

Ne
q∑

j=1

[(
��e

i

�x1
, �e

j

)
�e

q̂
e

1
[j ] +

(
��e

i

�x2
, �e

j

)
�e

q̂
e

2
[j ]
]

−
Ne

b∑
l=1

�q |el
Ne

q∑
j=1

〈�e
i , [ne

1q
e

1
[j ] + ne

2q
e

2
[j ]]〉��e

l

−
Ne

b∑
l=1

�q |el
Ne

q∑
j=1

〈�e
i , [ne

1q
e(l)

1
[j ] + ne

2q
e(l)

2
[j ]]〉��e

l
= (�e

i , f )�e (37)

Here we recall that e(l) denotes the adjacent elements which share a common edge with
element e as illustrated in Figure 1. Introducing the matrices

De
k[i, j ] =

(
�e

i ,
��e

j

�xk

)
�e

E
e,f
kl [i, j ] = 〈�e

i , �
f
j ne

k〉��e
l
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and defining f e[i] = (�i , f )��e we can write Equation (37) in matrix form as

[(De
1)

T(De
2)

T]
[

q̂
e

1

q̂
e

2

]
−

Ne
b∑

l=1
�q |el [Ee,e

1l E
e,e
2l ]

[
q̂

e

1

q̂
e

2

]
−

Ne
b∑

l=1
�q |el [Ee,e(l)

1l E
e,e(l)
2l ]

⎡
⎣ q̂

e(l)

1

q̂
e(l)

2

⎤
⎦ = f e (38)

In the matrix system (38) the matrix De denotes the elemental weak derivative commonly
used in standard Galerkin implementations. On the other hand, the matrix E

e,f
kl is a type of

mass matrix evaluated on an element edge and projected in the normal component direction
nk . We also note that when e �= f this elemental mass matrix involves the inner product of
two, potentially completely different, edge expansions �e

i (��e
l ) and �f

i (��e
l ) (note ��e

l = ��f
m

when edge l of element e is adjacent to edge m of element f ).
The two DG formulations we are considering differ in their support in the computational

domain. Figure 3 shows the role of �q and �q in Equation (38) when Bassi–Rebay and a
normalized direction LDG fluxes are employed. In Figure 3(a) we present the contribution to
the element denoted by a circle when using Bassi–Rebay fluxes. In this case the boundary
flux evaluation uses information from both sides of an edge and so the shaded elements are
involved. In Figure 3(b) we illustrate the influence on the element denoted by a circle of
adopting the normalized direction LDG fluxes. In this case the orientation of the normals
(inward or outward facing) is based upon projection against a globally defined orientation
vector g. The single element diagram on the right of this figure provides the LDG values of
�u and �q on each edge when Equations (29) and (30) are employed. Note that �u and �q

are immediately deducible due to the convex combination requirements. Once again the shaded
elements surrounding the element under consideration denote the elements from which non-zero
contributions are obtained in Equation (38) (due to the particular �q and �q values). We note that
not all adjacent elements are involved in the LDG evaluation as dictated by its ‘flip–flop’ nature.

If we now consider Equation (16) for the kth component of the auxiliary flux, qk , we observe
that, on insertion of the finite trial basis expansion, we have for every test function �i

Ne
q∑

j=1
(�e

i , �
e
j )�e q̂

e

k
[j ] = −

Ne
u∑

j=1

[(
�

�x1

[
D1k�

e
i

]+ �
�x2

[
D2k�

e
i

]
, �e

j

)
�e

]
û

e[j ]

+
Ne

b∑
l=1

�u|el
Ne

u∑
j=1

[〈(ne
1D1k + ne

2D2k)�
e
i , �

e
j 〉��e

l
]ûe[j ]

+
Ne

b∑
l=1

�u|el
Ne

u∑
j=1

[〈(ne
1D1k + ne

2D2k)�
e
i , �

e(l)
j 〉��e

l
]ûe(l)[j ] (39)

and introducing the matrices

Me[i, j ] = (�e
i , �

e
j )�e

D̃
e

k[i, j ] =
(

�e
i ,

�
�x1

[D1k�
e
j ] + �

�x2
[D2k�

e
j ]
)

�e

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:752–784



766 S. J. SHERWIN ET AL.

Figure 3. Schematic illustrating the role of �q = 1 − �q and �q in Equation (38) when:
(a) Bassi–Rebay; and (b) normalized direction LDG fluxes are employed. A complete

explanation of the diagram is provided in the text.

F
e,f
kl [i, j ] = 〈(ne

1D1k + ne
2D2k)�

e
i , �

f
j 〉��e

l

we can write Equation (39) as

Meq̂
e

k
= − (D̃

e

k)
Tû

e +
Ne

b∑
l=1

�u|el F
e,e
kl û

e +
Ne

b∑
l=1

�u|el F
e,e(l)
kl û

e(l) (40)

In Equation (40), Me is the element mass matrix used in standard Galerkin formulations.
Matrix D̃

e

k denotes the inner product of the divergence of diffusivity tensor by the vector
expansion basis for the kth component of the auxiliary flux. We note that, if the diffusivity
tensor has the simplified form D = �I where � is a constant, then D̃

e

k = �De
k . Finally the matrix

F
e,f
kl is another edge matrix denoting a type of elemental mass matrix weighted with the kth

component of the diffusivity tensor and edge normals. Once again if D = �I then F
e,f
kl = �E

e,f
kl .

We note that the matrix operation (Me)−1F
e,e
kl represents the discrete elemental lifting operation

(see Section 3.2.5) which ‘lifts’ or extends the information from edge l of the solution ue into
the interior of the element through the action of the inverse mass matrix.

Similar to the example of Figure 3 it is interesting to note the elemental coupling of
Equation (40). Therefore in Figure 4 we present a schematic illustrating the role of �u and �u

in Equation (40) when both Bassi–Rebay and normalized direction LDG fluxes are employed.
As indicated by the shaded triangles in Figure 4(a), the region of influence of the Bassi–Rebay
fluxes on an element of interest (denoted by the circle) is identical to the stencil shown in
Figure 3. For the normalized direction LDG flux we recall the direction of �e

i is indicated
by the edge arrows in Figure 4(b) and is a consequence of applying Equation (30) against a
globally defined orientation vector g. The LDG values of �u and �u in this example are such
that only one shaded element contributes to the element of interest denoted by the circle in
Equation (40). This is the only element which was not used in the LDG flux of Figure 3(b).
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Figure 4. Schematic demonstrating the role of �u = 1 −�u and �u in Equation (40) when LDG based
upon Equation (29) is employed. A complete explanation of the diagram is provided in the text.

Finally we can also define the elemental matrix representing the inner product with the kth
component of the gradient of the expansion basis multiplied by the diffusivity tensor, i.e.

D̂
e

k[i, j ] =
(

�e
i ,Dk1

��e
j

�x1
+ Dk2

��e
j

�x2

)
�e

In the absence of any integration errors we note that the adjoint relationship between D̂
e

k and
D̃

e

k can be expressed as

D̂
e

k = − (D̃
e

k)
T +

Ne
b∑

l=1
F

e,e
kl (41)

Therefore inserting Equation (41) into Equation (40) we obtain

Meq̂
e

k
= D̂

e

kû
e +

Ne
b∑

l=1
(�u|el − 1)F

e,e
kl û

e +
Ne

b∑
l=1

�u|el F
e,e(l)
kl û

e(l) (42)

which is the discrete matrix representation of Equation (18).
It is useful to note, at this point in our derivation, that the mass matrix Me in the auxiliary

flux equations given by Equation (42) is decoupled at an elemental level. Hence an elemental
inversion of the mass matrix allows us to write an explicit equation for the auxiliary flux
variable. This will be used in the next section for the derivation of a matrix form of the primal
equation. We also recall that the multiplication by the inverse mass matrix acts as a local
lifting operator—lifting the influence of the boundary flux terms across the entire elemental
expansion.

3.3.2. Matrix form of the primal equation. Building upon the matrix representations of the
Section 3.3.1 we can obtain the matrix form of the primal Equation (1). To proceed we insert
Equation (42) into Equation (38) to obtain the two-dimensional primal form that corresponds to
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the continuous elemental auxiliary Equations (15) and (18). This matrix system can be written
as

K1û
e +

Ne
b∑

m=1
�u|em K2

mû
e(m) −

Ne
b∑

l=1
�q |el K3

l û
e(l) −

Ne
b∑

l=1

N
e(l)
b∑

m=1
K4

lmû
e(l,m) = f e (43)

where we have used the definitions described in the following. K1 denotes the contribution of
the elemental region e and is given by

K1 =
[(

(De
1)

T −
Ne

b∑
l=1

�q |el E
e,e
1l

)
(Me)−1

(
D̂

e

1 +
Ne

b∑
l=1

(�u|el − 1)F
e,e
1l

)

+
(

(De
2)

T −
Ne

b∑
l=1

�q |el E
e,e
2l

)
(Me)−1

(
D̂

e

2 +
Ne

b∑
l=1

(�u|el − 1)Fe
2l

)]

The terms
∑2

i = 1(D
e
i )

T(Me)−1D̂
e

i correspond to the elemental contribution which typically

arises in a standard Galerkin formulation and is recovered when E
e,f
kl = F

e,f
kl = 0.

K2
m denotes the contributions from the elements immediately adjacent to the edges of element

e and is given by

K2
m =

Ne
b∑

m=1
�u|em

[(
(De

1)
T −

Ne
b∑

l=1
�q |el E

e,e
1l

)
(Me)−1F

e,e(m)
1m

+
(

(De
2)

T −
Ne

b∑
l=1

�q |el E
e,e
2l

)
(Me)−1F

e,e(m)
2m

]

This matrix arises from the contribution of the third term in Equation (42) being inserted into
the first two terms of Equation (38).

K3
l denotes the contributions from the elements immediately adjacent to the edges of element

e and is given by

K3
l =

Ne
b∑

l=1
�q |el

⎡
⎣E

e,e(l)
1l (Me(l))−1

⎛
⎝D̂

e(l)

1 +
N

e(l)
b∑

m=1
(�u|e(l)m − 1)F

e(l),e(l)
1m

⎞
⎠

+ E
e,e(l)
2l (Me(l))−1

⎛
⎝D̂

e(l)

2 +
N

e(l)
b∑

m=1
(�u|e(l)m − 1)F

e(l),e(l)
2m

⎞
⎠
⎤
⎦

This matrix arises due to the first two terms of Equation (42) being inserted into the third
term of Equation (38). Finally K4

lm denotes the contributions to the primal form of elements
adjacent to the edges of the elements adjacent to element e and arises when the third term of
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Equation (42) is inserted into the third term of Equation (38), it is defined as

K4
lm =

Ne
b∑

l=1
�q |el

⎡
⎣N

e(l)
b∑

m=1
�u|e(l)m [Ee,e(l)

1l (Me(l))−1F
e(l),e(l,m)
1m + E

e,e(l)
2l (Me(l))−1F

e(l),e(l,m)
2m ]

⎤
⎦

In this matrix definition we have extended the use of the previously defined superscript notation
e(i) to the form e(i, j). This extension e(i, j) is to be understood as the element index of the
neighbouring element adjacent to edge j of e(i) which we recall is the element adjacent to
edge i of element e. Therefore, this involves the elements in two ‘halos’ surrounding element e.

In a continuous Galerkin formulation the global continuity between elemental regions enforces
that the information from element e is coupled to the elements adjacent to its immediate
edges, although the C0 continuous vertex modes typically couple further information from all
neighbouring elements. We therefore note that the matrices K2

m, K3
l and K4

lm represent the
non-local contributions to the primal form.

Having constructed the matrix form (43) of the primal equation we can now observe that
to generate a local discontinuous Galerkin method which has a ‘local’ influence on adjacent
elements we require that either �q |ei or �u|em (m = 1, . . . , Ne

b ) must be identically zero to make

K4
lm zero (or equivalently either �q |ei or �u|em (m = 1, . . . , Ne

b ) have a value of 1). Recalling
Equations (24) and (26) we deduce that a necessary condition for the LDG formulation to
maintain a local structure is that

�e
i · ne|��e

i
= ± 1

2

The most obvious choice for �e
i along edge ��e

i was previously given in Equation (29) and is

�e
i = ± 1

2 ne|��e
i

(44)

Clearly an arbitrary component of the tangent can be added to �e
i . It would appear that this

relatively specific choice of �e
i to achieve a local scheme has not been widely discussed. For

example Arnold et al. [9] suggest any vector � is suitable. However Cockburn et al. [17]
have previously suggested a vector similar to the one defined above. As we shall demonstrate
in Section 4.1 the choice of sign of �e

i should be normalized using a projection to a global
direction similar to Equation (30) to avoid generating undesirable increases in the dimension
of the null spaces of the operator.

We note that the definition of the LDG vector using Equations (29) and (30) does not
absolutely guarantee a local scheme (where only elements adjacent to ‘e’ are used). This
arises due to the role of �u|ei in the inner summation of the list two lines of Equation (43)
where a �u|ei �= 0 can arise on any non-local edge and be coupled through �q |ei to element
e. To illustrate this point we build upon the examples of Figures 3 and 4. In Figure 5 we
schematically present the stencil or region of influence with respect to Equation (43) for the
classic Bassi–Rebay (left) and the LDG, based upon Equations (29) and (30) (right), schemes.
As with previous illustration examples, the triangle at the top of the diagram is to remind the
reader of the effect of the normalized direction LDG. Since the classic Bassi–Rebay employs
a factor of 1/2 for all � and � values, several observations and deductions can be made. First,
the classic Bassi–Rebay stencil is quite large with a total footprint of 10 elements. Secondly,
the LDG stencil based upon Equations (29) and (30) has a far more compact stencil than the
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Figure 5. Schematic demonstrating the stencil (region of influence) with respect to Equation (43)
classic Bassi–Rebay (left) and the normalized direction LDG based upon Equations (29) and (30)
(right). The triangle at the top of the diagram is to remind the reader of the consequences of the
LDG choice. The classic Bassi–Rebay scheme employs one-half for all � and � values. A complete

explanation of the diagram is provided in the text.

Bassi–Rebay stencil. This is due to the ‘flip-flop’ nature of the convex combination. Thirdly, the
LDG stencil is not guaranteed to use information only from neighbouring elements in contrast,
for instance, to the formulation by Baumann–Oden [24].

The choice as to whether to set �u or �q to zero along a solution boundary is important
when considering Neumann boundary conditions. In this case we require that �q = 1 otherwise
the Neumann boundary flux will not be incorporated into the weak problem. The analogous
issue for implementation of Dirichlet boundary conditions depends on whether this condition
is enforced through either a penalty or a lifting approach.

3.4. Polynomial expansion basis

In the following numerical implementation we have applied a spectral/hp element type dis-
cretization which is described in detail in Reference [22]. In this section we describe the
orthogonal and C0 continuous quadrilateral and triangular expansions within the standard
regions which we have adopted.

For a standard quadrilateral region −1 � x1, x2 � 1 a P th order orthogonal polynomial
expansion can be defined as the tensor product of Legendre polynomials Lp(x) such that

�i(pq)(x1, x2) = Lp(x1)Lq(x2) 0 �p, q �P

where the pair i(pq) represents the unique indexing of the 1D indices p, q to the consecutive
list i. Analogously the most commonly used hierarchical C0 polynomial expansion [22] is based
on the tensor product of the integral of Legendre polynomials (or equivalently generalized Jacobi
polynomials P

1,1
p (x)) such that

�i(pq)(x1, x2) = 	p(x1)	q(x2) 0 �p, q �P
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Figure 6. Triangular expansion modes for a P = 4 order expansion using an orthogonal expansion
(left) and a C0 continuous expansion (right). The modes in the C0 expansion can be identified as

either interior (being zero on all boundaries) or boundary modes.

where

	p(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − x

2
, p = 0

1 − x

2

1 + x

2
P 1,1

p (x), 0<p<P

1 + x

2
, p = P

Within a triangular domain we can use an orthogonal expansion described by, amongst others,
Priorol [25], Koornwinder [26] and Dubiner [27]. This expansion is illustrated in Figure 6
(left) and is explicitly defined for P th order expansions in −1 � x1, x2; x1 + x2 � 0 as

�i(pq)(x1, x2) = P 0,0
p (x1)

(
1 − x2

2

)p

P
2p+1,0
q (x2) 0 �p, q; p + q �P

where P
�,�
i denotes the ith Jacobi polynomial based upon � and �. A C0 extension of this

expansion was proposed by Dubiner [27] and is also detailed in Reference [22]. The C0

expansion for an expansion of order P = 4 is shown in Figure 6 (right).
As we will demonstrate in Section 3.5, there are different numerical considerations associated

with the choice of orthogonal or C0 continuous expansions. The orthogonal expansion, by
definition, has a diagonal mass matrix in elemental regions with linear mappings to the standard
region. This property can be numerically useful when evaluating the auxiliary variable q.
Alternatively, the use of a C0 expansion allows the boundary conditions to be efficiently
enforced through a global lifting type operation where a known function with exact boundary
conditions is lifted out of the problem as discussed in Section 3.2.5. Further, the natural
decomposition of the C0 basis into interior modes that are zero on the elemental boundaries
and boundary modes allows us to use a static condensation technique where the structure of
the global matrix system arising from the DG formulation can be used effectively to solve the
system as discussed in the next section.

3.5. Static condensation

When the global matrix system has a simple block structure, such as a series of decoupled sub-
matrix systems, the static condensation technique is an algebraic manipulation which utilizes
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this structure to simplify the solution of the system. Static condensation or sub-structuring
is a technique commonly used in continuous Galerkin methods, particularly for the p-type
expansions where the construction of many ‘interior’ or ‘bubble’ expansions naturally lend
themselves to this type of decomposition. If we consider a symmetric matrix problem such as[

A B

BT C

][
u1

u2

]
=
[

f
1

f
2

]

the problem can be restated as initially solving for u1 by considering the sub-matrix problem

Su1 = [A − BC−1BT]u1 = f
1
− BC−1f

2

where S is referred to as the Schur complement. The vector u2 can then be solved via the
sub-matrix problem

Cu2 = f
2
− BTu1

We observe that solving the statically condensed problem is not more efficient than consid-
ering the full problem unless C−1 is easy to evaluate. In the case of a C0 continuous p-type
element expansion, the interior or bubble modes have a block diagonal structure in the global
matrix and so this matrix has a numerically efficient inverse when compared to the full inverse
of the global matrix of equal rank. This point is highlighted in Figure 7 where we schematically
illustrate the structure of an elliptic continuous Galerkin matrix. The matrix can be considered
as being constructed from block diagonal elemental components which have been ordered into
sub-matrices containing just the boundary and interior components. In constructing the global
matrix system, a direct assembly procedure involving the matrix A [22] can be applied which
enforces the continuity between the elemental regions on the boundary degrees of freedom.
However since interior or bubble modes are, by definition, zero on elemental boundaries they
can be considered individually as global degrees of freedom and so the globally assembled
matrix maintains the block diagonal structure of the interior–interior sub-block. This matrix can
therefore be inverted at the elemental level thereby dramatically reducing the size of the global
matrix problem for high-order polynomial expansions. It is also possible to apply a similar
philosophy to a cluster of elements where the interior degrees of freedom are defined to be
modes which are zero on the boundary of the elemental cluster.

If we are to consider the direct inversion of the discontinuous problem then application of
the static condensation technique may also be desirable. However, in the discontinuous Galerkin
formulation there is direct enforcement of the continuity of the elemental expansions across
elements. We therefore might consider adopting an expansion which has an diagonal elemental
mass matrix such as the tensor product of Legendre polynomials. We note that the global
matrix in the DG scheme is the same rank as the sum of the elemental degrees of freedom
and so we no longer have a global assembly procedure denoted by A. However in the DG
scheme we introduce elemental boundary fluxes which couple adjacent elements and lead to
off-diagonal components in the matrix structure.

At this point it is not evident whether we can still apply the static condensation technique
to the discontinuous Galerkin formulation. Indeed, it is not until we adopt a C0 continuous
expansion, typically used in the continuous Galerkin formulation, that we recover an appropriate
structure to apply this technique. To appreciate why it is possible to use static condensation
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Figure 7. Schematic construction of continuous matrix system. In the continuous Galerkin system, the
matrix can be interpreted as block diagonal systems which are globally assembled through pre- and

post-multiplying by a restriction matrix A.

we observe that the definition of E
e,f
kl and F

e,f
kl are purely dependent upon the support of the

expansion along the elemental boundaries. Since by definition all interior modes are zero along
the elemental boundaries, E

e,f
kl and F

e,f
kl are necessarily zero for all interior modes.

4. MATRIX ANALYSIS

In Section 4.1 we investigate the null space of the primal matrix Equation (43) and the
conditioning of this matrix in Section 4.2.

4.1. Null space of the Laplacian operator

4.1.1. Bassi–Rebay flux. It is well known that the Bassi–Rebay choice of boundary flux
�u = �u = �q = �q = 1

2 with no stabilization leads to a Laplace operator with spurious modes
due to an enriched null space [9]. In this section we solve the Poisson problem using a uni-
form mesh of triangular and quadrilateral elements in a periodic domain. The null space is
evaluated using double precision with the general matrix eigenvalue routine in the LAPACK
library applied to Equation (43). An eigenvalue was defined to be in the null space if the
magnitude of the eigenvalue was less than 1 × 10−13. The eigenvector associated with the zero
eigenvalue provides a set of expansion coefficients and so the corresponding eigenfunction was
determined by evaluating the expansion at a series of quadrature points in the solution domain.

Figure 8 shows representative null space functions which arise at different polynomial
orders when considering a periodic region [0 � x1, x2 � 1] subdivided into eight equally shaped
triangles. In this figure we plot the function and its derivatives with respect to x1 and x2 which
are used to evaluate the auxiliary fluxes. Table I shows the size of the numerical evaluated
null space for this mesh as a function of polynomial orders and we note that for the triangular
expansion the dimension of the null space increases with polynomial order.

We recall from Equations (21) and (22) that the primitive and auxiliary fluxes for the Bassi–
Rebay fluxes are given by the average of the values of the function or the relevant derivative
either side of an elemental interface. From an inspection of Figure 8 we observe that the
average fluxes will be zero at any point on the elemental boundary and so these non-zero
modes in the null space have no global coupling from ũ between elements. A similar property
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Figure 8. Representative null space eigenmodes and their derivatives (arbitrarily scaled) for P = 1
(top), P = 2 (middle), and P = 3 (bottom) polynomial order triangular expansions.

Table I. Numerical evaluation of the dimension of the null space (|
i | �
1 × 10−13) using Bassi–Rebay fluxes for different polynomial order
expansions P in the domain shown in Figures 8 and 9 using similar

shaped triangular and quadrilateral elements.

Poly Order. P 1 3 5 7 9 11 13 15
Dim. of tri. null space 1 3 3 3 5 5 5 7
Dim. of Quad. null space 4 4 4 4 4 4 4 4

Poly Order. P 2 4 6 8 10 12 14 16
Dim. of tri. null space 2 2 4 4 4 6 6 6
Dim. of quad. null space 4 4 4 4 4 4 4 4

appears to hold for the derivatives of the null space modes which decouples the contribution
of the continuous flux of the auxiliary variable q̃.

Figure 9 shows some representative null space functions for a quadrilateral discretization of
the domain 0 � x1, x2 � 1 into four quadrilateral elements. This null space also contains the
constant mode which is not shown. In contrast to Figure 8 we observe that, whilst the value
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Figure 9. Representative null space eigenmodes (arbitrarily scaled) for P = 1 (top) and P = 3 (bottom)
polynomial order quadrilateral expansions.

of the primitive functions have the property that the values are equal and opposite along the
elemental boundaries (up to the constant mode), the derivatives of the function in the null
space no longer have this property. Therefore the average auxiliary flux, q̃e along the elemental
boundaries is not always identically zero. However the integral∫

��e
q̃e · ne ds

is zero since the value of the auxiliary average fluxes is equal along boundaries where the
elemental normal is equal and opposite. Finally we note from Table I that the dimension of the
null space for quadrilateral discretizations considered does not increase with polynomial order.

4.1.2. LDG flux. To complement our investigation of the null space of the Bassi–Rebay flux
we also consider the null space of the LDG flux with no stabilization. In Section 3.3 we
argued that the only choice of the edge vector �|ei that leads to a ‘local’ discontinuous Galerkin
formulation, which has similar coupling as the standard Galerkin method, is to define �|ei as
in Equation (44). However, in the following test we observe that the direction of the unique
vector along a given edge is important since a choice where all vectors are either internal or
external to a local element leads to an undesirable increase in the dimension of the null space.

To illustrate this point we consider the computational domains used in the null space studies
in the previous section. We then prescribe the vector �|ei using only Equation (29). This means
that the element with the lowest global identity has �|ei vectors which are all aligned with
the inwards normal direction of this element and so �u = 0. Similarly the element with largest
global identity has �|ei vectors which are aligned with the outwards normal to the element and
so �q = 0. As with the Bassi–Rebay fluxes and shown in Table II, this definition of �|ei leads to
a null space which increases in dimension with polynomial order for the triangular mesh and
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Table II. Numerical evaluation of the dimension of the null space (
i �
1 × 10−13) using non-normalized LDG fluxes for different polynomial
order expansions P in the domain shown in Figures 8 and 9 using

similar shaped triangular and quadrilateral elements.

Poly Order. P 1 3 5 7 9 11 13 15
Dim. of tri. null space 3 5 7 9 11 13 15 17
Dim. of Quad. null space 4 4 4 4 4 4 4 4

Poly Order. P 2 4 6 8 10 12 14 16
Dim. of tri. null space 4 6 8 10 12 14 16 18
Dim. of quad. null space 4 4 4 4 4 4 4 4
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Figure 10. Representative null space eigenmodes (arbitrarily scaled) for polynomial order P = 2 in a
triangular elements (top) in a quadrilateral elements (bottom).

gives a fixed null space of dimension 4 for the quadrilateral mesh considered. A representative
mode of the null space and the elemental derivatives when P = 2 are also shown in Figure 10.
We note that the null space is non-zero in the element with highest global number.

4.2. Condition number scaling

To complete the numerical investigation of the continuous and discontinuous Galerkin
formulations we consider the conditioning of both the matrices of the system and their Schur
complement. In all the following computations we have again considered the Laplacian operator
in the region 0 � x1, x2 � 1 with periodic boundary conditions. We numerically determined the
L2 condition number as the ratio of the maximum to minimum eigenvalues. We have excluded
the zero eigenvalue corresponding to the constant solution.
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As we have observed in Section 4.1, if stabilization is not applied to the DG method with
Bassi–Rebay fluxes, spurious modes exist due to the presence of a non-physical null space of
the discrete system. To suppress these spurious modes we can apply stabilization as discussed
in Section 3.2.2. We therefore start by considering the role of the stabilization factor � in
Equations (27) and (28) on the condition number of the system. In Figure 11 we show plots of
the L2 condition number of the full system as a function of the stabilization factor � for both
the Bassi–Rebay flux and the LDG flux where the direction normalization of Equation (30) has
been applied. In this test we divided the computational domain into four equispaced quadrilateral
elements. Similar trends were observed for a triangular discretization where each quadrilateral
region was subdivided into two triangular elements. Castillo [14] theoretically and numerically
analysed a range of DG method for different fluxes as a function of the stabilization factor
normalized by the mesh space h. Although this work did not consider Bassi–Rebay flux, it was
noted that the condition number should asymptotically vary linearly with condition number for
larger stabilization factors in the relatively similar interior penalty (IP) approach. This property
is observed for both fluxes considered in Figure 11. For the IP method he also found that the
condition number was inversely proportional to the stabilization factor for small values of �.
This property would also appear to be present in the Bassi–Rebay flux. Certainly we would
expect an increase in the condition number as the stabilization factor tends to zero and more
spurious modes of the Bassi–Rebay fluxes are introduced into the system.

However, in contrast to the findings of Castillo [14], we observe that for the normalized
direction LDG method the condition number is constant as the stabilization factor tends to
zero. If the direction is not normalized we observed in Section 4.1.2 that spurious modes can
enter the system and therefore we could expect an increase of the condition number for small
stabilization factors.

This observation appears to be consistent with observations made in [17, 18] where stabi-
lization is required in the weak enforcement of boundary conditions. As we are examining a
periodic domain and using the direction normalized LDG as presented, we have eliminated the
source of the conditioning problem, and hence see that the condition number does not grow as
the penalization is taken to zero. We have observed a similar behaviour when using Dirichlet
boundary conditions directly enforced through a global lifting of a known function satisfying
the boundary conditions.

In our next set of tests we consider the scaling of the L2 condition number as a function
of the characteristic h of the elemental regions, the aspect ratio of elemental regions and the
polynomial order applied within every element. We start by considering a series of hierarchical
meshes as shown in Figure 12. The computational domain is now sub-divided into 4, 16, 64
and 256 equal square elements as shown in Figures 12(a)–(d). To analyse the effect of the
aspect ratio of different meshes we have also used a series of meshes of quadrilateral elements
which are refined into the bottom left-hand corner as shown in Figures 12(e)–(h). The smallest
elements of these meshes correspond to the smallest elements of the uniformly discretized
cases. The meshes shown in Figures 12(e)–(h) have elements with maximum aspect ratios of
1, 2, 4 and 8, respectively.

Figures 13(a) and (b) show the L2 condition number of both the Bassi–Rebay flux and the
normalized direction LDG flux for polynomial orders in the range 1 �P � 5. In these plots
we have taken the size of the elements along each edge in Figures 12(a)–(d) as a measure of
the element spacing. Over the h-range considered we observe that the Bassi–Rebay flux scales
as O(h2) for linear polynomial orders but this rate is somewhat slower at higher polynomial
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(a) (b)

Figure 11. L2 condition number scaling for the stabilization factor � for polynomial orders of P = 2, 4
and 6 for the: (a) Bassi–Rebay flux and (b) the normalized direction LDG flux. The domain consists

of four equal r quadrilateral elements in 0 � x1, x2 � 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Computational domains in 0 � x1, x2 � 1 used for condition number tests. AR
denotes the maximum aspect ratio of the elements: (a) 2 × 2; (b) 4 × 4; (c) 4 × 4; (d) 16 × 16;

(e) AR = 1; (f ) AR = 2; (g) AR = 4; and (h) AR = 8.

orders. Somewhat more surprisingly we also observe that on these meshes the LDG flux at
a higher than linear polynomial order does not vary with h. For the form of expansion basis
presented in this work, a slower than logarithmic scaling with h has previously been observed
in the conditioning of the Schur complement system of the continuous Galerkin system [22].
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(a) (b)

Figure 13. L2 condition number scaling as a function of mesh spacing h for the full system using:
(a) Bassi–Rebay flux with � = 10; (b) the normalised direction LDG flux. The computational domain

adopted are shown in Figures 12(a)–(d).

(a) (b)

Figure 14. L2 condition number scaling as a function of combined mesh spacing h and aspect ratio
AR for the full system using: (a) Bassi–Rebay flux with � = 10; and (b) the normalized direction LDG

flux. The domain adopted are shown in Figures 12(e)–(h).

Figures 14(a) and (b) show a similar test to that shown in Figure 13 but on the non-uniform
meshes of Figures 12(e)–(h) and for 1 �P � 6. In this test we plot the growth of the condition
number as a function of the maximum aspect ratio (AR) of the mesh. We note however that the
smallest element size in the mesh is necessarily also modified as the aspect ratio is changed.
At higher polynomial orders the Bassi–Rebay flux demonstrates a linear growth with aspect
ratio. Similarly the LDG flux also demonstrates a linear growth rate with aspect ratio. This is
in contrast with the h-scaling tests.
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(a) (b)

Figure 15. L2 condition number scaling as a function of polynomial order for the full system and Schur
complements using: (a) Bassi–Rebay flux with � = 10; and (b) the normalized direction LDG flux.

The computational domain consisted of sixteen equal square elements in 0 � x1, x2 � 1.

In our final test we calculate the scaling of the L2 condition number as a function of
polynomial order on the 4 × 4 mesh of uniform quadrilateral regions shown in Figure 12(b).
The results of this test for both the full matrix system and the Schur complement system
obtained from static condensation is shown in Figure 15. Similar to the continuous Galerkin
formulation [22], we observe an O(P 4) scaling with polynomial order, P , of the L2 condition
number for the full system as opposed to an O(P 2) scaling for the Schur complement system.

5. EXAMPLES

To conclude our investigation we consider two elliptic problems. The solutions of the first has
smooth derivatives but that of the second has not.

In our first test case, shown in Figure 16, we consider an unstructured triangular discretization
around the British Isles. Within this computational domain we solve the Helmholtz problem
∇2u − 
u = f , with 
 = 1, exact Dirichlet boundary conditions and an exact solution

u(x1, x2) = sin

(
1

4�
√

(x1 − a)2 + (x2 − b)2

)

where the constants a and b have been chosen to centre the solution on London. Figure 16(b)
shows the H1 error of the numerical discretization as a function of polynomial order using a
standard continuous Galerkin (CG) formulation and a DG formulation using Bassi–Rebay (BR)
and LDG fluxes. A stabilization factor of � = 10 was used in the Bassi–Rebay formulation.
Static condensation was applied in the solution technique for all cases. On the semi-logarithmic
scale we observe that all solutions demonstrate an exponential convergence as a function of
polynomial order which is to be expected from this smooth solution. The LDG solution is
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(a) (b)

Figure 16. Helmholtz equation with an exact solution of the form u(x1, x2) = sin(1/4�√
(x1 − a)2 + (x2 − b)2) on an unstructured triangular mesh (a). The error for the continu-

ous Galerkin (CG) formulation and the DG formulation with Bassi–Rebay (BR) and LDG
fluxes are shown in (b) as a function of polynomial order in the H1 norm.

almost indistinguishable from the continuous Galerkin solution whilst the stabilized Bassi–
Rebay fluxes perform fractionally better. We note, however, that the LDG formulation contains
more degrees of freedom than the continuous Galerkin formulation due to the duplication of
element boundary degrees of freedom. Indeed the rank of the Schur complement system arising
from the static condensation in the LDG formulation will be exactly double the rank of that
corresponding to the continuous Galerkin formulation.

In the second test we consider a solution of the Laplace equation of the form u(r, �) =
r2/3 cos( 2

3 (�− �
4 )) in an ‘L’-shaped domain with Dirichlet boundary conditions. This domain is

shown in Figure 17 where the origin (r = 0) was located at the internal corner of the domain.
This solution satisfies Laplace’s equation but has singular derivatives at the origin. Figures
17(a)–(c) show the pointwise evaluation of |uxx + uyy | which should be zero and so acts as a
measure of the error of the numerical solution. Figure 17(a) shows the solution when using a
continuous Galerkin formulation whereas Figures 17(b) and (c) correspond to DG formulations
using the Bassi–Rebay and normalized direction LDG fluxes, respectively. In all these figures
the inset plot shows a close-up around the origin r = 0.

In the close-up region of Figure 17(a) we observe that the continuous Galerkin solution pri-
marily pollutes the regions immediately adjacent to the singular point (r = 0). Close inspection
of this figure does however suggest a mild influence in the next layer of elements which most
likely arises due to the larger stencil of the vertex modes. The influence of a larger stencil is
far more evident in Figure 17(b) where we show the DG solution using Bassi–Rebay fluxes.
Finally in Figure 17(c) we observe that the contours of |uxx + uyy | are smooth outside of the
region of elements immediately adjacent to the origin suggesting a smaller influence/pollution
of the singularity in the solution domain.

To quantify this visual inspection of the solution we can consider the convergence of the
solution as a function of polynomial order as shown in Figure 17(d). In this figure we show
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Figure 17. Solution to singular corner problem with solution u(r, �) = r2/3 cos(2/3(� − �/4)).
Top plots show the pointwise evaluation of |uxx + uyy | using: (a) continuous Galerkin
formulation; (b) DG formulation with Bassi–Rebay fluxes and � = 10; (c) DG formulation with
LDG fluxes; and plot (d) shows the H1 error of the three formulations in different regions of

the solution domain indicated by plot (e).

the H1 error evaluated using the elemental representation of the solution and its derivatives
in different sub-regions. The dashed–dotted lines in this plot show the error of the three
formulations over the whole solution domain. Within this region we observe that all schemes
behave in a similar manner presumably being dominated by the error associated with the
singularity at the origin. The solid lines show the convergence in a region which excludes
the elements immediately neighbouring the singular point as shown by the diagonally shaded
region in Figure 17(e) (calculated by excluding any elements with a vertex inside r<0.1). We
observe that there is a marked difference between the convergence of the three formulations.
The continuous Galerkin formulation starts with the highest errors at lower polynomial orders.
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The DG formulation with Bassi–Rebay fluxes performs slightly better at lower polynomial
orders, but its convergence rate with polynomial order is slower than the continuous Galerkin
formulation. At higher polynomial orders the error is highest for this scheme. The error of the
DG formulation with normalized direction LDG fluxes demonstrates a notable improvement
over the two previous schemes. At higher polynomial order of the error was almost three times
lower than that of the continuous Galerkin formulation suggesting a reduction in the pollution
error of this scheme. Finally, if we exclude the next layer of elements shown by the vertical
shading in Figure 17(e) we obtain the convergence trends shown by the dashed lines. In this
region the continuous Galerkin and DG scheme with normalized direction LDG fluxes perform
similarly. The DG scheme with Bassi–Rebay fluxes converges similarly at lower polynomial
orders but once again has a slow convergence rate and so a significant difference in the error
appears at higher polynomial orders.
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