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Abstract—Visualization has become an important component of the simulation pipeline, providing scientists and engineers a visual

intuition of their models. Simulations that make use of the high-order finite element method for spatial subdivision, however, present a

challenge to conventional isosurface visualization techniques. High-order finite element isosurfaces are often defined by basis

functions in reference space, which give rise to a world-space solution through a coordinate transformation, which does not necessarily

have a closed-form inverse. Therefore, world-space isosurface rendering methods such as marching cubes and ray tracing must

perform a nested root finding, which is computationally expensive. We thus propose visualizing these isosurfaces with a particle

system. We present a framework that allows particles to sample an isosurface in reference space, avoiding the costly inverse mapping

of positions from world space when evaluating the basis functions. The distribution of particles across the reference space isosurface is

controlled by geometric information from the world-space isosurface such as the surface gradient and curvature. The resulting particle

distributions can be distributed evenly or adapted to accommodate world-space surface features. This provides compact, efficient, and

accurate isosurface representations of these challenging data sets.

Index Terms—Particle systems, high-order finite elements, isosurface visualization.

Ç

1 INTRODUCTION

THE method of finite elements [14] is a common spatial
subdivision scheme used by scientists and engineers to

reduce large simulation domains to sets of small subdo-
mains over which physical simulations can be computed
robustly and efficiently. Although traditional finite element
methods utilize only low-order linear basis functions for
representing data over the elements, they provide consider-
able flexibility for handling complex geometries. The
geometric flexibility is aided by the transformation of
individual elements constructed as identical cubes in
reference space into unique world-space elements, which can
have not only rectangular faces, but also triangular faces. In
world space, the spatial extent of each element is defined by
characteristics of the domain and simulation, such as
boundary conditions and features of interest. The mapping
functions responsible for the transformations can distort the
elements by stretching, skewing, or even collapsing the
faces of the reference space cubes, as illustrated in Fig. 1.

A number of researchers have developed methods to
improve the convergence properties of finite elements
through the use of high-order functions for the representa-
tion of the data, as well as the element transformations.
Today, high-order finite element techniques have reached a
level of sophistication such that they are commonly applied
to a broad range of engineering problems [9], [17], [32].
Although there exist some high-order finite element

methods that do not rely on reference space transforma-
tions, the use of curvilinear coordinate transformations is of
increasing interest [15]. This paper is addressing the
problem of finite element methods that rely on higher
order (higher than linear) basis functions for the solutions,
as well as the coordinate transformations.

Conventional approaches to finite element isosurface
visualization assume that linear data representations can be
adapted to accommodate low-order finite elements. This
strategy, however, faces a number of challenges when
considering high-order data sets. First, the data must be
finely subsampled to ensure that features are adequately
captured with linear approximation schemes. Second, there
is, in general, no closed form expression for the inverse of
high-order mapping functions. Numerical inversion schemes
are required to transform world-space locations into the
reference space when sampling the data, creating a nested-
root-finding problem when locating an isosurface. Further-
more, determining which reference-space element in which
to invert a particular point in world space adds to the
computation.

Computational scientists who wish to visualize high-order
finite element solutions will require visualization algorithms
that are flexible enough to accommodate these constraints.
These algorithms will need to have variable degrees of
freedom so that users can easily control the trade-off between
visualization quality and speed. For efficiency, these compu-
tations must be locally adaptive, allowing computational
power to be applied to regions of the solutions that exhibit the
most complexity (that is, h-r adaptivity in finite element
terms). Furthermore, these algorithms will need to achieve
the appropriate balance of computations in world space,
where the metrics for adaptivity are defined, and reference
space, where there are closed-form expressions for the
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associated geometric quantities. To address these issues, we
are proposing an isosurface visualization technique that
relies on a particle system, exhibited in Fig. 2. The particles are
constrained to an isosurface and exert repulsive forces on
each other, resulting in even distributions across the surface.

Previously, we showed how these types of system can be
made robust and controllable [21]. Efficient visualization of
high-order finite element data, however, requires some novel
extensions of the particle system framework. First, to reduce
the number of repulsive force computations between
particles, we have redefined how adaptivity is added into
the system. We allow particles to maintain individual,
changeable radii, and adapt interparticle forces by scaling
the distance between particles based on the particles’ radii.
This mechanism maintains a limited number of influential
neighbors around a particle, even in areas of high adaptivity.
The adaptivity is based on curvature of the isosurface in
world space, which is a function of not only the high-order
basis functions, but also the mapping function. Our second
contribution is the derivation of isosurface curvature in the
presence of curvilinear coordinate transformations, includ-
ing the reduction of the isosurface Hessian from a rank-three
tensor contraction into a series of standard vector-matrix
computations. Third, we manipulate the particle positions in
reference space to avoid a numerical inversion of the coordinate
transformation while computing the particle interactions and
adaptivity in world coordinates.

The resulting particle system allows for a series of
forward computations to obtain desirable distributions of

samples over the world-space surface. The proposed
modifications, along with several optimization strategies,
create a system that produces accurate and compact point
samples of finite element isosurfaces. The resulting dis-
tribution of particles—a process that may take anywhere
from a few seconds to minutes—can be rendered inter-
actively as either simple point sprites or a water-tight splat
surface on the graphics processing unit (GPU), allowing a
scientist or engineer to quickly explore their data from any
camera location. Furthermore, the generality of this system
can be broadly applied to any type of data representation
that makes use of a reference space and a mapping function.

2 BACKGROUND

Until recently, much of the work in finite-element simula-
tions has focused on linear elements. In the simplest case
where the finite elements form a regular grid in world
space, conventional methods like marching cubes [19] and
direct volume rendering [20] are applicable. In general,
however, the finite elements produce an irregular grid in
world space that is incompatible with the assumptions
these methods make about the regularity of the grid. Early
work by Shirley and Tuchman [30] and Williams [39]
propose a volume rendering approach for tetrahedral
elements, and Bunyk et al. [3] propose a generalized ray-
casting algorithm for irregular grids. Doi and Koide [10]
present the Marching Tetrahedra method for triangulating
isosurfaces defined over tetrahedral elements. More re-
cently, work has moved the volume rendering [36], [4] and
isosurface generation [25], [23] algorithms onto the GPU to
obtain faster rendering speeds.

Applying these low-order linear methods to high-order
finite elements, however, presents several challenges. First,
high-order basis functions represent features in the data
with far fewer grid elements than an equivalent low-order
representation. Thus, visualization methods that rely on
linear interpolation must first finely subdivide the domain
to ensure that features in the data are not missed. This
increase in grid resolution can have an explosive effect on
not only the storage requirements for the visualization, but
also on the computation required to sufficiently sample the
elements.

The second problem stems from the need to compute an
inverse of the mapping function to evaluate the data in the
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Fig. 1. A 2D schematic of the finite element subdivision scheme. In

reference space, elements are defined as identical squares. These

squares are transformed into world space by a mapping function T that

can stretch, skew, shrink, or even collapse edges.

Fig. 2. An isosurface of a finite element fluid simulation pressure field sampled with a particle system. The color indicates the relative direction of the

surface normal at the particle (blue indicates outward and red indicates inward).



world space. Let F �ðuÞ be the functional representation of
the finite element solution, which is defined in the reference
space, and let T be the coordinate transformation that maps
a reference space point u into a world-space point x, that is,
T ðuÞ ¼ x. The world-space representation of the solution is
therefore F ðxÞ ¼ F �ðT�1ðxÞÞ. There is generally no closed
form expression for T�1, causing world-space evaluations
to require iterative numerical schemes for the computation
of u ¼ T�1ðxÞ. Thus, determining the location of isosurfaces
in high-order finite element data becomes a nested-root-
finding problem—F ðxÞ (and its derivatives) must be
iteratively evaluated to determine the position of the
isosurface, with each evaluation of F ðxÞ requiring an
iterative, numerical inversion of T .

There is yet one more challenge for the general problem
of visualizing high-order finite elements. The data and
coordinate transformations are valid for only a single
element and, in practice, another layer of computation is
required to determine which reference element contains the
point u ¼ T�1ðxÞ. Although efficient element lookups based
on regular grids [27], [11] or low-order curves [38] can be
applied to elements with planar or quadratic curved faces
respectively, there is no closed form solution for the general
problem. Spatial partitioning schemes can be utilized to
reduce the grid ambiguity to among a few elements [22],
but the inverse mapping u ¼ T�1ðxÞwill (generally) require
multiple iterations across multiple elements. The problem is
becoming increasingly more difficult as results from the
scientific computing literature extend the finite element
methodology to more general frameworks. For instance,
recent work by Hughes et al. [15] proposes spline-based
functions for finite elements, which produces yet another
class of curvilinear mappings between the reference and
world domains.

Adapting marching cubes to accommodate high-order
finite elements elucidates these three challenges. In Fig. 3,
we present the results of the isosurface extraction technique
applied to a sphere that is transformed through a 2� 2� 2
set of quadratic b-spline functions. To generate these
results, a regular world-space grid is first created. The
world-space location of each grid node is numerically
inverted within each potential element until the associated
reference space location is determined, and the basis
functions can be evaluated. Accurately finding the zeros

of the high-order data along the grid is then accomplished
via a root-trapping mechanism.

We have incorporated two different root-trapping meth-
ods into a marching cubes framework. The first is a grid
refinement strategy that uses an adaptive subdivision scheme
to be as efficient as possible, recursively subdividing only the
grid cells that contain zero crossings. Care has been taken in
the implementation of the subdivision scheme to ensure
coherence across neighboring cells, avoiding redundant
sampling of the data. The second root-trapping approach
uses the Newton-Raphson method along grid edges to
determine the zero crossings.

Ensuring that point samples of the isosurface—for any
sampling scheme—lie on the surface to within a small error
tolerance is important for generating accurate surface
approximations. In Figs. 3b, 3c, and 3d, the vertex locations
are computed using linear interpolation over progressively
more refined grids. These results indicate that using low-
order interpolation schemes requires a very finely sub-
divided grid to accurately determine the zeros of the data
and capture the geometry of the surface (Fig. 3d). In
Figs. 3e, 3f, and 3g, the vertex locations are computed using
a Newton-Raphson root-finding method. Although the
grids in these images are relatively coarse, the zeros of the
data are more accurately computed, generating more
precise approximations of the surface.

Although Fig. 3 illustrates that capturing the geometry of
high-order data is possible with low-order schemes, the
results come at the cost of lengthy compute times. The
computations are dominated by the large number of
mapping function evaluations, which we call forward
evaluations. The surfaces in Figs. 3 require a numerical
inversion of each grid node, and the surfaces in Figs. 3e, 3f,
and 3g also incur nested root-finding evaluations along the
grid edges. On a P4 3.2-GHz CPU with 2.0 Gbytes of
memory, Fig. 3b requires 6.7 seconds and 0.6 million
forward evaluations, Fig. 3c requires 25 seconds and
2.4 million forward evaluations, Fig. 3d requires 82 seconds
and 7.7 million forward evaluations, Fig. 3e requires
19 seconds and 1.7 million forward evaluations, Fig. 3f
requires 35 seconds and 3.2 million forward evaluations,
and Fig. 3g requires 73 seconds and 6.8 million forward
evaluations. It is interesting to note that Figs. 3e, 3f, and 3g
out perform Fig. 3d, indicating that root-finding along
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Fig. 3. Marching cubes surfaces of a sphere mapped through quadratic b-spline functions: (a) the transformed elements, (b) 5� 5� 13 grid after one
level of adaptive subdivision, requiring 6.7 seconds and 0.6 million forward evaluations, (c) 9� 9� 25 grid after two levels of adaptive subdivision,
requiring 25 seconds and 2.4 million forward evaluations, (d) 17� 17� 49 grid after three levels of adaptive subdivision, requiring 82 seconds and
7.7 million forward evaluations, (e) 5� 5� 13 grid with Newton-Rhapson root finding, requiring 19 seconds and 1.7 million forward evaluations,
(f) 7� 7� 17 grid with Newton-Rhapson root finding, requiring 35 seconds and 3.2 million forward evaluations, and (g) 9� 9� 25 grid with Newton-
Rhapson root finding, requiring 73 seconds and 6.8 million forward evaluations.



coarse grid edges is more efficient than linearly interpolat-
ing along refined grid edges.

Other researchers have also noted the challenges of
efficiently adapting low-order visualization methods to
high-order functions, and some work has been done to
specifically address the problem of visualizing high-order
finite element data. Wiley et al. [38], [37] formulate ray
casting for curved-quadratic elements, and Brasher and
Haimes [2] propose a GPU-based method for color mapping
cut planes of quadratic and cubic elements. A method to
subdivide elements containing high-order basis functions
so that low-order visualizing methods can be used is
proposed [28], [35]. Coppola et al. [6] address the issue of
vector visualization with high-order representations by
formulating the particle advection problem on high-order
basis functions. Similar to our framework, this work tracks
particle advection in the reference space to avoid the
inverse mapping problem. More recently, Nelson and Kirby
[22] present an algorithm for ray tracing high-order
spectral/hp elements. Their method uses a world-space
approximation of the composition of the coordinate
transformation and the reference space basis functions. It
assumes multilinear mappings (linear element boundaries
in world-space) and includes a quantification of the
approximation and root-finding error. They show that the
image-space method compares favorably with marching
cubes in compute time when the tolerances on surface
position are sufficiently high.

This work proposes the use of a particle system to sample
high-order finite element data. The literature on using
particle systems to represent and manipulate surfaces spans
more than a decade—here, we give only a brief summary.
The oriented particle system of Szeliski et al. [34], [33] builds
deformable surfaces with particle dynamics modeled from
the molecular dynamics literature. De Figueiredo et al. [8]
propose a polygonalization method that models particle
interactions with a mass-spring system. Building on these
ideas, Witkin and Heckbert [40] present a novel physically-
based system that uses repulsive particles to evenly sample
implicit surfaces for modeling and visualization. Several
works [13], [12], [31] describe modifications and applica-
tions of this method. Research on geometric adaptivity in
such particle systems [26], [7], [16] has shown that the
underlying formulation has limitations in this regard.
Recent work by Meyer et al. [21] describes a new class of
potential functions that provide more control over particle
density. This paper utilizes potential functions of the type
described in [21] to sample and render isosurfaces in high-
order finite element data.

3 PARTICLE SYSTEM FORMULATION

In this section, we provide the mathematic framework for

distributing particles adaptively across a finite element

isosurface. Our notation is given as follows: boldface

variables denote column vectors such as x ¼ ½x y z�T;

boldface subscripts denote partial derivatives of the func-

tion with respect to each component of the subscripted

column vector such as Fx ¼ ½@F@x @F
@y

@F
@z �

T; xi specifies the

position of the ith particle, and other nonbold subscripts

denote the evaluation of a scalar function at a specific

particle’s location such as Ei. We stray from this convention

only in (10), (11), (12), (13), (14), (15), (16), (17), and (18),

where we present the Einstein notation convention for our

derivations of the world-space geometry.

3.1 Particle Potentials

To distribute the particles across an isosurface, we use the
framework proposed in [21], which builds on the work of
Witkin and Heckbert [40]. In this framework, a set of
n particles are first constrained to a level set (isosurface) of
the function ðF ðxiÞ ¼ CÞ using a Newton-Raphson approx-
imation scheme for finding the roots of F , where C is the
isovalue for the surface of interest. For the rest of the
discussion, we assume, for simplicity, that C ¼ 0. The
particle positions xi are iteratively refined until all the
particles lie within an error threshold �T of the surface:

xi  xi � F ðxiÞ
FxðxiÞ

F>x ðxiÞ FxðxiÞ
; ð1Þ

where FxðxiÞ is the gradient of the implicit function at xi.
For each particle on the surface, we associate a

compact potential energy kernel, which decreases mono-
tonically with the distance from the particle—the results
in this paper use a modified cotangent energy function
[21]. These kernels give rise to a computation of the
energy at a particle, Ei, based on the euclidean distances
to the m neighboring particles:

Ei ¼
Xm

j¼1;j6¼i
Eij ¼

Xm
j¼1;j6¼i

E
jrijj
�

� �
; ð2Þ

where rij ¼ xi � xj, and � defines the extent of the kernel
such that when jrijj > �, Eij ¼ 0. Euclidean distance is a fast
approximation to the more accurate geodesic distance and
fails to cull spatially close neighbors that lie on adjacent
surfaces. To account for this problem, we discard potential
neighbors with normals that are more than a 90-degree
difference from the normal of the particle at xi.

The derivative of the energy at a particle with respect to
the particle’s position results in a repulsive force that
defines the velocity, vi, that moves the particle to a locally
lower energy state:

vi ¼ �
@Ei
@xi
¼ �

Xm
j¼1;j6¼i

@Eij
@jrijj

rij
jrijj

: ð3Þ

The particle positions are then updated using the projection
of the repulsive velocity onto the local tangent plane:

xi  xi þ I � FxðxiÞ F>x ðxiÞ
F>x ðxiÞ FxðxiÞ

� �
vi; ð4Þ

where I is the identity matrix. Equation (4) is the
Lagrangian formulation of the constrained optimization
that keeps particles on the zeroset of F . Movements in the
tangent plane, however, can push particles off the surface,
especially in areas of high curvature. Therefore, each
update must be followed with a reprojection to the surface
using (1) to ensure that the particles are within �T of the
surface. By iteratively moving particles along the potential
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energy gradients, the system distributes particles evenly
across the surface.

To increase the efficiency of the system when adapting
the distributions, we have modified the framework to scale
the distance between particles based on the local geometry of
the surface, instead of scaling the energy and force
functions. For instance, if we allow surface curvature to
increase the effective distance between particles, areas of
high curvature will have a higher density of particles. This
adaptivity mechanism maintains a small number of
influential neighbors around a particle even in regions of
high curvature—a distinct change in the particle system
framework—which allows for more effective optimization
strategies (to be discussed in Section 4.1). For results in this
paper, � ¼ 1, and the vector between two particles is

rij ¼ �ijðxi � xjÞ ¼ �rji: ð5Þ

With this formulation, when jrijj > 1, we have Eij ¼ 0, and
jvijj ¼ 0. Equation (5) also ensures that the energy and force
between two particles is symmetric, which is important for
stability in the system. The scaling factor � could be defined
as a function based on any geometric property of the
surface, and we have developed a formulation based on the
curvature magnitude, D (root sum of squares of the
principle curvatures):

�ij ¼ �ji ¼
1þ �Dij

s
2�

� �
s�

; ð6Þ

where s and � are user-defined variables that specify the
distance between particles on a planar surface and the
density of particles per unit angle over a curved surface,
respectively, and Dij is the average of the curvature
magnitudes at xi and xj. The principle curvatures are
computed analytically from the gradient and Hessian of the
implicit function, as described in [18]. The parameter � ¼
0:5= cosð�6Þ is derived from an ideal hexagonal packing of
particles where the region of influence of the energy kernel
at the center particle ends at the two ring of neighbors.

For surfaces that contain singularities, the curvature
magnitudes can become arbitrarily large at critical points
and cause extremely high densities of particles. To curb this
effect, a maximal bound can be placed on �ij. This
constraint still allows particles to get very close to
singularities, but does not guarantee that the critical point
will be exactly sampled.

To illustrate the adaptivity of the particle system, Fig. 4
presents three examples of particle distributions over a
quartic implicit function with varying values of the angular
density parameter, �.

3.2 Isosurface Geometry in Finite Elements

To adaptively distribute particles across a finite element
isosurface, we must formulate the gradient and Hessian of
the world-space implicit function, F , in terms of the
reference space specifications that are given by the finite
element basis and mapping functions. As mentioned in
Section 2, the implicit function representing the simulation
data, F � is defined over a set of finite elements in reference
space and is transformed into world space through a
mapping function T ðuÞ ¼ x. The gradient and Hessian of
the world-space implicit function are thus defined not only
by F �, but also by T and, therefore, T must be included in
all of the derivative calculations.

Used in the computation of the world-space gradient and
Hessian is the Jacobian of the mapping function, which
describes how the space around a reference space position
is stretched or squashed by the mapping function:

JðuÞ ¼ @T ðuÞ
@u

¼ @x

@u
¼

@x
@u

@x
@v

@x
@w

@y
@u

@y
@v

@y
@w

@z
@u

@z
@v

@z
@w

0
B@

1
CA: ð7Þ

Also, to simplify the following derivations, we denote the
inverse of the Jacobian as

K ¼ J�1 ð8Þ

and provide a linear algebra identity for a matrix M:

dM�1

dz
¼ �M�1 dM

dz
M�1; ð9Þ

where z denotes some Cartesian basis vector.
Formulating the expressions for the world-space gradi-

ent and Hessian requires meticulous derivations of the
derivatives of the coordinate transformation, T . Care must
be taken to correctly determine the order of the component
multiplications, as well as which vectors and matrices need
to be transposed. Furthermore, the derivation of the
Hessian includes a vector multiplication with a rank-three
tensor, which is the result of computing the second
derivative of the vector-valued coordinate transformation.
To clarify these derivations, we use the Einstein notation
convention, as described in [1]. Developed for dealing with
curved spaces in physics, Einstein notation identifies
relationships often hidden by conventional linear algebra
notation such as transposition and order of operations.

To begin, we define the world space as X, the reference
space as U , and the mapping function as T : U 7!X; let x 2
X and u 2 U . Using the Einstein notation, we define x ¼ xi
and u ¼ ui, utilizing upper indices for world-space compo-
nents and lower indices for reference space components.
The number of indices of a variable indicates the rank of the
tensor—vi is a rank-one tensor (or vector), Mij is a rank-two
tensor (or matrix), Tijk is a rank-three tensor, and so on. In
this convention, repeated indices in a term indicates a
summation over the range of index values. For example,

a> � b|fflffl{zfflffl}
vector

¼
X
i

aibi

|fflfflfflffl{zfflfflfflffl}
summation

¼ aibi|{z}
Einstein

: ð10Þ
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Fig. 4. The adaptivity of the particle system is modified with (a) � ¼ 0,

(b) � ¼ 7, and (c) � ¼ 15.



Parenthesis are also dropped on functional variables such
as from the basis functions and the mapping function:

F ðxÞ ¼ Fixi; ð11Þ

F �ðuÞ ¼ F �i ui; ð12Þ

T ðuÞ ¼ T ijuj ¼ xi: ð13Þ

For brevity, however, we will notate (11) and (12) as simply
F and F �, respectively, emphasizing the role of the
equations as scalar functions throughout the derivations.
Finally, Einstein notation also uses indices to represent
partial derivatives such as for the Jacobian of the mapping
function:

JðuÞ ¼ @

@uj
T ikuk ¼

@xi

@uj
¼ Jij : ð14Þ

The inverse of the Jacobian is then

Ki
j ¼ ðJijÞ

�1: ð15Þ

The world-space gradient, Fi, is

Fi ¼ @F

@xi
¼ @F

�

@uj

@uj
@xi
¼ F �j Ki

j: ð16Þ

The expression of the Hessian includes the derivative of the
inverse Jacobian which, using (9), is written

Ki
jk ¼

@ðJijÞ
�1

@uk
¼ �Kl

jJ
l
mkK

i
m: ð17Þ

Notice that the second derivative of the mapping function,

Jlmk, is a rank-three tensor. Using (16) and (17), the Hessian,

Fij, is defined as

@

@xi
@F

@xj

� �
¼ @

@uk

@F

@xj
@uk
@xi

� �
¼ F �lkK

j
l K

i
k � F �l Km

l J
m
knK

j
nK

i
k:

ð18Þ

By carefully matching Einstein notation indices of each
component in (16) and (18), the gradient and Hessian
expressions are reduced to a series of standard vector-
matrix operations. Introducing ½�j � j�� to express the con-
catenation of three column vectors into a matrix, the
expressions for the world-space gradient and Hessian in
standard notation are

Fx ¼ K>F �u; ð19Þ

Fxx ¼ ðF �uuKÞ
>K � F>x

@J

@u
jF>x

@J

@v
jF>x

@J

@w

� �
K

� �>
K: ð20Þ

The expressions conveyed in (19) and (20) allow us to
achieve world-space adaptivity using reference space
evaluations of the basis functions, mapping functions, and
their derivatives, along with any standard vector-matrix
library. This formulation has a general applicability and
could, for instance, be used to add curvature dependencies
in other applications that make use of reference space
regularity such as mesh generation [29].

3.3 Reference Space Particles

To avoid the computations associated with T�1, we have

developed a strategy that maintains particle positions in

reference space while controlling the particle distributions

with geometric information from the world space. This

strategy is similar to the guided search algorithm proposed

by Coppola et al. [6] for particle advection. Maintaining

reference space positions allows us to sample the basis

functions that define F � using closed form expressions.

Thus, the curvature calculations and projection of particles

onto the isosurface (1) can be computed directly. We ensure

that the particle distributions are even and adaptive in the

world space by using world-space positions (forward

mapping) when computing the repulsive force velocities

in (3). We then transform these velocities via the derivative

of the mapping function to obtain an approximate reference

space velocity, v�i :

v�i ¼ Kvi: ð21Þ

The reference space positions are then updated using (4)

with reference space components. We note that (21) is a

first-order approximation and thus assumes updates that

are small relative to the isosurface and the curvature of the

coordinate transformation. We are not interested in the

precise motion of particles but rather that they move to

lower energy states; thus, we adapt the time steps to

accommodate this first-order approximation, as will be

described in Section 4.
To effectively distribute particles in the reference domain,

particles must also be able to move from element to element

(Fig. 5). Finite element data sets typically contain reference

space information describing which elements abut one

another in the world space, as shown by the dashed lines in

Fig. 5. Because reference space elements are identical cubes,

we can easily determine when a particle’s positional update

causes it to leave an element, and we use the adjacency

information to compute the particle’s new element and new

position within that element. When a particle moves from one

element into the next, we use linear interpolation—based

upon the reference space coordinates of the adjacent ele-

ments’ shared world-space vertices—to determine the

particle’s location in the neighboring element’s local coordi-

nate system.
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Fig. 5. Particles move from element to element by utilizing neighboring

element information (dashed lines) and linear interpolation of the

reference space element vertices to determine the coordinates of the

particle in the neighboring element.



4 IMPLEMENTATION

For all of the results presented in this paper, we initialized
the system with several hundred particles at random
locations, evenly distributed among all finite elements.
The s and � parameters are user-defined, where s is in
world-space units. Also specified is an error tolerance, �T ,
for projecting the particles onto the isosurface—all of the
images in this paper were generated using �T ¼ 10�6. The
particles maintain reference space positions and corre-
sponding world-space positions, as well as a time step
parameter, �i, that is used in an adaptive gradient descent
algorithm described below.

First, the particles are projected onto the isosurface by
performing several iterations of (1). We have found that five
iterations is usually sufficient for moving particles to within
�T of the isovalue. Next, the system iterates using a Gauss-
Seidel updating scheme until the particle distribution
converges by repeating the following steps:

1. For each particle:

a. Compute vi and the current Ei by summing the
repulsive forces and energies of all the neigh-
boring particles in world space (see Section 4.1
for an optimization of this step). Transform the
velocity into reference space with (21).

b. Temporarily move the particle in reference
space with (4) using v�i ¼ �iv�i , then reproject
back onto the surface with (1). If the new
position is outside of the element, determine
which element the new position is in and
convert the position into the new local coordi-
nate system.

c. Compute Enew
i at the new location (by mapping

the new position into world space with T ). If
jxi � xnewi j > s, or Enew

i > Ei, or Fnew
i > �T , or

xnewi is outside of the simulation domain, set
�i ¼ 0:1�i and return to Step 1b. Otherwise,
update the particle’s position, and if this is the
first time through Step 1, set �i ¼ 10�i.

2. Decide whether the system is at a steady state. There
are numerous metrics to determine steady state, and
we have chosen to use the difference of the system
energy (the sum of the energy at all the particles)
from one iteration to the next. When the system
energy difference is less than a small fraction of the
total energy (we use 0.15 percent for the results
presented in this paper, although a range of values
would produce similar results), we deduce that
particles have reached a steady state. Otherwise,
repeat Step 1.

3. Check whether the configuration of particles is
desirable. We compare each particle’s energy against
an ideal energy, Eideal, which is defined by a
hexagonal packing of neighbors on a flat surface with
interparticle distances of s. We bias Ei with a random
value on the interval [0, 1] to eliminate mass splitting
or dying, then split particles with Ei < 0:35Eideal, and
delete particles withEi > 1:75Eideal. Alternatively, if a
constant number of particles is desired, the planar
separation variable s could be modified to move the

system energy toward the ideal system energy.
Although we have provided specific values for this
step, we have found in practice that varying the values
by up to 20 percent produces visually similar results,
although with different convergence times.

4. If the energy of the particles is acceptable, stop
iterating.

In our implementation of the proposed reference space
sampling method, we eliminate divisions by zero by adding
a small (machine precision) value to all denominators.

4.1 Computational Optimizations

We have implemented several strategies to increase the
computational efficiency of the distribution process. First
and foremost, any type of Lagrangian scheme suffers from
an inherent lack of explicit spatial relationships. In the case
of the particle system described in this paper, the problem
manifests in the computation of repulsive forces from local
particle interactions. Nominally, the particle-to-particle
interaction problem is OðN2Þ for each iteration. The use of
compact energy kernels, however, leaves the energy and
force computations null for all but a small subset of
neighboring particles. Thus, we have implemented a spatial
binning structure [7] that lessens the subset of potential
interactions. The size of the bins is based upon the
maximum possible extent of the energy kernel (which,
derived from (6), is s�), and each bin maintains a list of
resident particles. Neighboring particle queries for comput-
ing forces and energies is then reduced to computing
interactions with particles that reside in the 3� 3� 3 block
of bins surrounding the querying particle’s bin. As such,
every time a particle is moved in Step 1 above, the binning
structure particle lists are updated.

Although the binning structure dramatically decreases the
system convergence time, particles will still compute dis-
tances with many nonneighbor particles, especially as the
adaptivity of the system is increased (that is, for large values,
for �). By not allowing particles to move further than s in any
one iteration (Step 1b), however, the neighborhood config-
urations change very little from iteration to iteration. Taking
advantage of this observation, we store a list of neighbors
with each particle that is updated only after several iterations
(every five iterations for the results in this paper). Although
the lists may be out of date for intermediate iterations, the
iterative convergence method smooths out these errors. We
have found that this approach is particularly effective as the
system approaches a steady state and the particle neighbor-
hoods become stable. Storing the lists of neighbors typically
decreases the computation time by a factor of 2-3, and even
more so with increasing adaptivity.

We have also observed that the particle systems quickly
eliminate the high-frequency errors in their configurations
by taking large movements during the first few iterations,
followed by many iterations of small movements to
eliminate the low-frequency errors. To exploit this trend,
we have developed a hierarchical distribution mechanism.
We first distribute coarse-level particles across the system
using a large s value, then split each of these particles into
four evenly spaced particles and reduce s by half. This
process is repeated until s reaches the user defined value.
We have found that an initial value of s based on the
approximate size of the surface features works most
effectively.
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4.2 Rendering

Rendering the particle systems with oriented disks provides
the user with a visualization of accurate surface samples.
The disks allow the user to infer the topology of the surface,
aided by the ability to rotate and translate the surface in 3D.
However, the oriented disks cannot express subtle shading
cues or connectivity as effectively as rendering methods
that generate watertight surface visualizations.

Over the last several years, work on point set surfaces
has established points as a popular, and effective, geometric
primitive. One common approach for rendering point sets is
the splatting method, first introduced by Pfister et al. as
surfels [24], with numerous extensions for improving the
quality of the rendering [41], [42], as well as the speed [5].
Splatting entails an additive blend of oriented, alpha-
channel Gaussian kernels at each point, followed by a
normalization of each pixel’s color to ensure an even
intensity across the surface. The normals of the points can
also be included in the projection and blended to allow for
smooth shading of the surface. We have implemented the
basic splatting algorithm on the GPU, achieving interactive
rendering speeds. The adaptivity of the particle system
allows the splat surfaces to appear smooth with relatively
sparse point samples (sparse compared to typical point set
surfaces that contain millions of points).

4.3 Boundary Discontinuities

Surfaces defined over finite elements are usually guaran-
teed to be only C0 continuous at the element boundaries,
allowing for cusps on a surface in areas that are analytically
flat. This potentially results in lessened interparticle forces
due to the tangent plane projection of a particle’s
neighborhood force field. The iterative nature of the
convergence mechanism, however, smooths out this effect.

In practice, we have found the discontinuities present a
problem only when rendering the particles. The particles’
radii do not adapt to these discontinuous features, causing
artifacts to sometimes appear when disks or splats intersect
each other—Fig. 6 illustrates the phenomenon along
boundaries. To more accurately capture these surface
features, the particles can be adapted in (6) by not only
the curvature computed from the Hessian, but also by the
particles’ proximity to element boundaries. This adaptation
will not remove the visual presence of the cusps, but will
make the discontinuities appear smoother.

5 RESULTS AND DISCUSSION

We begin with a demonstration of the method on a curvilinear
mapping of a simple implicit function. Fig. 7 shows a
quadratic b-spline coordinate mapping function, which maps
a reference space sphere into a world-space teardrop,
introducing a curvature variation across the surface. Our
mathematical formulation of the world-space curvature
correctly accounts for the effects of the mapping function.

Fig. 8 demonstrates the particle system achieving an
even distribution on a sphere in the world space, despite the
irregular reference space geometry. Fig. 7 asserts that the
system can correctly adapt to the world-space curvature
introduced by the mapping function. All of these results are
produced by manipulating the positions of particles in the
reference space while computing interparticle distances and
curvatures using world-space geometries.

The particle system visualizations in Fig. 9 are generated
from the data set used in the marching cubes example
shown in Fig. 3. These examples are provided as a
comparison of what the particle system achieves in
approximately the same amount of time as marching cubes
with root finding. Using the same computing resources
specified in Section 2, Fig. 9a requires 16 seconds and
1.1 million forward evaluations, Fig. 9b requires 36 seconds
and 2.5 million forward evaluations, and Fig. 9c requires
70 seconds and 4.8 million forward evaluations. The particle
system is able to capture the sharp tips of the surface
faithfully due to the adaptivity mechanism, even at coarse
resolutions—this is a significant difference from the poly-
gonal surfaces. Furthermore, the splat renderings produce
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Fig. 6. Artifacts due to boundary discontinuities where (a) disks or

(b) splats intersect each other.

Fig. 7. (a) A sphere defined in reference space is mapped to (b) a

teardrop in world space (b). The mapping function induces a curvature

variation to the surface and the particles adapt accordingly.

Fig. 8. (b) The particle system converges to an even distribution in world

space regardless of (a) the shape of the surface in reference space.



much smoother watertight surface approximations than the
marching cubes results.

These results allow us to compare directly against
marching cubes, elucidating the advantage of the particle
system. First, notice that the particle system produces
higher quality results in similar amounts of time with fewer
forward evaluations (compare Figs. 3e, 3f, and 3g with
Fig. 9). This is in part due to marching cubes evaluating grid
nodes in regions where the surface does not exist but also
due to the numerous iterations at each grid intersection
point to determine the correct placement of the vertex, a
chore that consumes over half of the compute time. In
contrast, the particle system spends most computation time
evaluating the data (by these numbers, about 70 percent)
and little time in the overhead of the particle system, that is,
computing particle-particle interactions. These results, like
those described in the literature [22], demonstrate that
generating accurate visualizations of high-order data is
inherently expensive due to the cost of evaluating the high-
order solutions and coordinate transformations. By simul-
taneously finding the roots of F and distributing the surface
samples in a sensible way, the particle system makes very
effective use of these costly evaluations.

The ray tracing method described in [22] generates nicely
shaded and watertight images of high-order finite element
isosurfaces but with the image-space drawbacks inherent to
all ray tracing methods. Data exploration is computationally
expensive because each viewpoint requires the isosurface to
be resampled, and the computational cost is also associated
with the resolution of the resultant image. Furthermore, the
accuracy of the ray-isosurface intersections are related to
the degree of the polynomial used to approximate the
implicit function along the ray in world space. This
relationship scales with computation time as p2 to p3, where
p is the degree of the polynomial.

Conversely, the particle system allows users the freedom
to explore the data by interactively moving a distributed set
of particles in space. The accuracy of the particle positions
with respect to the isosurface are controlled on a per

particle basis by the error threshold, �T , and is independent
of the sampling density of the particle system, unlike the
ray tracing method. Thus, very coarse, fast distributions of
particles will be guaranteed to lie within �T of the isosur-
face. The accuracy of the visualization produced by the
particle system is instead related to the inferred topology of
the isosurface by the viewer. Course level distributions
provide insight to the gross geometry of the isosurface,
whereas finer distributions provide increasingly more
detailed representations of the underlying geometry.
Accuracy thus relates to the amount of detail that can be
visualized with a specific resolution of the particle
system—a relationship that scales linearly with time.

Figs. 10a and 10b illustrate the results of two different
resolutions of the particle system with 500 and 6,800 parti-
cles, respectively. In Fig. 10c, the particle distribution from
Fig. 10b has been rendered with a GPU-based splat
algorithm and is virtually indistinguishable from a ray
traced image at 512� 512 resolution. Moreover, the isosur-
face in Fig. 10c can be rotated at interactive frame rates
(greater than 30 frames per second). The GPU-based splat
algorithm runs on an Nvidia GeForce 6800 GT card with
Pixel Shader 3.0. The isosurfaces in Fig. 10 reside within a
single hexahedral element and are the zeroset of an eighth-
order polynomial implicit function. The 500 particles in
Fig. 10a took 4 seconds to converge, and the 6,800 particles
in Fig. 10b took 3 minutes to converge. The 512 � 512 ray
traced image with a 25th-order reconstruction polynomial
required 6 minutes to render. We note that the particle
system implementation uses the same finite element
evaluation code as the ray tracer, which is also the
implementation used for the results in [22]. We have found
that sampling the finite element implicit function takes, on
average, an order of magnitude longer than computing the
interparticle forces. This is consistent with our early
observation, that basis-element evaluations dominate the
computation.
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Fig. 9. The data set in Fig. 3 sampled with a particle system. The right
column images are splat renderings of the particles in the left column:
(a) 1,280 particles distributed in 16 seconds with 1.1 million forward
evaluations, (b) 3,232 particles distributed in 36 seconds with 2.5 million
forward evaluations, and (c) 8,647 particles distributed in 70 seconds
with 4.8 million forward evaluations.

Fig. 10. The zeroset of an eighth-order implicit function defined within a
single hexahedral element: (a) 500 particles, with a distribution time of
4 seconds, (b) 6,800 particles, with a distribution time of 3 minutes, and
(c) a GPU-based splat rendering of the 6,800 particles that is visually
indistinguishable from the 512 � 512 ray traced image in (d).



We demonstrate the capabilities of our proposed particle
system by visualizing pressure field isosurfaces of two
computational fluid dynamics (CFD) simulations. In the first
example, shown in Figs. 2, 11, and 12, we examine the wake of
a rotating canister traveling through an incompressible fluid.
The finite element mesh consists of 5,040 hexahedra and
696 prisms with the computational fluid mechanics problem

being solved with third-order polynomials per element. In
the second example, shown in Fig. 13, we visualize the flow
past a block with an array of splitter plates placed down-
stream of the block. This example contains 3,360 hexahedra
and 7,644 prisms, again with the computational fluid
mechanics problem being solved with third-order polyno-
mials per element. The color of the disks in Figs. 2, 11, and 13
indicates the relative direction of the surface normal at the
particle (blue indicates outward and red indicates inward). In
Fig. 12, color specifies the size of the particles.

6 CONCLUSIONS AND FUTURE WORK

We have presented a general and robust method for
visualizing isosurfaces of high-order finite element data sets
that would allow scientists and engineers to efficiently
explore simulation data. By sampling isosurfaces with a
particle system, the method produces compact and adaptive
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Fig. 11. The isosurface of pressure C ¼ 0 for a CFD simulation over
5,736 elements with a third-order polynomial implicit function in each
element: (a) schematic for the fluid simulation, (b) 5,000 particles,
55 seconds, (c) 13,000 particles, 3.4 minutes, (d) 28,000 particles,
15 minutes, and (e) 59,000 particles, 39 minutes.

Fig. 12. The distribution from Fig. 11d, color-mapped based on the radii

of the particles. The color bar provides the range of values of the radii.

Fig. 13. The isosurface of pressure C ¼ �0:1 for a CFD simulation over

11,004 elements with a third-order polynomial implicit function in each

element: (a) schematic for the fluid simulation and (b) 43,000 particles,

25 minutes.



visualizations that can be viewed at a variety of resolutions.
Furthermore, the proposed system is general and easily
adaptable to a broad range of finite element representations,
from low-order linear elements to complex spline-based
elements. We are planning to extend this work toward the
generation of more accurate finite element meshes.

There are numerous avenues to improve the proposed
system. Although we have presented several optimization
strategies, more work can be done to increase the efficiency
of the distribution process. First, the development of an
adaptive spatial binning structure would reduce the
number of potential neighbors at highly adaptive particles.
Second, further exploitation of the system’s tendency to
quickly eliminate high-frequency error in the distribution
process could be done by posing the system in a
hierarchical framework such as multigrid. These advance-
ments would help to enable visualization of dynamic data
sets, an avenue of work we are interested in pursuing.

As mentioned in Section 3.2, the discontinuities in the
derivatives at the element boundaries can cause features in
the surface that cannot be analytically detected through
computation of surface curvature. These undetectable fea-
tures will contain a very sparse sampling of particles, which
create artifacts when the particles are splat. One solution
would be to implement a more sophisticated splatting
algorithm that clips splats along these boundaries [43].
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[26] A. Rösch, M. Ruhl, and D. Saupe, “Interactive Visualization of
Implicit Surfaces with Singularities,” Proc. Eurographics Computer
Graphics Forum, vol. 16, no. 5, pp. 295-306, 1996.

[27] S.M. Rubin and T. Whitted, “A 3-Dimensional Representation for
Fast Rendering of Complex Scenes,” Proc. ACM SIGGRAPH ’80,
pp. 110-116, 1980.

[28] W.J. Schroeder, F. Bertel, M. Malaterre, D. Thompson, P.P. Pébay,
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