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Abstract. A postprocessing technique based on negative order norm estimates for the discontin-
uous Galerkin methods was previously introduced by Cockburn, Luskin, Shu, and Süli [Proceedings
of the International Symposium on Discontinuous Galerkin Methods, Springer, New York, pp. 291–
300; Math. Comput., 72 (2003), pp. 577–606]. The postprocessor allows improvement in accuracy of
the discontinuous Galerkin method for time-dependent linear hyperbolic equations from order k+1
to order 2k+1 over a uniform mesh. Assumptions on the convolution kernel along with uniformity
in mesh size give a local translation invariant postprocessor that allows for simple implementation
using small matrix-vector multiplications. In this paper, we present two alternatives for extending
this postprocessing technique to include smoothly varying meshes. The first method uses a simple
local L2-projection of the smoothly varying mesh to a locally uniform mesh and uses this projected
solution to compute the postprocessed solution. By using this local L2-projection, recalculating the
convolution kernel for every element can be avoided, and 2k+1 order accuracy of the postprocessed
solution can be achieved. The second method uses the idea of characteristic length based upon the
largest element size for the scaling of the postprocessing kernel. These two methods, local projection
and characteristic length, are also applied to approximations over a mesh with elements that vary in
size randomly. We discuss the computational issues in using these two techniques and demonstrate
numerically that we obtain the 2k+1 order of accuracy for the smoothly varying meshes, and that
although the 2k+1 order of accuracy is not fully realized for random meshes, there is significant
improvement in the L2-errors.
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1. Introduction. A postprocessing technique based on negative order norm es-
timates for the discontinuous Galerkin methods was previously introduced by Cock-
burn, Luskin, Shu, and Süli [4, 5]. The postprocessor allows improvement in accuracy
of the discontinuous Galerkin method for time-dependent linear hyperbolic equations
from order k+1 to order 2k+1 over a uniform mesh, where k is the largest degree
polynomial used in the approximation. This improvement in accuracy was extended
to include superconvergence of the derivatives, two space dimensions, multi-domains
with different mesh sizes, and variable and discontinuous coefficient linear hyperbolic
equations [13]. Postprocessing near a computational domain boundary, discontinuity,
or change in mesh size was addressed in [12]. The uniform mesh assumption along
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with assumptions on the convolution kernel gives the postprocessor a local translation
invariant form and thus allows for simple implementation using small matrix-vector
multiplications. To postprocess one element, the matrix size is (2k′ + 1) × (2k′ + 1),
where k′ = � 3k+1

2 �. For a nonuniform mesh assumption, the size of the matrix could
easily grow depending upon the size of the current element being postprocessed along
with the surrounding elements used to calculate the postprocessed solution. In this pa-
per, an extension of this postprocessing technique to include meshes with element size
that vary smoothly, where the mesh is defined by a continuous function, is addressed
by two techniques. In the first technique, we perform a simple local L2-projection
of the smoothly varying or nonuniform mesh to a uniform mesh containing (2k′ + 1)
elements of size �xi for the postprocessed solution. In the second method, a charac-
teristic length based upon the size of the largest element over the smoothly varying
mesh for the scaling of the postprocessing kernel is used. Both of these techniques
allow for avoiding an extension of the support of the postprocessor, and 2k+1 or-
der accuracy of the postprocessed solution can be achieved. These methods are also
applied to approximations over a random mesh. We demonstrate numerically that
although the 2k+1 order of accuracy is not fully realized for a random mesh, there is
significant improvement in the L2-errors using both methods.

1.1. The discontinuous Galerkin method. Details of the discontinuous
Galerkin method for solving hyperbolic conservation laws can be found in the se-
ries of papers of Cockburn and coworkers [7, 6, 3, 2, 8], the lecture notes [1], and the
review paper [9]. In this paper, linear hyperbolic equations of the form

ut + (au)x = 0, t ≥ 0,(1.1)

u(x, 0) = u0(x),

as well as the two-dimensional (2D) equivalent are considered. The basis for the
approximation space, Vh, consists of piecewise polynomials of degree less than or equal
to k, where k+1 is the order of accuracy of the approximation. For the numerical
studies included in this paper, the basis is taken to be the monomials, ξi = x−xi

�xi
, on the

interval Ii = (xi − �xi

2 , xi + �xi

2 ), where �xi is the element size. The approximation
is based on a weak formulation of (1.1):∫

Ii

utvdx =

∫
Ii

au vxdx− (au)i+1/2vi+1/2 + (au)i−1/2vi−1/2

for all smooth functions v. The numerical scheme is then given by: Find uh(·, t) ∈ Vh

such that

(1.2)

∫
Ii

(uh)tvdx =

∫
Ii

auh vxdx−a(x−
i+1/2, t)ûi+1/2v

−
i+1/2+a(x−

i−1/2, t)ûi−1/2v
+
i−1/2

for all test functions v ∈ Vh, where the “numerical flux” ûi±1/2 = uh(x−
i±1/2, t) is

chosen to be an upwind monotone flux and v is taken from inside the cell. The third
order strong stability preserving total variation diminishing (SSP TVD) Runge–Kutta
method is used for the time discretization [14, 10, 11], and the time step is taken so
that spatial errors dominate.

1.2. The postprocessor. A brief review of the postprocessing technique is pre-
sented below. Details of the postprocessor implemented in this paper can be found in
[4, 5, 13, 12].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

274 S. CURTIS, R. M. KIRBY, J. K. RYAN, AND C.-W. SHU

The postprocessing is performed only at the final time, T, and is given by

(1.3) u∗(x) =
1

h

∫ ∞

−∞
K2(k+1),k+1

(
y − x

h

)
uh(y, T ) dy,

where K2(k+1),k+1 is the convolution kernel; h = �xi, i = 1, . . . , N , represents the
uniform element size; and uh(y, T ) is the discontinuous Galerkin approximation given
at the final time T. Notice that the postprocessed solution, u∗(x), is a piecewise
polynomial of degree 2k+1 for the discontinuous Galerkin solution, uh(x, T ), using
P
k elements. The form of K2(k+1),k+1 for the discontinuous Galerkin approximation

using P
k elements in one dimension is

(1.4) K2(k+1),k+1(x) =

k∑
γ=−k

c2(k+1),k+1
γ ψ(k+1)(x− γ),

where ψ(1) = χ(−1/2,1/2) and ψ(n) = ψ(n−1)∗χ(−1/2,1/2) for n ≥ 2 and c
2(k+1),k+1
γ ∈ R.

It is important to emphasize that the uniform mesh assumption gives the kernel a
particularly simple form that allows for the translation invariance of the postprocessor.
The kernel also uses information only from its nearest element neighbors. This kernel
could be re-evaluated for a nonuniform mesh assumption, but then the computational
complexity of implementing the postprocessor would increase. For example, using the
uniform mesh assumption, the exact evaluation of u∗(x) is done using small matrix-
vector multiplications,

u∗(x) =

k′∑
j=−k′

k∑
l=0

u
(l)
i+j(T )C(j, l, k, x),(1.5)

for x ∈ Ii, where k′ = �(3k + 1)/2�, C(j, l, k, x) is a polynomial of degree 2k+1, and

u
(l)
i+j(T ) are the coefficients in the discontinuous Galerkin approximation at the final

time. The coefficients of the postprocessing matrix are given by

(1.6) C(j, l, k, x) =
1

h

k∑
γ=−k

c2(k+1),k+1
γ

∫
Ii+j

ψ(k+1)

(
y − x

h
− γ

)
φ

(l)
i+j(y) dy,

where φ
(l)
i+j(y) represents the basis of the approximation. The application of the post-

processing step is done only at the final time, after the numerical solution has been
computed, or whenever increased accuracy or regularity is needed as in visualiza-
tion. If we choose to evaluate the postprocessed solution at specific points within an
element, such as the Gauss–Legendre points, then we reduce the complexity to a post-
processing matrix of numbers that we can store for future use. This postprocessing
matrix, C(j, l, k, x), needs to be computed only once.

This paper is organized as follows: section 2 will present extensions of this post-
processing technique to smoothly varying and nonuniform meshes. These extensions,
an L2-projection as well as a characteristic length, will be discussed along with com-
putational considerations. Numerical examples of the effectiveness of this local L2-
projection are presented in section 3. We summarize the material in section 4.

2. Extending the postprocessor to smoothly varying meshes. One of the
basic assumptions in the current implementation of the postprocessor is that it is ap-
plied to an approximation over a uniform mesh. This implementation assumption can
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be restrictive for many applications. However, the assumption that the postprocess-
ing is performed over a locally uniform mesh in order to obtain 2k+1 convergence
gives the postprocessor its translation invariance, which makes the postprocessor a
local operation. For general triangulations, even though the solution is still supercon-
vergent in the negative order norm, the postprocessor to extract the optimal 2k+1
convergence rate is no longer local. We wish to take advantage of the local feature
captured by the uniform mesh assumption and try to capture the 2k+1 order accu-
racy for nonuniform but smooth meshes. In this paper, we propose two strategies
for postprocessing over nonuniform meshes. The first idea uses a local L2-projection
to a locally uniform mesh. The second method uses a characteristic length for the
B-splines of the postprocessor. Before discussing these two techniques, we discuss
postprocessing for a nonuniform mesh.

If we write the postprocessed solution in a nonuniform mesh form for the basis of
the approximation being the monomials, we have

u∗(x) =
1

�xi

∑
j

k∑
l=0

u
(l)
i+j(T )

k∑
γ=−k

c2(k+1),k+1
γ

∫
Ii+j

ψ(k+1)

(
y − x

�xi
− γ

)(
y − xi+j

�xi+j

)l

dy,

where j indicates the cells that fall within the support of the postprocessor, which
may no longer be symmetric with respect to the element being postprocessed. This
integral is simplified when there is a uniform mesh assumption using the change of
variables, η = y−x

h , where h was the size of the uniform mesh elements. Now, we

choose similarly, η = y−x
�xi

, for postprocessing element i. This change of variables
results in

u∗(x) =
∑
j

k∑
l=0

u
(l)
i+j(T )

k∑
γ=−k

c2(k+1),k+1
γ(2.1)

∫
y=Ii+j

ψ(k+1) (η − γ)

(
x− xi+j

�xi+j
+

�xi

�xi+j
η

)l

dy.

Notice that the postprocessing coefficients now depend on the mesh size of those el-
ements within the support of the postprocessor, thus requiring the postprocessing
coefficients to be recomputed for each element. We wish to avoid this recomputa-
tion and take advantage of the small precomputed matrix-vector multiplications the
uniform mesh assumption provides. We consider two ideas below.

2.1. Extension via local L2-projections. The first method that we imple-
ment to avoid recomputing the postprocessing matrix coefficients involves a local L2-
projection of the mesh to a uniform mesh and an application of the postprocessor to
the projected coefficients. If the mesh is defined by a continuous function of a uni-
form mesh, we can still reduce oscillations in the errors for the discontinuous Galerkin
method and obtain 2k+1 order accuracy.

Assume we are postprocessing element Ii = (xi − �xi

2 , xi + �xi

2 ). We project the
approximation coefficients to a locally uniform mesh of size h = �xi (see Figure 1).

Let us denote our original nonuniform mesh by X. To create the approximation
that will allow us to use the uniform mesh postprocessor, we proceed in the following
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Fig. 1. Diagram illustrating the projection from the nonuniform mesh to the locally uniform
mesh. ◦ indicates the created locally uniform mesh for postprocessing element Ij onto which we
project the approximation.

Fig. 2. Diagram illustrating the projection from the nonuniform mesh to the locally uniform
mesh for 2D approximations. ◦ indicates the created locally uniform mesh for postprocessing element
Ii,j onto which we project the approximation.

manner: First, create a locally uniform mesh of 2k′+1 elements, k′ = �(3k + 1)/2�,
of size h = �xi, and denote this mesh by Yi. Next, identify which elements from
the original mesh fall within the support of the cell being postprocessed. Project the
approximation at the final time, uh(x, T ), to the locally uniform mesh, Yi, for all x
in the postprocessing region (see Figure 1 for 1D approximations and Figure 2 for
2D approximations). Call this projection un(x, T ). We then use these coefficients of
the projected solution to find the postprocessed solution on element Ii. That is, the
postprocessed solution is now given by

u∗(x) =

k′∑
j=−k′

k∑
l=0

u(l)
n(i+j)

(T )C(j, l, k, x).

We emphasize that with this implementation, the postprocessing matrix does not
change; only the vector that multiplies the postprocessing matrix changes. That is,
we multiply the matrix C by the coefficients obtained from the local L2-projection,
un, instead of the coefficients from the approximation, uh.
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2.2. Extension via characteristic length. For this implementation, we forgo
the extra computation required to perform the local L2-projections and instead use
a characteristic length based on the largest element size to scale the B-splines. This
idea for using a characteristic length is to ensure enough information is captured
from neighboring elements to perform the postprocessing for all elements. Using this
characteristic length idea, we can write the postprocessed solution as

u∗(x) =
1

L

∑
j

k∑
l=0

u
(l)
i+j(T )

k∑
γ=−k

c2(k+1),k+1
γ

×
∫
Ii+j

ψ(k+1)

(
y − x

L
− γ

)(
y − xi+j

�xi+j

)l

dy,

where L is the characteristic length of the B-spline and the ith element is the current
element being postprocessed. Using a characteristic length that is equal to the largest
element size (i.e., L = max�xi, i = 1, . . . , N) guarantees that the support of the
postprocessor is wide enough for any element being postprocessed. Small elements
contain more information on the approximation in terms of element size and hence
require only small kernels. Large elements contain less information and require the
convolution kernel to be larger. In this way, we obtain a sufficiently large kernel for
postprocessing large elements and a larger-than-necessary kernel when postprocess-
ing small elements. Although we cannot provably maintain this order of accuracy,
we show computationally that for coarse meshes we can obtain 2k+1 order of ac-
curacy. However, as we discuss below, for certain cases this may be more efficient
computationally than the previous method.

2.3. Computational considerations. Here we briefly discuss the computa-
tional considerations of implementing both methods. First, we note a few things
about the convolution kernel used in the postprocessing solution:

1. The mesh spacing enters into the scaling of the B-spline functions.
2. The polynomial element order determines the order of the B-spline used in

the convolution kernel as well as the number of linear combinations of B-splines that
are to be used.

In the uniform mesh case, postprocessing of the approximation over the entire
domain can be constructed as a matrix-vector multiply (as well as postprocessing over
one element). Since the postprocessing only increases the order per element (and does
not change the spatial configuration of the mesh), one can envisage postprocessing as
being the following operation:

u∗ = C ∗ uh,

where u∗ is a vector containing the new modal degrees of freedom per element (for the
postprocessed solution), C is the postprocessing matrix with the precomputed convo-
lution operator, and uh consists of a vector of modes of the original approximation.

Consider a one-dimensional (1D) example. Suppose we have a mesh consisting of
N elements and use a kth-degree polynomial approximation on each element. Then
the total number of entries in uh will be N ∗ (k+1). The total number of entries in u∗

will be N ∗ (2k + 1). C will be a linear operator of size (N ∗ (2k + 1))× (N ∗ (k + 1)).
Because of the local nature of the postprocessor, the matrix-vector multiply above

is not O(N2) operations—it scales as O(MN), where M is a number not dependent
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on N but dependent on the polynomial order per element. Note that in the uniform
mesh case M is not dependent on the mesh size. Regardless of the element size, the
number of neighboring elements used in constructing the kernel is the same.

In general, M � N, and hence the local postprocessing takes O(N) operations
to convert the entire discontinuous Galerkin approximation.

Note that the matrix C is dependent on the mesh (element configuration) and
the polynomial order per element, and not on the solution. Hence, given a particular
mesh and polynomial order, one can create C a priori.

The discussion above assumes that one wants to postprocess the discontinuous
Galerkin approximation over the entire domain. However, in some cases it may only
be necessary to postprocess at a finite number of points, such as in the computation of
streamlines. In this case, the operation count effectively is the same as a vector dot-
product where the scaling is O(M), where M is a number dependent on the extent of
the local filter. Note that, unlike the above procedure, the coefficients needed for this
“on the fly” postprocessing are not known a priori—they must be tabulated based
upon the evaluation point of interest.

In the nonuniform case, we are exploring two options:
1. local L2-projection, and
2. characteristic length.

In both of these cases—if one wants to postprocess the discontinuous Galerkin ap-
proximation over the entire domain, a formulation as mentioned above can be used.
In the local L2-projection case, the matrix C will consist of both the local projection
and the postprocessing. However, there will be differences in the computational cost
and storage.

The L2-projection method will require fewer flops in general than the character-
istic length formulation (based upon the largest element). This is because, in the case
of the postprocessing of a small element, the L2-projection is to a small number of
elements, and hence has less (spatial) extent. The discrepancy in the flop count per
element is a function of the element size discrepancy (i.e., if a mesh contains very
large elements and very small elements, the characteristic length concept will always
use large extent and hence use more flops). It should be noted, however, that the
algorithmic scaling is still O(N) for both algorithms. The additional flops for the
characteristic length formulation of a global system will not be significant.

When accomplishing evaluation of individual points (i.e., not postprocessing the
entire domain but rather the DG approximation at specific points), the characteristic
length procedure may require fewer flops, as it does not require the projection of the
field. There is a break-even point as to which method wins, depending on the ratio of
maximum element size to minimum element size. If the ratio of maximum to minimum
element size is very large, the L2-projection will win (as the cost of the L2-projection
will be balanced by the number of elements that are involved). If the ratio of element
sizes is not large, the characteristic length will win in terms of computational cost.

3. Numerical examples. In this section numerical examples demonstrate the
effectiveness of the two methods, local L2-projection and characteristic length based
upon the size of the largest element, at improving the errors in the approximation. We
numerically demonstrate that for a mesh defined by an analytic function we are able
to increase the order of accuracy of the discontinuous Galerkin solution from k+1 to
2k+1 and obtain improvement in the errors for the approximation over random mesh.
To further simplify the application of the postprocessor, we neglect the use of one-
sided or partially one-sided postprocessing by assuming periodic boundary conditions.
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Table 1

The L2-approximation level errors and order of accuracy for u(x) = sin(x) for piecewise lin-
ear, quadratic, and cubic polynomials. Results are shown for before and after postprocessing for
the smoothly varying mesh defined by x = ξ + b sin(ξ), where ξ is the uniform mesh variable.
L2-projection (L2P) versus characteristic length (CL) using largest element size. DG stands for
discontinuous Galerkin.

dg l2p cl

N L2-error Order L2-error Order L2-error Order

P
1

10 1.5408E-02 — 4.2732E-02 — 5.4817E-03 —
20 3.9029E-03 1.98 2.2069E-04 3.86 3.9910E-04 3.78
40 9.7975E-04 1.99 1.5756E-05 3.80 3.6183E-05 3.46
60 4.3578E-04 2.00 3.5240E-06 3.69 1.2661E-05 2.59
80 2.4519E-04 2.00 1.2682E-06 3.55 6.7321E-06 2.20
100 1.5694E-04 2.00 5.9011E-07 3.43 4.2358E-06 2.08

P
2

10 1.2175E-03 — 6.1679E-04 — 6.87657E-04 —
20 1.5490E-04 2.97 1.0484E-05 5.88 2.40147E-05 4.84
40 1.9448E-05 2.99 1.6048E-07 6.03 3.97387E-07 5.92
60 5.7672E-06 3.00 1.3538E-08 6.10 3.58077E-08 5.94
80 2.4337E-06 3.00 2.3281E-09 6.12 6.85311E-09 5.75
100 1.2462E-06 3.00 5.9596E-10 6.11 2.15325E-09 5.19

P
3

20 3.5540E-06 — 6.3206E-07 — 1.62783E-06 —
40 2.2351E-07 3.99 2.6035E-09 7.92 6.90137E-09 7.88
60 4.4200E-08 4.00 1.0506E-10 7.92 2.73896E-10 7.96
80 1.3991E-08 4.00 1.0965E-11 7.86 2.79935E-11 7.93
100 5.7317E-09 4.00 1.9409E-12 7.76 5.07763E-12 7.65

The L2-errors, computed using a six-point Gauss quadrature, for the discontinuous
Galerkin solution as well as the postprocessed solution are given for both methods.
We note that we use a mesh size variation of 50% in all examples. Similar results are
obtained for mesh size variations ranging from 10–90%.

Example 1 (1D approximation level errors). To first test the effectiveness of the
nonuniform mesh postprocessor we examine the L2-projection of the function

u(x) = sin(x), x ∈ (0, 2π),

to smoothly varying and randomly varying meshes. In all examples, the smoothly
varying mesh is defined by x = ξ + 1

2 sin ξ, so that the element sizes vary by at
most 50% (or one-half) from each other. As shown in Table 1, the k+1 order of
accuracy is improved to better than 2k+1 with both the local L2-projection used
before the postprocessor and the characteristic length postprocessing. The errors for
the local L2-projection over a smoothly varying mesh are slightly better than that of
the characteristic length. These methods were also applied to a mesh of randomly
varying mesh size (up to 50%), as seen in Table 2. For a randomly varying mesh size
both methods again improve the errors; however, this is without order improvement.
The characteristic length postprocessing provides slightly better results than the local
L2-projection. For the smoothly varying mesh, the plots of the errors show that most
of the oscillations from the discontinuous Galerkin solution are reduced and there
is order improvement. The postprocessing only mildly improves the errors for the
randomly varying mesh, but again we note the improvement in the error numbers
(see Figure 3 and Table 2).
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Table 2

The L2-approximation level errors and order of accuracy for u(x) = sin(x). Results are shown
for before and after postprocessing for the randomly varying mesh. L2-projection versus character-
istic length using largest element size. (Abbreviations as in Table 1.)

dg l2p cl

N L2-error Order L2-error Order L2-error Order

P
1

10 1.3497E-02 — 2.6845E-03 — 3.92033E-03 —
20 2.9586E-03 2.19 2.5385E-04 3.40 2.96326E-04 3.73
40 7.8404E-04 1.92 1.0193E-04 1.32 7.17296E-05 2.05
60 3.3135E-04 2.12 3.6936E-05 2.50 2.62094E-05 2.48
80 1.8848E-04 1.96 2.2705E-05 1.69 1.53670E-05 1.86
100 1.2365E-04 1.89 1.7024E-05 1.29 9.84808E-06 1.99

P
2

10 5.9665E-04 — 4.0600E-04 — 6.87657E-04 —
20 9.0912E-05 2.71 5.4703E-06 6.21 1.20052E-05 5.84
40 1.1331E-05 3.00 4.2420E-07 3.69 2.98438E-07 5.33
60 3.5481E-06 2.86 1.4570E-07 2.64 7.65188E-08 3.36
80 1.4619E-06 3.08 5.1184E-08 3.64 2.97707E-08 3.28
100 7.9487E-07 2.73 3.9110E-08 1.21 1.53304E-08 2.97

P
3

20 1.9964E-06 — 2.0545E-07 — 6.37260E-07 —
40 1.5233E-07 3.71 3.2787E-09 5.97 3.11111E-09 7.68
60 2.6092E-08 4.35 4.0221E-10 5.17 1.48046E-10 7.51
80 8.5628E-09 3.87 1.5402E-10 3.34 3.17030E-11 5.36
100 3.7721E-09 6.67 7.3011E-11 3.35 1.20790E-11 4.32

Example 2 (1D linear convection equation). In this case, we consider the 1D
linear convection equation

ut + ux = 0,(3.1)

u(x, 0) = sin(x)

for x ∈ (0, 2π) and T = 12.5 as in [5]. The error results are shown in Tables 3 and 4.
For this equation, the smoothly varying mesh produces 2k+1 order accuracy in the
postprocessed solution using the L2-projection combined with the postprocessor and
will at least initially show order improvement for the nonuniform postprocessing using
characteristic length. For the smoothly varying mesh (Figure 4), the oscillations in
the discontinuous Galerkin method are clearly reduced, and there is order improve-
ment. Although the order of accuracy is not clear for the mesh containing elements
of randomly varying sizes (Table 4), there is significant improvement in the errors.

Example 3 (1D system). In this example, the local L2-projection combined with
the postprocessor is tested on the wave equation written as a 1D system,

(3.2)

(
u
v

)
t

+

(
0 1
1 0

)(
u
v

)
x

=

(
0
0

)
,

where x ∈ (0, 2π) and T = 12.5 as in [4]. The initial condition is u(x, 0) = sin(x)
and v(x, 0) = 0. The L2-errors for the smooth and random mesh case are shown in
Tables 5 and 6. The error results are similar to those in Example 2. That is, for a
mesh defined by an analytic function, we obtain order improvement, improvement in
errors, and a reduction of oscillations. For the mesh with elements of random size, we
obtain improvement in the error numbers.
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Fig. 3. Pointwise errors in log scale for the L2 approximation of u(x) = sin(x) for smoothly
varying (top) and random (bottom) meshes, where the smoothly varying mesh is defined by x =
ξ + b sin(ξ) with b = 0.5 and x ∈ (0, 2π).
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Table 3

The L2-errors and order of accuracy for the solution to ut + ux = 0 with initial condition
u(x) = sin(x). Results are shown for before and after postprocessing for the smoothly varying mesh
defined by x = ξ+b sin(ξ), where ξ is the uniform mesh variable. L2-projection versus characteristic
length using largest element size. (Abbreviations as in Table 1.)

dg l2p cl

N L2-error Order L2-error Order L2-error Order

P
1

10 5.3634E-02 — 5.0774E-02 — 5.36946E-02 —
20 9.0628E-03 2.57 6.7109E-03 2.92 6.96207E-03 2.95
40 1.7995E-03 2.33 8.4615E-04 2.99 8.63550E-04 3.01
60 7.5280E-04 2.15 2.5080E-04 3.00 2.54640E-04 3.01
80 4.1368E-04 2.08 1.0578E-04 3.00 1.07232E-04 3.01
100 2.6179E-04 2.05 5.4140E-05 3.00 5.49007E-05 3.00

P
2

10 1.9174E-03 — 9.2349E-04 — 8.71056E-04 —
20 2.4012E-04 3.00 2.1026E-05 5.46 3.59106E-05 4.60
40 3.0109E-05 3.00 5.1198E-07 5.36 7.75477E-07 5.53
60 8.9282E-06 3.00 6.1014E-08 5.25 8.61597E-08 5.42
80 3.7677E-06 3.00 1.3728E-08 5.19 1.90227E-08 5.25
100 1.9294E-06 3.00 4.3525E-09 5.15 6.25800E-09 4.98

P
3

20 5.3906E-06 — 6.4215E-07 — 1.63951E-06 —
40 3.3871E-07 3.99 2.6784E-09 7.91 6.99678E-09 7.87
60 6.6953E-08 4.00 1.0966E-10 7.88 2.81901E-10 7.92
80 2.1189E-08 4.00 1.1659E-11 7.79 3.10608E-11 7.67
100 8.6796E-09 4.00 2.1156E-12 7.65 7.10490E-12 6.61

Table 4

The L2-errors and order of accuracy for the solution to ut + ux = 0 with initial condition
u(x) = sin(x). Results are shown for before and after postprocessing for the randomly varying mesh.
L2-projection versus characteristic length using largest element size. (Abbreviations as in Table 1.)

dg l2p cl

N L2-error Order L2-error Order L2-error Order

P
1

10 3.9288E-02 — 3.5696E-02 — 3.76980E-02 —
20 6.4910E-03 2.60 4.4325E-03 3.01 4.66228E-03 3.02
40 1.4038E-03 2.21 5.9097E-04 2.91 6.33290E-04 2.88
60 5.6738E-04 2.23 1.8322E-04 2.89 1.87807E-04 3.00
80 3.1493E-04 2.05 8.5120E-05 2.66 8.49880E-05 2.76
100 2.0449E-04 1.94 4.9641E-05 2.42 4.78369E-05 2.58

P
2

10 1.0364E-03 — 5.5511E-04 — 8.71056E-04 —
20 1.4054E-04 2.88 1.6553E-05 5.07 1.80160E-05 5.60
40 1.7473E-05 3.01 1.9171E-06 3.11 7.92770E-07 4.51
60 5.4834E-06 2.86 7.0102E-07 2.48 2.96891E-07 2.42
80 2.2763E-06 3.06 2.5657E-07 3.49 1.31103E-07 2.84
100 1.2407E-06 2.72 1.7533E-07 1.71 6.61734E-08 3.06

P
3

20 3.0230E-06 — 2.0912E-07 — 6.41058E-07 —
40 2.3168E-07 3.71 1.0021E-08 4.38 4.20790E-09 7.25
60 3.9623E-08 4.36 1.5744E-09 4.56 5.80172E-10 4.89
80 1.2867E-08 3.91 5.8957E-10 3.41 2.35268E-10 3.14
100 5.6505E-09 3.69 2.6617E-10 3.56 9.71225E-11 3.96
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Fig. 4. Pointwise errors in log scale for the approximation to the solution of ut + ux = 0
with u(x, 0) = sin(x) for smoothly varying (top) and random (bottom) meshes, where the smoothly
varying mesh is defined by x = ξ + b sin(ξ) with b = 0.5 and x ∈ (0, 2π).
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Table 5

The L2-errors and order of accuracy for the wave equation written as a 1D system with u(x, 0) =
sin(x) calculated at final time, T = 12.5. Results are shown for before and after postprocessing for
the smoothly varying mesh defined by x = ξ + b sin(ξ), where ξ is the uniform mesh variable. L2-
projection versus characteristic length using largest element size. (Abbreviations as in Table 1.)

dg l2p cl

N L2-error Order L2-error Order L2-error Order

P
1

10 3.7925E-02 — 5.0774E-02 — 3.79678E-02 —
20 6.4084E-03 2.57 6.7109E-03 2.92 4.92293E-03 2.95
40 1.2725E-03 2.33 8.4615E-04 2.99 6.10622E-04 3.01
60 5.3231E-04 2.15 2.5080E-04 3.00 1.80058E-04 3.01
80 2.9251E-04 2.08 1.0578E-04 3.00 7.58247E-05 3.01
100 1.8511E-04 2.05 5.4140E-05 3.00 3.88207E-05 3.00

P
2

10 1.3558E-03 — 9.2349E-04 — — —
20 1.6979E-04 3.00 2.1026E-05 5.46 2.53926E-05 —
40 2.1290E-05 3.00 5.1198E-07 5.36 5.48345E-07 5.53
60 6.3132E-06 3.00 6.1014E-08 5.25 6.09241E-08 5.42
80 2.6642E-06 3.00 1.3728E-08 5.19 1.34511E-08 5.25
100 1.3643E-06 3.00 4.3525E-09 5.15 4.42507E-09 4.98

P
3

20 3.8117E-06 — 6.4215E-07 — 1.15931E-06 —
40 2.3950E-07 3.99 2.6784E-09 7.91 4.94747E-09 7.87
60 4.7343E-08 4.00 1.0966E-10 7.88 1.99334E-10 7.92
80 1.4983E-08 4.00 1.1659E-11 7.79 2.19634E-11 7.67
100 6.1374E-09 4.00 2.1156E-12 7.65 5.02394E-12 6.61

Table 6

The L2-errors and order of accuracy for the wave equation written as a 1D system with u(x, 0) =
sin(x) calculated at final time, T = 12.5 Results are shown for before and after postprocessing for
the randomly varying mesh. L2-projection versus characteristic length using largest element size.
(Abbreviations as in Table 1.)

dg l2p cl

N L2-error Order L2-error Order L2-error Order

P
1

10 2.8103E-02 — 3.5654E-02 — 2.66599E-02 —
20 4.5860E-03 2.62 4.4442E-03 3.00 3.29707E-03 3.02
40 9.9064E-04 2.21 5.8598E-04 2.92 4.47100E-04 2.88
60 4.0057E-04 2.23 1.7898E-04 2.93 1.32845E-04 2.99
80 2.2328E-04 2.03 8.3025E-05 2.67 6.04966E-05 2.73
100 1.4523E-04 1.93 4.9729E-05 2.30 3.39610E-05 2.59

P
2

10 6.7673E-04 — 5.6663E-04 — 6.15856E-04 —
20 9.9537E-05 2.77 1.6937E-05 5.06 1.27342E-05 5.60
40 1.2421E-05 3.00 1.8908E-06 3.16 1.02438E-06 3.64
60 3.8858E-06 2.87 6.6401E-07 2.58 3.45023E-07 2.68
80 1.6019E-06 3.08 2.4758E-07 3.43 1.36709E-07 3.22
100 8.7105E-07 2.73 1.8076E-07 1.42 6.80892E-08 3.12

P
3

20 2.1355E-06 — 2.0901E-07 — 6.37371E-07 —
40 1.6278E-07 3.72 9.3177E-09 4.49 7.77741E-09 6.36
60 2.7931E-08 4.35 1.5057E-09 4.50 8.59372E-10 5.43
80 9.1654E-09 3.87 5.6320E-10 3.42 2.25153E-10 4.66
100 4.0393E-09 3.67 2.6826E-10 3.32 8.26038E-11 4.49
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Table 7

The L2-errors and order of accuracy for ut+(a(x, t)u)x = f(x, t) over x ∈ [0, 2π] with a(x, t) =
2+sin(x+ t) and f(x, t) chosen such that u(x, t) = sin(x− t). Results are shown for before and after
postprocessing for the smoothly varying mesh defined by x = ξ + b sin(ξ), where ξ is the uniform
mesh variable. L2-projection versus characteristic length using largest element size. (Abbreviations
as in Table 1.)

dg l2p cl

N L2-error Order L2-error Order L2-error Order

P
1

10 2.9101E-02 — 1.8275E-02 — 2.02363E-02 —
20 6.7746E-03 2.10 2.6027E-03 2.81 2.72060E-03 2.89
40 1.6318E-03 2.05 3.4299E-04 2.92 3.49734E-04 2.96
60 7.1857E-04 2.01 1.0297E-04 2.97 1.04870E-04 2.97
80 4.0275E-04 2.01 4.3674E-05 2.98 4.47473E-05 2.96
100 2.5731E-04 2.01 2.2424E-05 2.99 2.32122E-05 2.94

P
2

10 2.0195E-03 — 8.9665E-04 — 4.30827E-02 —
20 2.4683E-04 3.03 2.0051E-05 5.48 3.35356E-05 —
40 3.0528E-05 3.02 4.8283E-07 5.38 7.08985E-07 5.56
60 9.0107E-06 3.01 5.7334E-08 5.26 7.84258E-08 5.43
80 3.7938E-06 3.01 1.2887E-08 5.19 1.74144E-08 5.23
100 1.9400E-06 3.01 4.0850E-09 5.15 5.80739E-09 4.92

P
3

10 8.6750E-05 — 1.4038E-04 — — —
20 5.4529E-06 3.99 6.5376E-07 7.75 1.65056E-06 —
40 3.4038E-07 4.00 2.7579E-09 7.89 7.08132E-09 7.86
60 6.7175E-08 4.00 1.1413E-10 7.86 2.86698E-10 7.91
80 2.1242E-08 4.00 1.2253E-11 7.76 3.16230E-11 7.66
100 8.6971E-09 4.00 2.2363E-12 7.62 7.18275E-12 6.64

Example 4 (1D variable coefficient equation). In the last of the 1D examples, we
look at the variable coefficient equation

(3.3) u(x, t)t + (a(x)u(x, t))x = f(x, t),

with a(x) = 2 + sin(x) and initial condition u(x, 0) = sin(x). A 2π-periodic boundary
condition is used, and a suitable forcing function f(x, t) is taken so that the exact
solution is u(x, t) = sin(x− t) as in [13]. The error Tables 7, 8 and Figure 5 show that
there is order improvement to 2k+1 for a smoothly varying mesh for the approxima-
tion. For the random mesh, we are able to reduce the errors in the approximation.

Example 5 (2D system). Next, we extend the local L2-projection combined with
the postprocessor to two dimensions using a tensor product. We consider the linear
system

(3.4)

(
u
v

)
t

+

(
−1 0
0 1

)(
u
v

)
x

+

(
0 −1
−1 0

)(
u
v

)
y

=

(
0
0

)

with initial conditions

u(x, y, 0) =
1

2
√

2
(sin(x + y) − cos(x + y)) ,

v(x, y, 0) =
1

2
√

2

(
(
√

2 − 1) sin(x + y) + (1 +
√

2) cos(x + y)
)

and 2π-periodic boundary conditions in both directions. This is the second order
wave equation written as a first order linear system. In Table 9 we list the L2-errors
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Fig. 5. Pointwise errors in log scale for ut + (a(x, t)u)x = f(x, t) over x ∈ (0, 2π) with
a(x, t) = 2 + sin(x + t) and f(x, t) chosen such that u(x, t) = sin(x − t) for smoothly varying (top)
and random (bottom) meshes, where the smoothly varying mesh is defined by x = ξ + b sin(ξ) with
b = 0.5 and x ∈ (0, 2π).
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Table 8

The L2-errors and order of accuracy for ut+(a(x, t)u)x = f(x, t) over x ∈ [0, 2π] with a(x, t) =
2 + sin(x + t) and f(x, t) chosen such that u(x, t) = sin(x − t). Results are shown for before and
after postprocessing for the randomly varying mesh. L2-projection versus characteristic length using
largest element size. (Abbreviations as in Table 1.)

dg l2p cl

N L2-error Order L2-error Order L2-error Order

P
1

10 2.2959E-02 — 1.0717E-02 — 1.05522E-02 —
20 4.9890E-03 2.20 1.5387E-03 2.80 1.37002E-03 2.95
40 1.2894E-03 1.95 3.2431E-04 2.25 2.69588E-04 2.35
60 5.4391E-04 2.13 1.1644E-04 2.53 9.01755E-05 2.70
80 3.0760E-04 1.98 6.4140E-05 2.07 4.97856E-05 2.06
100 2.0130E-04 1.90 4.2805E-05 1.81 — —

P
2

10 1.0398E-03 — 4.6250E-04 — 7.14988E-04 —
20 1.4013E-04 2.89 1.5527E-05 4.90 1.43903E-05 5.63
40 1.7506E-05 3.00 1.9061E-06 3.03 1.02438E-06 3.81
60 5.4792E-06 2.86 6.8815E-07 2.51 3.45023E-07 2.68
80 2.2757E-06 3.05 2.5205E-07 3.49 1.36709E-07 3.22
100 1.2419E-06 2.71 1.7345E-07 1.67 6.80892E-08 3.12

P
3

10 6.3658E-05 — 7.6557E-05 — — —
20 3.0291E-06 4.39 2.2402E-07 8.42 6.37371E-07 —
40 2.3150E-07 3.71 1.2726E-08 4.14 7.77741E-09 6.36
60 3.9588E-08 4.36 1.4673E-09 5.33 8.59372E-10 5.43
80 1.2854E-08 3.91 5.1104E-10 3.67 2.25153E-10 4.66
100 5.6454E-09 3.69 2.3984E-10 3.39 8.26038E-11 4.49

Table 9

The L2-errors and order of accuracy for the wave equation written as a 2D system calculated
at final time, T = 12.5. Results are shown for before and after postprocessing for the smoothly
varying mesh defined by x = ξ+ b sin(ξ), where ξ is the uniform mesh variable. L2-projection versus
characteristic length using largest element size. (Abbreviations as in Table 1.)

dg l2p cl

N L2-error Order L2-error Order L2-error Order

P
1

10 2.5646E-01 — 9.3597E-02 — 2.6147E-01 —
20 4.6170E-02 2.47 2.9566E-02 1.66 4.5489E-02 2.52
40 6.7617E-03 2.77 5.0229E-03 2.56 6.1035E-03 2.90
60 2.2637E-03 2.70 1.6096E-03 2.81 1.8268E-03 2.98
80 1.0827E-03 2.56 7.0378E-04 2.88 7.77288E-04 2.97
100 6.2764E-04 2.44 3.6777E-04 2.91 3.9614E-04 3.02

P
2

20 8.0988E-04 — 9.4633E-05 — 2.5239E-04 —
40 9.7808E-05 3.05 4.7729E-06 4.31 7.3263E-06 5.11
60 2.8909e-05 3.01 7.1507E-07 4.68 9.3603e-07 5.07
80 1.2189e-05 3.00 1.7936E-07 4.81 2.189e-07 5.05
100 6.2397e-06 3.00 6.0610E-08 4.86 7.13e-08 5.03

P
3

20 5.0590E-05 — 2.5667E-07 — 3.9587e-06 —
40 3.3662E-06 3.91 5.0348E-09 5.67 1.9928e-08 7.63
60 6.7469e-07 3.96 3.7718E-10 6.39 9.2025e-10 7.58
80 2.1463e-07 3.98 5.5094E-11 6.69 1.0677e-10 7.49
100 8.8139e-08 3.99 1.2036E-11 6.82 2.0881e-11 7.31
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at T = 12.5 using the P
k polynomial basis. The (k+1)th order accuracy before post-

processing becomes (2k+1)th order accuracy after postprocessing for the smoothly
varying mesh case. For the random mesh, we see improvement in the magnitude of
the errors, but no order improvement as in the 1D case.

4. Concluding remarks. We have demonstrated numerically two tools for en-
hancing the accuracy of discontinuous Galerkin approximations over meshes with
elements whose size varies smoothly as well as randomly. One is a simple, local L2-
projection combined with the postprocessor, the other involves scaling the postpro-
cessing kernel based upon largest element size. For the local L2-projection combined
with the postprocessor, we can provably obtain order improvement from k+1 to 2k+1
for meshes whose variation is defined by an analytic function. Although computation-
ally we do see this same order improvement if we choose a characteristic length for
our postprocessor equal to the largest element size, we cannot guarantee that this
order improvement will be maintained. This improvement from order k+1 to order
2k+1 is the same improvement that we obtain for the uniform mesh case. Although
there is not firm order of accuracy improvement for the case where the element sizes
vary randomly, there is significant improvement in the magnitude of the errors. Both
methods allow for the use of small matrix-vector multiplications that result from the
uniform mesh assumption. Computationally, the method preferred depends upon the
ratio of maximum element size to minimum element size. Using these methods allows
for use of the existing postprocessing matrix and avoidance of significant increases in
computational complexity. Although the effectiveness of these two techniques has not
been tested when combined with the one-sided postprocessing [12], we expect similar
results.
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