
J Sci Comput (2009) 38: 164–184
DOI 10.1007/s10915-008-9230-8

One-Sided Smoothness-Increasing Accuracy-Conserving
Filtering for Enhanced Streamline Integration
through Discontinuous Fields

David Walfisch · Jennifer K. Ryan · Robert M. Kirby ·
Robert Haimes

Received: 23 May 2008 / Revised: 8 July 2008 / Accepted: 16 July 2008 / Published online: 13 August 2008
© Springer Science+Business Media, LLC 2008. This article is published with open access at
Springerlink.com

Abstract The discontinuous Galerkin (DG) method continues to maintain heightened lev-
els of interest within the simulation community because of the discretization flexibility it
provides. One of the fundamental properties of the DG methodology and arguably its most
powerful property is the ability to combine high-order discretizations on an inter-element
level while allowing discontinuities between elements. This flexibility, however, generates
a plethora of difficulties when one attempts to use DG fields for feature extraction and vi-
sualization, as most post-processing schemes are not designed for handling explicitly dis-
continuous fields. This work introduces a new method of applying smoothness-increasing,
accuracy-conserving filtering on discontinuous Galerkin vector fields for the purpose of en-
hancing streamline integration. The filtering discussed in this paper enhances the smooth-
ness of the field and eliminates the discontinuity between elements, thus resulting in more
accurate streamlines. Furthermore, as a means of minimizing the computational cost of the
method, the filtering is done in a one-dimensional manner along the streamline.

Keywords High-order methods · Discontinuous Galerkin · Filtering · Accuracy
enhancement · Streamline integration · Adaptive error control

D. Walfisch · R. Haimes
Department of Aeronautics & Astronautics, Massachusetts Institute of Technology, Cambridge, MA,
USA

D. Walfisch
e-mail: walfisch@mit.edu

R. Haimes
e-mail: haimes@mit.edu

J.K. Ryan (!)
Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft,
The Netherlands
e-mail: J.K.Ryan@tudelft.nl

R.M. Kirby
School of Computing, Univ. of Utah, Salt Lake City, UT, USA
e-mail: kirby@sci.utah.edu

mailto:kirby@sci.utah.edu
mailto:walfisch@mit.edu
mailto:haimes@mit.edu
mailto:J.K.Ryan@tudelft.nl


J Sci Comput (2009) 38: 164–184 165

1 Introduction

The discontinuous Galerkin (DG) methods provide a high-order extension of the finite vol-
ume method in much the same way as high-order or spectral/hp elements [20, 29] extended
standard finite elements. The DG methodology allows for a dual path to convergence through
both elemental ‘h’ and polynomial ‘p’ refinement, making it highly desirable for computa-
tional problems which require resolution fidelity. In the overview of the development of the
discontinuous Galerkin method, Cockburn et al. [11] trace the developments of DG and
provide a succinct discussion of the merits of this extension to finite volumes.

The primary mathematical advantage of DG is that unlike classic continuous Galerkin
FEM, which seeks approximations which are piecewise continuous, the DG methodology
only requires functions which are L2 integrable. Much like FEM, DG uses the variational
form, however, instead of constraining the solution to be continuous across element inter-
faces, the DG method merely requires weak constraints on the fluxes between elements. This
feature provides a discretization flexibility which is difficult to match with conventional con-
tinuous Galerkin methods.

Generating data from a DG simulation, however, is never the end of the story. The simu-
lation science pipeline consists initially of modeling and simulation, then requires evaluation
through post-processing which allows for information to be extracted. This post-processed
information relates back to the scientific or engineering question of interest. One such means
of evaluation is visualization.

Visualizing vector fields has always been considered challenging. There are several visu-
alization techniques that try to address this challenge, such as: particle tracing [22, 31], icon
placement [30, 33] or texture [23, 32] based methods. A commonly used technique is stream-
line visualization. The bias toward using streamlines is in part explained by studies which
show streamlines to be effective visual representations for elucidating the salient features
of the vector fields [21]. Furthermore, streamlines as a visual representation are appealing
because they are applicable for both two-dimensional and three-dimensional fields [35].

The most common means of integrating streamlines is to employ one of the many avail-
able numerical ordinary differential equation (ODE) solvers on the vector field. In this case,
a new error is added to the simulation error budget, namely, the errors arising from the
choice of technique used for post-processing simulation data. Darmofal and Haimes [14], in
an attempt to quantify post-processing errors which occur in streamline computations of fi-
nite element fields, analyzed different types of time integrators (multi-step, multi-stage and
hybrid schemes) for their efficiency, convergence rate and computational cost in stream-,
streak- and path-line calculations. They also showed that an improperly chosen time-step
can result in non-physical streamlines and incorrect critical points even in continuous fields.

DG discretizations provide an additional challenge to the integration process—element-
wise discontinuities violate the smoothness assumptions upon which most of these integra-
tion schemes are based. If no manipulation of the field is accomplished, accurate streamlines
through DG fields require adaptive time-stepping which effectively integrates up to and over
discontinuities in a controlled way [16]. This process tends to be very expensive as many
field evaluations are requires to effectively “find” and integrate over the discontinuity.

One alternative strategy is to seek filtering techniques which enhance the smoothness
of the field without destroying its formal accuracy. Such smoothness-increasing accuracy-
conserving (SIAC) filters have been proposed in previous work [28], where they have been
shown to ameliorate the difficulties that arise in streamline integration. Because of the nature
of the study in [28], two limitations existed: (1) results were only demonstrated for structured
quadrilateral meshes and (2) the entire DG field was post-processed. Applying the filter in



166 J Sci Comput (2009) 38: 164–184

this form to realistic data can be challenging in that structured quadrilateral meshes are not
optimal and post-processing the entire field can be computationally expensive. Thus, we are
employing a strategy for filtering DG data which addresses these two specific limitations.

The goal of this work is to extend the previous ideas presented in [28] by demonstrat-
ing an alternative SIAC filtering algorithm that can be applied during streamline integration
through datasets generated on unstructured discontinuous Galerkin discretizations. The tech-
nique uses a one-dimensional convolution kernel to introduce continuity between elements.
The idea is to increase smoothness while not introducing additional error in the solution. Fur-
thermore, we work in arc-length coordinates so that we are able to have a one-dimensional
implementation that is the same regardless of the dimension of the simulation data. This in
turn will aid in accomplishing the goals of visualization of data over more complex geome-
tries while still improving the smoothness of the field, not compromise the accuracy of the
data, and provide for a reasonable computational cost.

The paper is organized as follows. In Sect. 2 we discuss the discontinuous Galerkin
method for systems of hyperbolic equations as well as presenting background on smoothness-
increasing accuracy-conserving filters, including using one-sided filtering. In Sect. 3 we
show the practical issues in applying this SIAC filter to multi-dimensional data, which en-
compasses the choice of characteristic length for scaling the convolution kernel, integration
of the convolution kernel, as well as time-stepping techniques for obtaining the streamline.
We also provide a discussion of implementation details needed to understand the application
of the filters and demonstration of the efficacy of the filters prior to streamline integration.
We complete this by providing applications to simulation data in Sect. 4 that demonstrate
the effectiveness of this SIAC filter. A summary of our findings and a discussion of future
work are presented in Sect. 5.

2 Background

2.1 The Discontinuous Galerkin Method

The discontinuous Galerkin (DG) method for hyperbolic equations has been discussed ex-
tensively by both Cockburn et al. [4–6, 8, 9] and others [2, 7]. For the purposes of this paper,
we are interested in systems of equations of the form

ut + ! · F(u) = 0 in (0, T ) ×!. (1)

To create a DG approximation, we first construct a tessellation of the domain !, T (!) =
!̃, and an approximation space, Vh, consisting of piecewise polynomials of degree less
than or equal to k on each element of K ∈ !̃, where k + 1 is the order of accuracy of the
approximation. To obtain the approximation, we multiply (1) by a test function v ∈ Vh and
integrate by parts to obtain the variational formulation:

d

dt

∫

K

u(x, t)vdx +
∑

e∈∂K

∫

e

F(u) · ne,Kvd# −
∫

K

F(u) · !vdx = 0, (2)

where ne,K denotes the outward unit normal to edge e. The numerical scheme is then given
by

d

dt

∫

K

u(x, t)vdx +
∑

e∈∂K

∫

e

h
(
u(x−, t),u(x+, t)

)
vd# −

∫

K

F(u) · !vdx = 0 (3)



J Sci Comput (2009) 38: 164–184 167

for all test functions v ∈ Vh where h(u(x−, t),u(x+, t)) represents the numerical flux.
The key points to retain from this brief DG introduction are the following: 1) DG requires

a valid tessellation of the domain of interest to be constructed, but there are no restrictions on
the types of elements (e.g. triangles or quadrilaterals in 2D) or combination of elements, only
the normal constraints found in the finite element and finite volume literature on element
quality; 2) the approximation space is piecewise discontinuous with bounded jumps. It is
precisely these two components of DG which make post-processing of DG simulation data
challenging as most current post-processing techniques assume that the underlying field on
which they are operating is continuous. This leads us naturally to the question of whether
one can make a DG field continuous (without destroying the formal accuracy of the results),
which is the issue to be addressed in the next section.

2.2 Smoothness-Increasing Accuracy-Conserving Filters

There have been many filtering techniques developed that aim to smooth out discontinuous
fields and create a continuous function from a discrete solution. A group of these methods
uses B-splines for the filtering. An overview of B-spline filtering techniques can be found
in [25]. Hou and Andrews [19] use linear combination of cubic B-splines for image process-
ing. Their technique is very similar to the one used in this work. Mitchell and Netraveli [24]
also use piecewise cubic filters for image reconstruction. Similar to the work mentioned
above, we also implement a technique based on B-splines; however, the B-splines are cho-
sen based on the polynomial order of the discontinuous Galerkin solution. This smoothness-
increasing accuracy-conserving filter is outlined below as well as in the series of papers
[10, 12, 13, 26–28].

2.2.1 One-Sided Filtering

In the one-dimensional application of the smoothness-increasing accuracy-conserving filter
to streamlines, we concentrate on the implementation of the one-sided filter. This one-sided
convolution kernel was introduced by Ryan and Shu [26] and displays only minor differ-
ences from the symmetric kernel:

K2(k+1),k+1(x) =
−1∑

γ=−2k−1

c2(k+1),k+1
γ ψ (k+1)(x − γ ).

Note that the support of the B-splines are simply shifted to one side of the current el-
ement being filtered in a way which is analogous to one-sided finite difference stencils.
Additionally, the coefficient calculation for c2(k+1),k+1

γ , like the support of the B-splines, is
also non-symmetric and is given by





∫
ψ (k+1)(x − y − 2k − 1)y0dy . . .

∫
ψ (k+1)(x − y − k)y0dy

...
. . .

...∫
ψ (k+1)(x − y − 2k − 1)ykdy . . .

∫
ψ (k+1)(x − y − k)ykdy








c−2k−1

...

c−k



 =




x0

...

xk



 .

For the piecewise linear case, we would have



1 1 1

x + 3 x + 2 x + 1
x2 + 6x + 55

6 x6 + 4x + 25
6 x2 − 2x + 7

6








c−3

c−2

c−1



 =




1
x

x2



 .



168 J Sci Comput (2009) 38: 164–184

Fig. 1 B-splines used in the
convolution kernels for the k = 1
case. The actual kernel is a linear
combination of these B-splines
with the emphasis being on the
current element being filtered,
that is, we want to filter the
element containing xi

(a) B-splines for the symmetric kernel

(b) B-splines for the fully one-sided kernel

We emphasize that the entire one-sided kernel has its support contained to one side of the
point of interest, and therefore the limits of integration in the convolution change. There-
fore, the solution is not needed from the other side of the point being filtered. This is an
important feature since the future of the streamline is not known when the filtering scheme
is employed.

It has also been demonstrated that the one-sided technique improves accuracy from order
k + 1 to 2k + 1 for uniform meshes [26]. When the underlying mesh becomes non-uniform,
the method loses its accuracy enhancing characteristic in the sense of order of convergence,
but keeps an accuracy conserving behavior [13]. This is important, as when we consider
the multi-dimensional approximation, we can no longer guarantee that the mesh is uniform.
This is because we apply the filter in a one-dimensional manner along the streamline. Even if
the data is given over a uniform quadrilateral mesh, the streamline may cut through a corner
of an element. However, it is the smoothness increasing part of the filter that is important for
this application.

Figure 1 shows an example of the B-splines used in the symmetric kernel as well as the
fully one-sided kernel for k = 1. The x-axis is scaled by the characteristic length, and xi

corresponds to the location of the point that is being post-processed. The y-axis is scaled by
the kernel coefficients.



J Sci Comput (2009) 38: 164–184 169

3 One-Sided Filtering for Streamline Calculation

We now address adapting the aforementioned one-sided filtering techniques to one-
dimensional streamlining from multi-dimensional data. We first discuss the broader picture
of streamlining and then the options for streamline calculation.

Consider a computational domain ! over which a tessellation !̃ = T (!) exists consist-
ing of triangles and quadrilaterals in two-dimensions or tetrahedra, hexahedra, prisms and
pyramids in three-dimensions. This work is concerned with piecewise smooth fields built
over !̃. That is, assume that we take two geometrically adjacent elements K1,K2 ∈ !̃, the
functions f1 : K1 → R and f2 : K2 → R are smooth but do not have cross-element continu-
ity. To illustrate the idea, we consider a two-dimensional example. Assume

v =
[

u(x, y)

v(x, y)

]
.

For each element K ∈ !̃, v : K → R2 is well-defined. However, if v is evaluated over !̃
as it is for the discontinuous Galerkin approximation, then vector field would be uniquely
defined on the open set of elements only; it would be multiply defined on the traces of the
elements (i.e. on the edges of the elements in two-dimensions or on the faces of the elements
in three-dimensions). This means that for element interfaces there is more than one choice
for v. It is exactly this inter-element (non-physical) discontinuity that we seek to smooth,
without destroying the accuracy of our DG approximation.

The idea is the following: We are interested in defining streamlines of the vector field v.
The directional derivative is

d

dξ
= v · !.

This derivative allows us to define a streamline r of the vector field v as being curves in
which

dr
dξ

= v

holds for any point on the curve. Note that v = v(r).
In order to trace this stream line curve, we use a time-stepping algorithms such as Euler

Forward. If we define an initial starting point r0 and a spacing %ξ, the Euler-Forward ap-
proximation of the curve is generated by iterating

rn+1 − rn

%ξ
= v(rn).

for n = 1, . . . ,N. In this expression, the vector field v is being evaluated along the streamline
given by samples of r. The higher the order of approximation used for the derivative term
dr
dξ

, the more smoothness of the field that is required. The difficulty lies in the fact that if the
vector field is given by a DG vector field, element-wise smoothness is not available.

To ameliorate the discontinuity problem, Steffen et al. used the SIAC filter to increase
the smoothness of the field without compromising accuracy [28]. The streamline calculation
was performed by filtering the entire multi-dimensional vector field v using the B-spline
convolution kernels to produce a new field ṽ which is smooth across interfaces. Once this
is done, it was possible to employ a wide variety of different ODE integration algorithms.



170 J Sci Comput (2009) 38: 164–184

Although this technique is effective in the sense of handling discontinuities, it required fil-
tering the entire field, which can be very expensive, and it assumed only simplified geometry
(a uniform quadrilateral mesh). In general, this approach has these additional issues:

• Mesh Generation. In 2-D it is possible to automatically partition a bounded region into
quadrilaterals where the post-processing convolution kernels can be applied. Automati-
cally blocking complex shaped volumes into hexahedral regions (in 3-D) is an unsolved
problem.

• Maintaining boundary values. The one-sided kernel needs to be applied when the region
of interest touches a boundary. The current form of this kernel does not preserve values
at the bounds of the domain. Therefore there is no mechanism to ensure that resultant
streamlines do not pierce walls when the viewed solution has flow tangency (for Euler
calculations) or zero velocity enforced at solid boundaries used in viscous simulations.

We therefore seek an alternative that will allow for non-uniformity in the mesh and will
not require filtering of the entire field. The idea is the following: assume that one is given
a collection of points {. . . , rn−2, rn−1, rn} along a streamline. Additionally, assume that one
has filtered the vector field at those points, that is, {. . . , ṽn−2, ṽn−1, ṽn}. To find the next
position along the streamline, implement the backward differential formula and obtain rn+1.

It is important to note that it will be necessary for the streamline integration step to be chosen
such that the new position, rn+1, is within the convolution filter support of the points used in
the backward differentiation. This guarantees that the influence of element boundaries are
properly used. Thus, the filtering is done as we proceed forward in time for the streamline
calculation. Details of this alternative method are outlined below.

In order to apply the filter introduced in Sect. 2.2.1, it is necessary to slightly modify
the kernel and the process of evaluation of the data. As mentioned previously, we no longer
assume uniformity of elements. Recall that the previous kernel was scaled by the uniform
element size. Therefore, we must investigate a characteristic length for the scaling of the
B-splines. Additionally, it is necessary to address the integration of the convolution kernel
for filtering the discontinuous Galerkin solution. Lastly, since this is a streamline calculation,
we must consider the proper time integration method that will take into account our filtering
method. To introduce the incorporation of all these ideas we develop a model problem. Once
we have discussed the necessary components of forming the SIAC filter, we test the validity
of the SIAC filter on our model problem.

3.1 Characteristic Model Problem

Given a curve through a discontinuous Galerkin data set, the approximation naturally con-
tains oscillations. For purposes of illustration, we have taken a multi-dimensional function
consisting of smooth oscillating circles and projected it to a discontinuous Galerkin basis
(see Fig. 2). The idea for using a one-sided streamline integrator is this: If we take a one-
dimensional cut of this approximation, it will still contain oscillations on the lower dimen-
sional manifold, as shown in Fig. 4 (left). Given the oscillatory nature of the approximation,
we wish to filter the solution. It is desired that the filter increases the smoothness of the
approximation and conserve the accuracy of the projection.

In the constructed model problem, a two dimensional vector field was created from

[
u(r, θ)

v(r, θ)

]
=

[
1
2 cos(20 · θ) cos(θ) − r sin(θ)
1
2 sin(20 · θ) sin(θ) − r cos(θ)

]

. (4)



J Sci Comput (2009) 38: 164–184 171

(a) Continuous field (b) L2-projected field

Fig. 2 Multi-dimensional field containing smooth oscillating circles. The two fields show the difference
between continuous data and the data types that are obtained by the discontinuous Galerkin method. The
latter being illustrated by using an L2-projection of the exact solution onto a DG basis

Fig. 3 A sample streamline of
oscillating circles over the
continuous field with a starting
location of (0,0.3). This will be
our model problem. It is
desirable that the filter reproduce
this information from the
discontinuous data

This has streamlines which are also oscillating circles. Figure 3 shows a sample streamline
that was calculated on the original continuous field with a fourth-order Runge-Kutta (RK4)
method and a time-step (t = 0.001. It can be seen that there are a total of 20 cycles of
oscillation around one loop.

The field was then projected onto a uniform mesh with the L2 projection as a first-order
polynomial to make it discontinuous. This replicates the behavior of a numerical approxi-
mation generated by a discontinuous Galerkin solver. In Fig. 4, plots of the exact u values
(x-velocity) along the streamline in arc-length coordinates (x-axis) are given as well as the
projected u values in arc-length coordinates. It can be seen that the projected solution is
neither continuous nor smooth.

Once we have developed our filtering algorithm, we will test it on this problem in order
to verify that it indeed can replicate the exact streamline.



172 J Sci Comput (2009) 38: 164–184

Fig. 4 x-velocity along the streamline (x-axis is in 10−4 arc-length coordinates). The left figure represents
the solution of the continuous field and the right figure represents the discontinuous Galerkin field

3.2 Characteristic Length

The characteristic length is the scaling factor of the convolution kernel. For uniform meshes
it is the element size. However, in this method we have created a one-dimensional streamline
using multi-dimensional data, and consequently the information obtained from the discon-
tinuous Galerkin solution is on a nonuniform mesh. Therefore, it is necessary to explore the
ideal characteristic length one would need to use for filtering over complex geometries.

In order to analyze the ideal characteristic length, numerical experiments were performed
on the model problem with the one-sided filter applied to this solution along the streamline.
The approximated streamline was sampled with a time step size of (t = 10−7 with the inte-
gration performed using Jacobi-Gauss quadrature rule with k+1 quadrature points along the
real oversampled streamline. We take such an extreme time step to allow for the real coordi-
nates of every quadrature point to be known exactly thus allowing us to closely examine the
characteristic length. The filtered solution was calculated with characteristic length ranging
from 0.014 to 0.3 in arc-length coordinates. The maximum error between the real and the
filtered solution is shown in Fig. 5. The horizontal line is the maximum error between the
projected and the real solution.

The maximum error improves during the filtering for characteristic lengths smaller than
0.18. The reason for this is that if the kernel support is too large then high frequencies of
the solution are filtered out. At the same time if the characteristic length is too small, the
support is not large enough to reduce the unwanted oscillations. Figure 6 shows the two
extreme cases, one with characteristic length of 0.3, the other with 0.05.

Next, the same test was run on similar vector fields, with a smaller number of oscillation
cycles around the circle. It was observed that when the characteristic length was set to the
largest element size, the filtered maximum error was always lower than the non-filtered
maximum error. Table 1 summarizes the results by showing the maximum error for the
non-filtered (projected) and the filtered solution, with the maximum element size as the
characteristic length. Figure 7 shows the filtered u values and the pointwise error when the
maximum element size was used as the characteristic length for the convolution kernel.
It can be seen that the solution is continuous and significantly smoother than the original
projected solution (Fig. 4b). Based on these results, the experiments used in this paper have
the characteristic length equal to the length of the largest element size.



J Sci Comput (2009) 38: 164–184 173

Fig. 5 Maximum error in the
first-component (y-axis) versus
characteristic length in arc-length
coordinates (x-axis). The
horizontal line is the maximum
error between the projected and
the real solution. The maximum
error improves with filtering for
characteristic lengths smaller
than 0.18

Fig. 6 Results with a large characteristic length of 0.3 (top) and the smaller characteristic length of 0.05 (bot-
tom). For large characteristic lengths, the high frequencies are filtered out. For small characteristic lengths,
oscillations are still present



174 J Sci Comput (2009) 38: 164–184

Table 1 Filtered error when the
characteristic length is set to the
maximum element size. The
filtered maximum error is always
lower than the non-filtered

Number Maximum Maximum Maximum
of cycles element size filtered error projected error

2 0.154 0.068 0.104

4 0.244 0.018 0.019

6 0.179 0.014 0.031

8 0.108 0.021 0.052

10 0.151 0.048 0.063

12 0.126 0.051 0.105

14 0.124 0.078 0.151

16 0.158 0.159 0.191

18 0.138 0.136 0.172

20 0.101 0.137 0.249

Fig. 7 Results with characteristic length set to maximal element size of 0.14. The filtered maximum error is
always lower than the non-filtered

3.3 Integration of the Filtering Kernel

The convolution step of the filter requires evaluation of an integral,

u∗(x) = 1
h

∫ ∞

−∞
Kh

(
y − x

h

)
uh(y) dy.

For this integral the Jacobi-Gauss quadrature rule is used to obtain the exact answer. As the
integrand is discontinuous, each continuous subregion is numerically integrated according
to the appropriate quadrature rule.

For example, when the filtered solution needs to be calculated at point y as in Fig. 8,
the integrand is a polynomial of degree 2k within each continuous region, but there are
discontinuities at the boundaries. For the numerical integration to give the exact solution
it requires k + 1 quadrature points per segment. The integrand is then evaluated at these
locations, multiplied by the appropriate weights, and the result is the summation.

Additionally, since we are operating on a lower dimensional manifold, we use arc-length
coordinates. These coordinates of the quadrature points have to be converted to physical



J Sci Comput (2009) 38: 164–184 175

Fig. 8 Discontinuous integrand as seen by a streamline

Fig. 9 The continuous line represents a real, higher-order streamline. The dashed line is created from linear
line segments

coordinates in order to obtain the solution data. Since the streamline is calculated with a
time integrator, it is built up and visualized from linear line segments, while in reality it
is a higher order curve. However, the quadrature points of the integral do not necessarily
coincide with the locations that the time integrator calculates. To get the real coordinates
of a quadrature point that is not one of the actual sample points, an interpolation is done
between the two end points of the linear segment. Once the coordinates are found, the real
high-order interpolant is used as the solution at the point. Figure 9 shows how there can be
a difference between the real coordinates of a quadrature point if it is calculated on linear
segments or higher-order curves. The squares represent the locations the time-integrator
calculated, x is a quadrature point along the streamline.

Alternatively, Hermite interpolation could also be used. In Table 2 the maximum errors
are compared for five different time steps for both linear polynomial interpolation and Her-
mite interpolation. In this table, the errors are compared for the case of 20 cycles of oscil-
lation with the maximum element size 0.101 as characteristic length. For cases with fewer
oscillations, the difference between hermite and linear interpolation is smaller as one can
expect since the frequency decreases. This table gives us insight into the fact that although
the Hermite interpolation is always better than the linear polynomial interpolation, other er-
rors are clearly dominating. Therefore we can conclude that for a small enough time steps,
the linear interpolation is sufficient since the impact of the Hermite interpolation diminishes
with decreasing time step.



176 J Sci Comput (2009) 38: 164–184

Table 2 Maximum filtered error
for linear polynomial
interpolation and Hermite
interpolation for five different
time steps

Maximum filtered error

Time step Linear Hermite

10−2 0.21017 0.19863

10−3 0.17634 0.17101

10−4 0.15303 0.15186

10−5 0.14371 0.14291

10−7 0.13693 0.13691

3.4 Time Integration Along a Streamline

Time-stepping represents the second major numerical approximation used in this approach.
There are a wide variety of time-integration techniques available for streamline calcula-
tions, a few are presented in [1, 34]. These streamline time-stepping techniques are normally
broken down into multi-stage and multi-step methods. For example, the generic form of a
multi-step scheme is the following:

s∑

t=0

αix
n+1−t = k

s∑

t=0

βt u(xn+1−t , tn+1−t ),

where s represents the number of steps, for explicit schemes β0 = 0. The main disadvan-
tage of higher order accurate multi-step methods (s > 1) is that they require s − 1 startup
steps that are lower order accurate. Thus additional error may be introduced into the time-
integration due to initialization choices. Computationally these schemes tend not to be as
expensive as multi-stage methods since only one velocity field needs to be evaluated per
iteration; the previous positions can be stored and reused.

The other family of methods is multi-step methods. Even though some families of multi-
stage methods can be written down in a generic form (for example Strong Stability Preserv-
ing Runge-Kutta methods [17, 18]), there is no general descriptive formula for all multi-
stage methods. The most commonly used multi-stage techniques are from the Runge-Kutta
family. One of the main concerns with these schemes is that they require the calculation
of the velocity at intermediate steps which can be computationally expensive and result in
longer calculation times. In order to calculate the velocity, the underlying element in the
grid that contains the intermediate stage needs to be found. This process is the most compu-
tationally expensive part of the streamline calculator. In addition, for cases when the solu-
tion is only known at sample points, intermediate velocity calculations can cause difficulty.
This difficulty is usually solved by the use of a Newton-Raphson scheme to get an interpo-
lated value. Introducing this extra numerical algorithm for interpolation produces additional
error in the streamlining process. However, if the time integrator has access to the entire
polynomial solution within the time integration domain and not just the visualized one, the
interpolation phase can be avoided and the order of accuracy is not compromised.

There are also methods from both the multi-step and multi-stage families that use adap-
tive time-steps (e.g. predictor-corrector, RK-4/5 [1]) in order to bound the local (per step)
error. In a discontinuous Galerkin setting, the jump in the solution at element boundaries can
appear as “errors” to the time-integrator (in the sense that they show up as places in need of
local refinement). The local error depends on the size of the jump and the size of the time
step, (t . In order to introduce the minimal amount of error at large jumps in the solution, the
timestep must be small. As (t becomes smaller, more iterations are needed and getting past



J Sci Comput (2009) 38: 164–184 177

a single element boundary becomes computationally expensive. As a result, if one wishes to
achieve a relatively accurate streamline with these methods, the process can become rather
time consuming due to the many discontinuities the streamline encounters in its path [16].
Additionally, these methods still rely on the velocities being calculated at locations different
than the sample points.

In this work we assume that we are dealing with data that is discontinuous at element
interfaces. This places restrictions on the type of time integration techniques that can be
used. In order to use implicit schemes, the solution needs to have smooth first derivatives. For
this work, we assume that we only know information about the solution itself. Furthermore,
we also want to implement this filter with an explicit method that demonstrates a high order
of convergence to reduce the number of time-steps needed for the calculation. The most
commonly used method is RK4 or RK4/5. But, the implementation of these techniques
requires sampling the field from locations that are not along the streamline. To see this,
we can examine the RK4 formula shown below where steps 3 and 4 do not satisfy the
requirement of being along the streamline.

k1 = hf (tn, yn)

k2 = hf

(
tn + h

2
, yn + 1

2
k1

)

k3 = hf

(
tn + h

2
, yn + 1

2
k2

)

k4 = hf (tn + h,yn + k3)

yn+1 = yn + 1
6
k1 + 1

3
k2 + 1

3
k3 + 1

6
k4.

Since the convolution proposed in this work is done along the streamline, calculating
the filtered solution for intermediate stages that are not on the path is inconsistent and may
lead to unquantifiable errors. Thus we choose to use a second order Runge-Kutta method to
reduce these errors. RK2 uses one intermediate stage, which is a half time-step in the future
along the streamline.

k1 = hf (tn, yn)

k2 = hf

(
tn + h

2
, yn + 1

2
k1

)

yn+1 = yn + k2.

Using this method requires two filtering steps per iteration since the solution has to be cal-
culated at yn and yn + h

2 k1.

3.5 Validation of One-Dimensional Filter for Multi-Dimensional Data

Now that the foundation has been laid for using the smoothness-increasing accuracy-
conserving filter for multi-dimensional streamline calculation, we can link the components
together to produce an algorithm and test the validity on the model problem consisting of os-
cillating circles outlined in Sect. 3.1. This model problem will aid us in predicting whether
this approach is feasible for more realistic examples as those given in Sect. 4, where the
exact solution is unknown.



178 J Sci Comput (2009) 38: 164–184

The algorithm that we developed requires evaluation using filtered elements and then
integrating in time. We can apply this in a multi-dimensional manner by using arc-length
coordinates. More specifically, we seek to obtain the filtered solution vn+1. This is done in
the following way:

Step 1: Assume we have a collection of points obtained from the discontinuous Galerkin
field {. . . , rn−2, rn−1, rn} along a streamline.

Step 2: Based on the sample history, create a local parameterization of the curve (i.e. para-
meterized approximation of the streamline). Do this either:

(a) Using the derived streamline position values to fit polynomials; or
(b) Using both position and tangent information to fit Hermite polynomials or more

generally splines.

We note that this is now the domain over which we integrate the filtering kernel.
Step 3: Obtain the filtered collection of points along the curve, {. . . , ṽn−2, ṽn−1, ṽn}, using

the one-sided SIAC filter.

u+(x) = 1
L

−1∑

γ=−2k−1

c2(k+1),k+1
γ

0∑

j=−k′

∫

Ii+j

ψ (k+1)

(
y − x

L
− γ

)
uh,i(y) dy. (5)

Step 4: March forward in time to obtain rn+1. We emphasize again that this new position
will be within the support of the filter.

We note that in this paper, the model problem consists of piecewise linear data and linear
polynomial interpolation is used for step (2). Generally, the filter requires 2k′ + 1 pieces of
information including the current element, where k′ = ) 3k+1

2 *. Thus for the linear filter five
pieces of information are required. To begin the streamline integration we assume that we
start at the fifth piece of information.

To test the accuracy of the smoothness-increasing accuracy-conserving filter on one-
dimensional streamline calculation from multi-dimensional data, we calculated the stream-
lines of our model problem. These results are presented in Fig. 10. Without filtering, the
calculated streamlines do not remain consistent with the solution and spiral into the circle.
With filtering, the calculated streamlines are closer to the actual solution.

4 Applications to Simulation Data

To demonstrate the SIAC filtering method to real world data, streamlining is applied to the
results from aerodynamic simulations using MIT’s Project X DG solver [15]. Below we test
the one-dimensional SIAC filter on two cases of inviscid flow, and one of viscous flow.

4.1 Two-Dimensional Transonic Airfoil

In this example, the streamlines are calculated for a NACA 0012 airfoil with an angle of
attack α = 1.128 and Mach Number Ma = 0.8. The solution uses a fifth order polynomial in
each element that is built up from 1836 triangles. The geometry of the airfoil is represented
by cubic triangle sides, otherwise all other triangle segments are linear.

Streamline results are shown for a two-dimensional inviscid (Euler Equations) transonic
airfoil simulation. Figure 11 depicts two streamlines with the same starting position. Note
that in the figure the geometry is drawn as linear but it is cubic in the simulation. Both of the



J Sci Comput (2009) 38: 164–184 179

Fig. 10 Without filtering (left), the calculated streamlines spiral into the circle. With filtering (right), the
calculated streamlines are closer to the actual solution. The thin line represents the real solution and bold line
represents the calculated streamline

Fig. 11 Streamline results on a 2D transonic simulation. Dashed line is a streamline without post-processing;
solid line denotes the streamline with post-processing. The streamline stops just short of the airfoil, as em-
phasized by the arrow

streamlines shown were traced using a second-order Runge-Kutta method with (t = 0.01;
the dashed line was calculated without filtering and stops close to the airfoil boundary as
indicated by the arrow. This problem can be caused by the following two considerations:

• Element jumps: The velocity direction indicates that the flow is leaving a cell at a partic-
ular face. Its neighboring element (the one sharing the face) can also specify that the flow



180 J Sci Comput (2009) 38: 164–184

is leaving the element at that face (acting like a sink). This situation can easily occur in
regions close to stagnation or where the flow is under-resolved.

• Time-step/Numerical errors: The integrator targets the next position outside of the com-
putational domain. This can readily occur because the integration scheme applied here
does not check for local errors.

In this situation, if (t is reduced to 0.0015, the non-filtered streamline can also be fully
evaluated (i.e. it continues past the leading edge and exits the domain) suggesting that the
problem is a numerical integration issue. It should be noted that the calculation time of
the filtered solution is roughly four times longer than the simple integration scheme. For
this particular streamline applying the simple integrator requires seven times the number of
iterations than the SIAC scheme. Therefore the overall performance of the SIAC scheme is
better and results in fewer line segments allowing for faster rendering.

4.2 Three-dimensional Transonic Airfoil

All of the test cases and examples have been two-dimensional. The strength of the SIAC
filtering scheme described in this paper is that the difference between streamlining in 2D
and 3D is minor. This is a major contrast to using filter pre-processing in which the filter
must be applied in each coordinate direction. This is because all filtering is done during the
integration and along the trace as the new positions are computed.

In this example, SIAC streamlining is shown from the results of an inviscid (Euler Equa-
tions) three-dimensional simulation. The geometry is that of an isolated Onera M6 wing
and the flow conditions were Ma = 1.5. The DG solution employs second-order polynomi-
als within each element of a tetrahedral mesh containing 45,937 cells. All tetrahedra have
planar faces interior to the domain and curved edges and faces that sit on the wing in an
isoparametric (i.e. quadratic geometry) setting.

A streamline was traced close to the wingtip, and the results are shown in Fig. 12. Again,
we emphasis that this example demonstrates that we can go from two-dimensional stream-
line filtering to three-dimensional streamline filtering with little extra effort.

4.3 Viscous Flow

The last example that we present is a two-dimensional viscous flow (using the Reynolds-
Averaged Navier-Stokes Equations) calculated around a NACA 0012 airfoil with the follow-
ing conditions: α = 2.0, Ma = 0.5 and Re = 5,000. The mesh consists of 4068 quadratic
adapted elements with a P = 2 solution interpolation. Figure 13 shows the type of stream-
line that we can expect to obtain; separation can be observed toward the trailing edge. It
should be noted that the SIAC scheme was used to generate these streamlines.

Figure 14 shows a streamline in the separated region at the trailing edge. (t = 0.1 is used
with a second-order Runge-Kutta scheme in both cases. It can be seen that the non-filtered
streamline (top two images) spirals inward toward a critical point. This is a physically in-
correct situation. However, for the streamline calculation done with filtering (bottom two
images), the streamline spirals out and finally leaves the airfoil. This example demonstrates
how, when using ODE integrators, errors can accumulate and produce physically erroneous
results (especially in the presence of critical points). Filtering of the solution ameliorates
this problem in both an accurate and efficient manner.



J Sci Comput (2009) 38: 164–184 181

Fig. 12 Streamline close to the wingtip for the 3D transonic case

Fig. 13 Streamline close to the
airfoil. Separation can be seen
toward the trailing edge. The x
location marks the starting point
of the streamlines on Fig. 14

5 Conclusions and Future Work

A smoothness-increasing accuracy-conserving filtering technique was introduced to obtain
accurate streamline calculations by introducing continuity at element interfaces. The method
uses an on-the-fly accuracy conserving, smoothness-increasing filter with a second-order
Runge-Kutta (RK2) method to trace streamlines. By eliminating the element-wise jumps in-



182 J Sci Comput (2009) 38: 164–184

Fig. 14 Streamlines at the separated region. Streamline starting location is the same for both cases

herent in discontinuous Galerkin solutions, the order of convergence of time-integrators can
be conserved. With this method, incorrect integration close to critical points can be avoided,
and accurate streamlines can be traced with larger time steps. Although the filter is computa-
tionally expensive, it is a necessary tool to be employed in the DG post-processing settings,
so the time integrator does not see the “artificial” discontinuities in the flow solution.

Clearly, a more accurate streamline time integration scheme is desirable; the currently
used RK2 solver is explicit and displays only second order convergence. Finding a higher-
order multi-stage or multi-step scheme that requires sample points only along the path would
lead to a more accurate streamlining method. For streaklining, it has been shown that implicit
methods, in particular Backward Differentiation, are most effective [14]. In order to be able
to use these algorithms, a continuous solution is not sufficient; the first derivative of the
solution also needs to be smooth. As a requirement of the implicit nature of these schemes



J Sci Comput (2009) 38: 164–184 183

and a desire to efficiently converge, a Newton-Raphson iteration is used to find the desired
location of the sample points. Without a smooth and accurate velocity gradient tensor, the
Newton-Raphson scheme does not display quadratic convergence and may not be stable. By
applying a modification to this filtering technique [3], continuity of the first derivative can
be achieved and more effective time-integrators can be implemented for both streamlining
and streaklining.

Additionally, examining the errors in the interpolation procedure needs to be performed
since the convolution procedure requires the solution at quadrature points along the stream-
line. Currently, the location of these points is calculated using linear interpolation along
that segment of the streamline. The solution, however, is a higher-order curve. In order to
improve the accuracy of the quadrature point coordinates calculation, a curve fitting of the
higher-order curve should be applied to the sample points of the streamline.

However, given the limitations of current visualization techniques for streamline integra-
tion of higher-order data, we are able to obtain results that suggest this is a promising filter-
ing technique. We have used existing knowledge of post-processing discontinuous Galerkin
methods to increase smoothness of the approximation using a combination of one-sided
post-processing and a characteristic length for non-uniform meshes. Since this technique
takes into account the information about the approximation, we are able to ensure that it
conserves the accuracy while improving smoothness.

Acknowledgements The first, third and fourth authors would like to acknowledge the support of ARO
grant number W911NF-05-1-0395. The third author also acknowledges the support of NSF Career Award
(Kirby) NSF-CCF0347791. This work was performed while the second author was in Department of Math-
ematics, Virginia Tech, Blacksburg, VA, USA. The authors would also like to thank Mike Steffen for useful
comments and suggests.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

1. Burden, R., Faires, J.: Numerical Analysis. PWS, Boston (1993)
2. Cockburn, B.: Discontinuous Galerkin methods for convection-dominated problems. In: High-Order

Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol. 9,
pp. 69–224. Springer, Berlin (1999)

3. Cockburn, B., Ryan, J.K.: Local derivative post-processing for discontinuous Galerkin methods (2008,
in preparation)

4. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element
method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

5. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection P 1-discontinuous-Galerkin finite element
method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991)

6. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws. V:
Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

7. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated prob-
lems. J. Sci. Comput. 16, 173–261 (2001)

8. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin fi-
nite element method for conservation laws III: One dimensional systems. J. Comput. Phys. 84, 90–113
(1989)

9. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite ele-
ment method for conservation laws IV: The multidimensional case. Math. Comput. 54, 545–581 (1990)

10. Cockburn, B., Luskin, M., Shu, C.-W., Süli, E.: Post-processing of Galerkin methods for hyperbolic
problems. In: Proceedings of the International Symposium on Discontinuous Galerkin Methods, pp. 291–
300. Springer, Berlin (1999)



184 J Sci Comput (2009) 38: 164–184

11. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin Methods: Theory, Computation
and Applications. Springer, Berlin (2000)

12. Cockburn, B., Luskin, M., Shu, C.-W., Suli, E.: Enhanced accuracy by post-processing for finite element
methods for hyperbolic equations. Math. Comput. 72, 577–606 (2003)

13. Curtis, S., Kirby, R.M., Ryan, J.K., Shu, C.-W.: Post-processing for the discontinuous Galerkin method
over non-uniform meshes. SIAM J. Sci. Comput. 30, 272–289 (2007)

14. Darmofal, D.L., Haimes, R.: An analysis of 3-d particle path integration algorithms. J. Comput. Phys.
123, 182–195 (1996)

15. Darmofal, D.L., Haimes, R.: Towards the next generation in computational fluid dynamics (2005), AIAA,
205-0007

16. Gear, C.W.: Solving ordinary differential equations with discontinuities. ACM Trans. Math. Softw. 10(1),
23–44 (1984)

17. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85
(1998)

18. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high-order time discretization methods.
SIAM Rev. 43, 89–112 (2001)

19. Hou, H.S., Andrews, H.C.: Cubic splines for image interpolation and digital filtering. IEEE Trans.
Acoust. Speech Signal Process. 26, 508–517 (1978)

20. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for CFD, 2nd edn. Oxford University
Press, London (2005)

21. Laidlaw, D.H., Kirby, R.M., Jackson, C.D., Scott Davidson, J., Miller, T.S., da Silva, M., Warren, W.H.,
Tarr, M.J.: Comparing 2d vector field visualization methods: A user study. IEEE Trans. Vis. Comput.
Graph. 11(1), 59–70 (2005)

22. Ma, K.-L., Smith, P.J.: Virtual smoke: And interactive 3d flow visualization technique. In: Visualization
’92. IEEE Comput. Soc., Los Alamitos (1992)

23. Max, N., Crawfis, R.: Textured splats for 3d scalar and vector field visualization. In: Visualization ’93,
pp. 261–272. IEEE Comput. Soc., Los Alamitos (1993)

24. Mitchell, D.P., Netravali, A.N.: Reconstruction filters in computer-graphics. In: SIGGRAPH ’88: Pro-
ceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, pp. 221–228.
Assoc. Comput. Mech., New York (1988)

25. Moller, T., Machiraju, R., Mueller, K., Yagel, R.: Evaluation and design of filters using a Taylor series
expansion. IEEE Trans. Vis. Comput. Graph. 3(2), 184–199 (1997)

26. Ryan, J.K., Shu, C.-W.: On a one-sided post-processing technique for the discontinuous Galerkin meth-
ods. Methods Appl. Anal. 10, 295–307 (2003)

27. Ryan, J.K., Shu, C.-W., Atkins, H.L.: Extension of a post-processing technique for the discontinuous
Galerkin method for hyperbolic equations with application to an aeroacoustic problem. SIAM J. Sci.
Comput. 26, 821–843 (2005)

28. Steffen, M., Curtis, S., Kirby, R.M., Ryan, J.K.: Investigation of smoothness enhancing accuracy-
conserving filters for improving streamline integration through discontinuous fields. IEEE Trans. Vis.
Comput. Graph. 14, 680–692 (2008)

29. Szabó, B.A., Babuska, I.: Finite Element Analysis. Wiley, New York (1991)
30. van Walsum, T., Post, F.J.: Iconic techniques for feature visualization. In: Visualization ’95, pp. 288–295.

IEEE Comput. Soc., Los Alamitos (1995)
31. van Wijk, J.J.: Rendering surface-particles. In: Visualization ’92, pp. 54–61. IEEE Comput. Soc., Los

Alamitos (1992)
32. van Wijk, J.J., de Leeuw, W.C.: Enhanced spot noise for vector field visualization. In: Visualization ’95,

pp. 233–239. IEEE Comput. Soc., Los Alamitos (1995)
33. van Wijk, J.J., de Leeuw, W.C.: A probe for local flow field visualization. In: Visualization ’93, pp. 39–

45. IEEE Comput. Soc., Los Alamitos (1993)
34. Vetterling, W.T., Press, W.H., Teukolsy, S.A., Flannery, B.P.: Numerical Recipes in C. Cambridge Uni-

versity Press, Cambridge (1997)
35. Weiskopf, D., Erlebacher, G.: Overview of flow visualization. In: Hansen, C.D., Johnson, C.R. (eds.).

The Visualization Handbook. Elsevier, Amsterdam (2005)


	One-Sided Smoothness-Increasing Accuracy-Conserving Filtering for Enhanced Streamline Integration through Discontinuous Fields
	Abstract
	Introduction
	Background
	The Discontinuous Galerkin Method
	Smoothness-Increasing Accuracy-Conserving Filters
	One-Sided Filtering


	One-Sided Filtering for Streamline Calculation
	Characteristic Model Problem
	Characteristic Length
	Integration of the Filtering Kernel
	Time Integration Along a Streamline
	Validation of One-Dimensional Filter for Multi-Dimensional Data

	Applications to Simulation Data
	Two-Dimensional Transonic Airfoil
	Three-dimensional Transonic Airfoil
	Viscous Flow

	Conclusions and Future Work
	Acknowledgements
	Open Access
	References


