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Using the Stochastic Collocation Method for the
Uncertainty Quantification of Drug Concentration

Due to Depot Shape Variability
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and Robert M. Kirby∗, Member, IEEE

Abstract—Numerical simulations entail modeling assumptions
that impact outcomes. Therefore, characterizing, in a probabilis-
tic sense, the relationship between the variability of model selec-
tion and the variability of outcomes is important. Under certain
assumptions, the stochastic collocation method offers a computa-
tionally feasible alternative to traditional Monte Carlo approaches
for assessing the impact of model and parameter variability. We
propose a framework that combines component shape parameter-
ization with the stochastic collocation method to study the effect
of drug depot shape variability on the outcome of drug diffusion
simulations in a porcine model. We use realistic geometries seg-
mented from MR images and employ level-set techniques to create
two alternative univariate shape parameterizations. We demon-
strate that once the underlying stochastic process is characterized,
quantification of the introduced variability is quite straightforward
and provides an important step in the validation and verification
process.

Index Terms—Drug diffusion, finite-element modeling, level set,
porcine model, segmentation, shape model, stochastic collocation,
uncertainty quantification.

I. INTRODUCTION

IN ANY numerical simulation, assumptions are made that
do not precisely reflect the physical reality of the problem.

These simplifications yield tractable problems and also intro-
duce error. As part of the traditional simulation validation and
verification (V&V) process, it is important to understand the
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impact of a given assumption on the final result. Assuming that
a given modeling decision represents a specific choice from a
set of possible decisions, it is possible to quantify the impact
of that choice on the simulation. Knowing the variability intro-
duced by the range of possible choices allows confidence in the
final result to be adjusted accordingly. Probabilistic characteri-
zation of the effect of modeling decisions on simulation results
is a powerful tool for validation, but is generally prohibitively
costly due to the number of simulations that must be run to
obtain a reasonable confidence level for the statistics. To quan-
tify the impact of a given modeling decision using a standard
Monte Carlo approach, individual samples (each representing a
specific modeling choice) are randomly taken from the popula-
tion of possible choices according to the underlying probability
distribution. However, this method converges quite slowly (as
1/
√

N [1]), often requiring thousands of samples (and therefore
thousands of simulations), which generally proves a prohibitive
requirement. If instead we can model this population as arising
from an underlying stochastic process, it is possible to apply the
generalized polynomial chaos–stochastic collocation (gPC-SC)
method [2], [3] to efficiently sample the probability space, yield-
ing accurate statistics from a nearly minimal number of samples.
The stochastic collocation method can be seen as a “sampling”
extension to generalized polynomial chaos, which represents
the stochastic process as a linear combination of orthogonal
polynomials of random variables. This gPC representation has
been used to solve stochastic differential equations in a number
of fields [4]–[7]. Stochastic collocation has been successfully
used to quantify the effects of heart position in ECG forward
simulation [8] and in modeling uncertainty in diffusion sim-
ulation due to microstructure variability [9]. Since stochastic
collocation builds statistics based on deterministic solutions for
sampled stochastic parameter values, it only requires a standard
discrete solver for the problem of interest. This makes for easy
implementation and allows its use on problems with complicated
governing equations for which a nonsampling gPC formulation
would be difficult or impossible.

The specific experiment we are simulating in this paper at-
tempts to test the efficacy of the antiproliferative drug rapamycin
delivered via an injected triblock copolymer gel in limiting
neointimal hyperplasia growth at the venous anastomosis of
an implanted arteriovenous expanded polytetrafluoroethylene
(ePTFE) graft. This experiment is part of a study analyzing the
efficacy of such a procedure for possible future use in hemodial-
ysis patients with implanted ePTFE grafts. The current study
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TABLE I
PHYSICAL REGION ATTRIBUTES

uses a porcine model with grafts implanted between the com-
mon carotid artery and ipsilateral external jugular vein [10].

We are specifically interested in drug transport via diffusion
from the injected gel deposit containing drug (the “drug de-
pot”) to the venous anastomosis (the “target site”). The geom-
etry of the vein, artery, graft, and depot are modeled from MR
images and diffusion coefficients of each are experimentally
determined [11] (see Table I). All other structures in the test
region are combined and labeled as homogeneous “nonvascular
tissue.” Additionally, the vein, artery, and graft wall thicknesses
cannot be measured reliably from MR images. Therefore, we
use measurements obtained from histological studies.

One of the modeling decisions involved in this simulation is
the geometric shape of the drug depot. While the volume of gel
and amount of drug are known and constant from experiment to
experiment, each injection is a nonrepeatable process that yields
a different depot shape based on the properties of the local tissue
and variability in the injection technique. For an individual sim-
ulation, a single depot shape must be chosen from the range of
possible shapes. This choice introduces variability to the exper-
imental outcome; hence, it is important to study. In this paper,
we propose a method for studying the effect of depot shape on
the outcome of the experiment. In order to determine the vari-
ability in drug concentrations at some simulation time due to
the choice of depot shape, we develop a shape parameterization
to represent the underlying population of shapes. We then use
the gPC-SC method to sample this population at well-chosen
parameter values and derive statistics of the effect of shape on
drug concentration at our chosen simulation time. While the
specific shape models developed in this paper are characterized
by a single parameter and are too simple to capture the entire
variability observed from all injections, the contribution of this
paper is the development of a method for studying the effect of
shape variability on simulation outcomes. More complex shape
models with multiple parameters can be easily inserted into the
proposed framework in future studies.

The remainder of the paper is organized as follows. Section II
introduces the notion of probabilistic characterization of shape
variability and the use of the stochastic collocation method
that take advantage of this characterization to effectively com-
pute simulation outcome statistics. Section III outlines the im-
age segmentation pipeline for obtaining realistic geometries
(Section III-A), the specific transformations used in charac-
terizing shape variability (Section III-B), the discretization
of segmentation results (Section III-C), the simulation model
(Section III-D), and its numerical approximation (Section III-E).
Results of experiments with two different shape variability char-
acterizations are presented in Section IV, followed by a conclud-
ing discussion in Section V.

II. MODELING UNCERTAINTY IN DEPOT SHAPE

To begin our study, we must first understand and clearly ar-
ticulate the mathematical problem we are attempting to solve.
We accomplish this by first describing our “experiment” (in the
sense that a probabilist would), then by articulating a probability
space that captures the salient features of the experiment about
which we want to reason, and finally, by describing how the
stochastic collocation method can be employed to allow com-
putation of statistics of interest. Our “experiment” of interest is
as follows. We assume that we have been given a test volume
containing the static structures of interest—in our case, the vein,
artery, and graft. These objects are modeled as remaining fixed
in both position and material properties (see Table I) throughout
the course of all experiments. We assume that we have also been
given a parameterization of drug depot shapes such that a spe-
cific parameter value corresponds to a specific geometric depot
model. Having both the static test volume and a specific depot
model, diffusion simulations can be run yielding drug concen-
trations for positions within the test volume at any future time,
respecting assumptions regarding our simulation method.

For our probabilistic experiment, we limit the set of admis-
sible depot shapes to those represented by a univariate param-
eterization. In Section III-B, we will formulate two specific
parameterizations: one that generate shapes with varying reg-
ularity in surface curvature and another that generates shapes
by morphing between two realistic depot shapes as segmented
from a magnetic resonance image. The initial concentration of
drug in the depot is assumed to be uniform, and the volume
of all depot geometries generated by this parameterization is
constant. The volume, position, and gross shape of the depot
were chosen to represent a “standard” injection result as seen
by postinjection MRI. Variation in depot shape can now be ex-
pressed by assuming that any specific shape is drawn from a
set consisting of shapes resulting from our parameterization.
We assume that there is an equal probability of obtaining any
specific depot shape from our parameterization, i.e., the prob-
ability distribution is uniform. Using this parameterization, we
aim to compute statistics of drug concentration at some time
tf induced by the variations in depot shape expressed by this
simple (but quantifiable) probabilistic experiment. To formalize
this process, let (χ,A, µ) be a complete continuous probabil-
ity space that expresses variation in the depot shape where χ
is the event space consisting outcomes corresponding to depot
shapes, A ⊂ 2χ the σ-algebra used to define measurable events,
and µ the probability measure expressing the distribution from
which outcomes are drawn; in our case, we choose a uniform
distribution. We can now express the depot shape as a function
of the uniform random variable ξ where the length of the distri-
bution interval represents the range of admissible depot shapes.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 30, 2009 at 07:01 from IEEE Xplore.  Restrictions apply.



PRESTON et al.: USING STOCHASTIC COLLOCATION METHOD FOR UNCERTAINTY QUANTIFICATION 611

We note that although a uniform distribution is used through-
out this study, the stochastic collocation approach can be used
for any compactly supported second-order random process. The
random field of interest (and, in particular, its statistical char-
acterization) in this study is the final drug concentration at a
time tf . Given that the depot shape in our experiment can be
completely expressed in terms of ξ (given a single-parameter
diffeomorphism of admissible shapes), and given that the drug
concentration follows as a direct consequence of a depot shape,
the drug concentration can be expressed as a function of ξ.

Let the distribution of drug concentration due to ξ be denoted
by f(x, tf , ξ) where x denotes points within our test volume
and tf denotes the final time of interest. Mathematically, the
quantities we are interested in computing are given by the fol-
lowing expressions:

mean(f)(x, tf ) = E[f(x, tf , ξ)]

=
∫

Γ
f(x, tf , ξ)dµ (1)

var(f)(x, tf ) = E[(f(x, tf , ξ) − mean(f))2 ]

=
∫

Γ
(f(x, tf , ξ) − mean(f))2dµ (2)

or more generally for the pth moment

E[(f(x, tf , ξ) − mean(f))p ]

=
∫

Γ
(f(x, tf , ξ) − mean(f))pdµ (3)

where mean(f) and var(f) (and other high-order moments) are
themselves fields defined over our test volume giving the mean
and variance of drug concentration at any x due to depot shape
variability, and Γ is the domain over which the random variable
varies. Also note that mean(f) and var(f) are functions of tf .
Based upon these quantities, we can make steps toward quanti-
fying the impact of depot shape variability on drug transport in
our test volume.

We note that the process of moving from the uniform shape
distribution to the distribution of f(x, tf , ξ) (the drug concentra-
tion distribution) is highly nonlinear; the resulting distribution
is unlikely to be uniform. We present means and variances (i.e.,
the first two moments) as the lowest order statistical informa-
tion one would examine, but higher order moments may (and,
in general, will) be necessary to fully characterize the statistics
of the resulting process. An example analysis showing higher
order moments is presented in Section IV.

The gPC-SC approach takes advantage of quadrature rules to
integrate the stochastic process of interest over the stochastic
domain, thus allowing the efficient computation of quantities
such as means and variance. Under assumptions of smoothness,
which, in this case, equate to the assumption that drug con-
centration varies smoothly with changes to our parameterized
depot shape model, we can gain exponential convergence in the
accuracy of our computed statistics as a function of the number
of diffusion simulations we are required to run. In the discus-
sion of our experiment, we will refer to the simplified diagram
in Fig. 1. In the stochastic collocation approach, a collection

Fig. 1. Calculation of the mean drug concentration for a shape parameteriza-
tion using first-order Smolyak points for collocation. (a) Univariate shape pa-
rameterization and three collocation points. (b) Three gel shapes corresponding
to the collocation points. (c) Cutaway of tetrahedral mesh showing embedding
of gel shapes. (d) Cutaway of tetrahedral mesh colored by concentration solution
at day 14 of simulation. (e) Sampling of concentration values on a regular grid
spacing over a region of interest. (f) Mean concentration at each sample point
is calculated as a weighted sum of concentration values from (e).

of points at which the random field is to be sampled is spec-
ified, and a set of corresponding weights is computed, which
account for the probability density function (pdf) characteris-
tics underlying the set from which the points (or outcomes) are
drawn. In the context of our study, each collocation point ξ rep-
resents a particular gel shape selected from our outcome set.
Fig. 1(a) shows an example of a univariate smoothing param-
eterization sampled at three collocation points, and Fig. 1(b)
shows the resulting depot shapes. Since the embedding process
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is deterministic given a depot shape, the entire volume [shown
in Fig. 1(c)] is a consequence of the chosen collocation point. At
each collocation point, we can then compute the drug concen-
tration f(x, tf , ξ) through traditional finite-element diffusion
simulation techniques, as shown in Fig. 1(d). Now, unlike tradi-
tional Monte Carlo in which large numbers of collocation points
are used in an attempt to form accurate statistics, only a limited
number of samples are used. The gPC-SC approach exploits
smoothness assumptions on the random process to orchestrate
the selection of points and weights such that accurate results
can be obtained. We use third-order Smolyak points that require
q = 9 points for a single random dimension, as this level of
integration is sufficiently accurate for the needs of this study
(note that Fig. 1 shows only the three first-order Smolyak sam-
ple points). In contrast, the number of realizations required for
equivalent solution accuracy via the Monte Carlo method is sig-
nificantly larger. While in the 1-D case the gPC-SC approach
reduces to Clenshaw–Curtis quadrature [12], we will continue
to formulate our method as stochastic collocation in order to
motivate the extension to multidimensional parameterizations.
Once diffusion computations have been done for each depot
shape dictated by the collocation sampling, the statistics of drug
concentration as a consequence of depot shape is given by the
following expressions:

mean(f)(x, tf ) = E[f(x, tf , ξ)]

≈
q∑

j=1

wjf(x, tf , ξj ) (4)

var(f)(x, tf ) = E[(f(x, tf , ξ) − mean(f))2 ]

≈
q∑

j=1

wj (f(x, tf , ξj ) − mean(f))2 (5)

where q is the number of points used and wj denotes the weights.
As discussed further in Section IV-A, calculation of these statis-
tics over the distinct diffusion solutions requires sampling the
solutions at a set of points uniform between simulation solu-
tions, as shown in Fig. 1(e). The means and variances can then
be computed at these points [see Fig. 1(f)].

Similarly, higher order centralized moments can be approxi-
mated by

E[(f(x, tf , ξ) − mean(f))p ]

≈
q∑

j=1

wj (f(x, tf , ξj ) − mean(f))p . (6)

Discussion of the formulation and computation of further statis-
tics based upon the stochastic collocation method can be found
in [3]. Of note is that increasing the order of the moments under
examination may lead to an increase in the number of colloca-
tion points required.

III. METHODS

In order to run our diffusion simulation, we must first have
a discretized representation of the tissue in which we are inter-

ested. For our statistical experiment, the model will be a com-
bination of “static” components not changed from simulation
to simulation and a model of the injected drug depot generated
from our parameterization that changes based on the parame-
ter value chosen. The depot shape is assumed to be unchanged
within a single diffusion simulation. While this ignores degra-
dation of the gel over time, changes to the shape or diffusive
properties of the depot would be difficult to experimentally de-
termine and greatly increase the complexity of the simulation.
Both the models of the static components and the depot shape
parameterization rely on segmentations of MRI volumes. Once
specific structures are segmented, geometric models of these
objects are generated. These models are used to create a finite-
element diffusion simulation for each parameter value. This
process is described in greater detail in the following sections.

A. Image Segmentation

Lumen and depot geometries were constructed from MR im-
ages taken at weekly intervals following surgery. Gel injection
was performed at these times, with pre- and postinjection scans
acquired. Lumen geometry was obtained via a “black blood”
3-D turbo spin echo pulse sequence. This sequence uses a nons-
elective inversion pulse followed by a selective reinversion pulse
in preparation for imaging in order to suppress signal from blood
flowing into the imaging plane. A single lumen geometry was
selected as the “standard” and used for all simulations; this
is the static part of the model. Fig. 2 depicts the processing
pipeline for image segmentation and mesh generation. A rough
segmentation of the lumen was performed using user-defined
seed points within the lumen as inputs to a connected compo-
nent/thresholding algorithm [see Fig. 2(b)]. Due to the extreme
narrowing of the vessels near the anastomosis and the common
presence of flow and pulsatile motion artifacts in this region, a
minimum cost path (MCP) algorithm is necessary to complete
the lumen connection through this area [see Fig. 2(c)]. This
technique is similar to the stenosis-robust segmentation tech-
nique described in [13]. Starting from the initial segmentation,
this algorithm defines a graph in which voxels are considered
nodes and each voxel has an edge to each immediate neigh-
bor (six-connected). Since lumen should be the darkest region
in this black blood scan, the cost associated with each edge
is based on the intensity of the neighboring pixel. A search is
then performed to find the MCP connecting the disconnected
segmentation regions. An active-contour-based region growing
step (implemented in the Symbolic Numeric Algebra for Poly-
nomials (SNAP) [14] software package) was then used to refine
and “fill in” the segmentation [Fig. 2(d)].

Gel images were taken immediately following injection using
a specially developed pulse sequence for depot imaging [15].
Due to the improved contrast introduced by this sequence,
a simple thresholding algorithm was sufficient for segmenta-
tion. The segmented volume agreed well with the known in-
jected volume—taking a maximum and minimum “reasonable”
threshold level changed the segmented volume to approximately
±20% of the known volume. The threshold level used was

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 30, 2009 at 07:01 from IEEE Xplore.  Restrictions apply.



PRESTON et al.: USING STOCHASTIC COLLOCATION METHOD FOR UNCERTAINTY QUANTIFICATION 613

Fig. 2. Segmentation and discretization pipeline for lumen geometry. (a) Black blood MR image. (b) Initial segmentation from user-defined seed points.
(c) Disconnected segments of lumen (see artery in the left of previous image) are connected using an MCP algorithm. (d) Segmentation is refined using a
level-set-based region growing step. (e) Surface triangulation is generated from refined segmentation. (f) Tetrahedral mesh of vessel walls is generated using an
offsetting technique.

chosen such that the segmented volume agreed with the known
injected volume.

B. Characterization of Object Variability

To apply the stochastic collocation method, we require a pa-
rameterization of depot shape—the variable component of the
geometric model. To physically model the injection process
would require a complex, high-dimensional parameterization
based on properties of surgically damaged tissue, gel proper-
ties, and injection techniques, and would result in a more com-
plex simulation than the diffusion problem we are attempting
to solve. Instead, our parameterization is based on the results
we have—namely segmentations of the injected depot from
postinjection MRI. In this way, we can develop a simple, low-
dimensional parameterization that still respects the available
data.

1) Level-Set Shape Representation: We explore two param-
eterizations both based on the evolution of existing depot seg-
mentations using level-set methods [16]. Since level-set meth-
ods operate directly on a volume of data, they are an obvious
choice for working with images acquired from MRI and have the
advantages of easily allowing deformations based on differen-
tial properties of a surface and automatically handling changes
in surface topology. For both parameterizations, we require that
the volume of the depot be constant for any parameter value in
order to keep the amount of drug uniform for all simulations
while still using the known value for drug concentration in the
injected gel.

Our parameterization will be formed by deforming an initial
depot surface over time. Note that “time” in this section does
not refer to the diffusion simulation time, but an arbitrary unit
describing the amount of evolution of our level-set surface has
undergone. In order to set up our level-set methods, assume that
we start with some initial surface S0 at time t = 0. We will find
a scalar function θ such that S0,k is an isosurface of θ with value
k, i.e.

S0,k = {x|θ(x, t0) = k}. (7)

We can then modify this surface by changing the function θ
due to properties of St . More generally, any point x in a volume
dataset at time t can be thought of as a point on the isosurface
St,θ(x) . The function θ can be modified at all points based
on properties of the isosurface passing through that point (the

“local isosurface”). The most obvious choice for our embedding
θ is a distance transform to the isosurface St . In this case, the
surface we are interested in is St,0 , which we will now refer to
as simply St . For surface evolution, we move the isosurface St

in the surface normal direction n

n =
∇θ

‖∇θ‖ (8)

by modifying the values of θ over a series of time steps

St+1(x) = St(x) + V (x)n (9)

where V (x) is the “speed function,” a function of local and
global properties of the local isosurface and independent forc-
ing functions. As described in Section II, this parameterization
will be sampled at specified collocation points (“times” in our
current formulation). In order to ensure stability, we use a vari-
able time step for our level-set evolution based on the fastest
moving point on our surface. We do not attempt to sample at the
exact collocation point specified, but use a “nearest neighbor”
approach, ensuring that our surface is sampled within one time
step of the prescribed sample time. Since the purpose of the
variable time step is to limit the movement of any point on the
surface to one voxel length in a single time step, the maximum
error introduced by this approximation is one grid spacing, and
for most of the surface, the actual error is much less.

Since we are only interested in a single isosurface of θ, it
is unnecessary to update the entire volume at each time step.
Only voxels near St at time step t are needed to calculate St+1 .
Therefore, we use a sparse-field method [17] for calculating
updates. This greatly reduces the computational burden while
giving subvoxel accuracy for surface position.

2) Parameterization 1—Mean Curvature Flow: The first pa-
rameterization takes an existing gel shape chosen as an exam-
ple of a particularly nonregular surface and smooths it using a
volume-preserving mean curvature flow (MCF) transformation.
MCF smooths a surface at each time step by moving each point
on the surface in the surface normal direction by an amount
proportional to the mean curvature. In its original, nonvolume-
preserving formulation, MCF is the gradient descent for the
surface area. The mean curvature H of the local isosurface is
proportional to the divergence of the local isosurface normal

H =
1
2
(∇n). (10)
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Fig. 3. Gel shape smoothing using volume preserving MCF.

Fig. 4. Volume-preserving gel shape metamorphosis.

This technique, however, reduces the interior volume of the
surface, generally resulting in a singularity at t∞. In order to
enforce volume preservation, the movement of the surface is
adjusted by the average mean curvature so that the total offset
of the surface in the normal direction is zero

V (x) = (H(x) − H̄) (11)

where

H̄ =

∫
S H(x)dx∫

S dx
. (12)

The effect of volume preserving MCF is to create progres-
sively smoother shapes that approach a sphere, as shown in
Fig. 3. For a more rigorous treatment, see [18]. Using this pa-
rameterization in conjunction with stochastic collocation, we
can study the effect of depot shape smoothness on experimen-
tal outcomes of drug diffusion. Equivalently, for a fixed depot
volume, this can be seen as studying the effect of surface area.

3) Parameterization 2—Metamorphosis: The second pa-
rameterization performs a volume-preserving metamorphosis
between two depot segmentations chosen to represent the ex-
tremes of surface regularity for the existing segmentations. The
less-regular shape was taken as the “source” surface and the
more-regular shape as the “target” surface for the morph. In or-
der to allow volume preservation, the target surface was scaled
and resampled to have the same interior volume as the source
surface.

The morphing technique used is based on Breen and
Whitaker’s work on level-set shape metamorphosis [19], where
transitioning between the two surface models occurs via a level-
set formulation with the speed function given by

V (x) = γ(x) (13)

where γ(x) is the distance transform of the target image. In this
way, points on the source surface will move toward the target
surface whether they are inside or outside the target surface.
This shape metamorphosis, however, is not volume preserving.
While we know that the interior volumes at the beginning and
end of the transformation are equal, the volume of intermediate
surfaces is not constrained. As Breen and Whitaker noted, the

volume inside an intermediate surface Ωt can be divided into two
regions—Ωi

t , a region of voxels inside the target surface that will
grow to match the target, and Ωo

t , a region of voxels outside the
target surface that will shrink to zero volume. For any x ∈ Ωt ,
the two regions can be distinguished by the sign of γ(x). In
order to ensure constant volume throughout the transformation,
we introduce two scaling factors, ρi and ρo , which scale the
speed function of voxels in Ωi and Ωo , respectively. The values
of the scaling factors rely on the total movement of the surface
of the two regions Si

t = {x ∈ St |γ(x) > 0} and So
t = {x ∈

St |γ(x) < 0}. Let vi =
∫

S i
t
V (x)dx and vo =

∫
S o

t
V (x)dx. We

then constrain the change in the two regions to be equal at each
time step by updating ρi and ρo

ρi =

{ vo

vi
, if vi > vo

1.0, otherwise
ρo =

{ 1.0, if vi > vo

vi

vo
, otherwise

where the level-set formulation now becomes

St+1(x) =
{ St(x) + ρiV (x)n, x ∈ Ωi

St(x) + ρoV (x)n, x ∈ Ωo .

Fig. 4 shows the intermediate shapes obtained by the meta-
morphosis method between two segmented gel shapes. One of
the gel shapes is less regular than the other, providing a second
way of studying the effect of surface area for fixed-volume depot
shapes.

C. Geometric Discretization

Once segmented, geometric surface models of the structures
of interest were created and embedded in a control volume. This
multisurface structure is used to define material regions and
voids in a surface-conforming tetrahedralization of the control
volume.

Since the imaged region is smaller than the desired control
volume, the vessels are extended to the boundaries of the control
volume. The vessels travel in roughly the z-direction within
the imaged region, so this extension is accomplished by simply
repeating the boundary z slices of the segmentation to the extents
of the control volume.
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A surface mesh of the lumen segmentation was created by
slightly blurring the segmentation with a Gaussian kernel, then
using this gray-level image as input to an isosurface meshing
algorithm. The algorithm used is part of the Computational
Geometry Algorithms Library (CGAL) [20] and uses iterative
point insertion on the isosurface to create a triangle surface mesh
with constraints on the maximum size and minimum angle of
any member triangle.

Each of the vascular structures (vein wall, artery wall, and
graft) has a different thickness and different diffusive properties.
The portions of the lumen contained in the different structures
cannot be clearly distinguished in the available MR images, so
the generated surface mesh of the lumen was hand-annotated
with this information based on knowledge of the anatomical
structures. The resolution of the MRI sequence used to image
the lumen was not high enough to directly image the vessel walls
or graft. In order to create the geometry of the graft and vessel
walls, thickness measurements from histology were used. Using
the labeled surface dataset, a tetrahedral model of the vascular
structures was generated by duplicating the surface mesh and
offsetting each duplicate mesh point in the surface normal direc-
tion by a distance equal to the thickness of the vascular structure
(see Table I for thickness values). Connecting each vertex to its
offset duplicate produces a mesh of triangular prisms. The max-
imum triangle size of the surface mesh was chosen with respect
to the thickness of the vascular structure in order to produce
well-shaped prisms. This mesh is then subdivided such that each
prism becomes three tetrahedra and all tetrahedra have coherent
faces. Coherent prism splits are computed using the “rippling”
algorithm described in [21]. The tetrahedra generated by this
process then have maximum edge lengths roughly equal to the
thickness of the structure they represent, 0.3–0.7 mm. While the
simple offsetting technique used has the possibility of produc-
ing intersecting or incorrectly oriented tetrahedra, experimental
results show that the curvature of our surface is low enough
at all points relative to the offset distance to avoid producing
any invalid elements. The surface mesh of a specific drug depot
shape is generated from the output of our parameterized depot
shape generation algorithm by the same method as used for the
lumen surface.

The depot surface and the outer (offset) lumen surface are
embedded in a cube representing the extent of our test volume.
These surfaces are combined and used as the input piecewise
linear complex (PLC) to TetGen [22]. The cube and the offset
lumen surface define the boundaries of the PLC (i.e., the offset
lumen surface represents a “hole” in the volume), and the ele-
ments of the depot surface mesh are used as internal constraining
faces of the generated constrained Delaunay tetrahedralization
(CDT) defining the drug depot region. The area outside of the
depot in this CDT is considered nonvascular tissue. Elements
generated are constrained to have a maximum radius–edge ratio
of 2.0, allowing element size to grow away from the structures
of interest. Finally, the previously computed tetrahedral mesh of
the vascular structures is merged with this tetrahedral volume to
create our final test domain containing five regions—the graft,
arterial wall, venous wall, drug depot, and nonvascular tissue.
The tetrahedralization step is constrained to preserve boundary

faces along the offset lumen surface, so this merging process
requires only these duplicate points be merged. This process
yields a discretization containing 210 000–270 000 elements
depending on the specific depot shape.

D. Model Equations

For the purposes of our simulation, we assume that drug
transport is only due to diffusion. Furthermore, we assume that
diffusion rates are isotropic and constant for each material; let
D be a function that is piecewise discontinuous and consists of
diffusion coefficients Dm associated with each material m. The
drug concentration c at position x and time t is then governed
by the equation

∂c(x, t)
∂t

= D∇2c(x, t), x ∈ Ω (14)

where appropriate boundary conditions are applied. We assume
that any drug diffusing into the interior of the vascular struc-
tures would be immediately removed by blood flow, leading
to a known (zero) concentration at the lumen boundary (zero
Dirichlet conditions). We also require that no diffusion occur at
the boundary of the test volume.

E. Numerical Approximation

Solving (14) for any but the simplest geometries requires
a numerical approximation, typically based on methods such
as boundary elements or finite elements. For our simulation,
we use the standard finite-element formulation with piecewise
linear basis functions.

For the domain Ω representing our control volume, let
T (Ω) be the tetrahedralization of the volume, as described in
Section III-C. Also, let the set N contain the indexes of the ver-
tices of T (Ω), which are the nodes of our finite-element mesh.
We then decomposed the set N into two nonintersecting sets, B
and I, representing nodal indexes that lie on the boundary and
nodal indexes of the interior, respectively. Let us furthermore
decompose B into Bq , the outer boundary of the test volume,
and Bc , the lumen boundary. To satisfy our requirements from
Section III-D, we impose zero Neumann boundary conditions
at Bq and zero Dirichlet boundary conditions at Bc .

Let φi(x) denote the global finite-element interpolating basis
functions, which have the property that φi(xj ) = δij where xj

denotes a node of the mesh for j ∈ N . Solutions are then of the
form

u(x) =
∑
k∈N

ûkφk (x) (15)

=
∑
k∈U

ûkφk (x) +
∑
k∈Bc

ûkφk (x) (16)

where U = I ∪ Bq , which represents the unknown values of
the problem. The first term of (16) then denotes the sum over
the degrees of freedom (the values at the unknown vertices
weighted by the basis functions) and the second term denotes
the same sum for the (known) Dirichlet boundary conditions of
the solution. Substituting the expansion (16) into the differential
equation (14), multiplying by a function from the test space
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{φj (x); j ∈ U}, taking inner products, integrating by parts, and
applying boundary conditions yield a linear system of the form

M ∂
u
∂ t + K
u = 
f (17)

where 
u denotes a vector containing the solution of the system
(i.e., concentration values at the nodal positions inU) and M, K,
and 
f denote the mass matrix, stiffness matrix, and right-hand
side function, respectively, given by the following expressions:

M = Mjk = (φj , φk ) (18)

K = Kjk = (∇φj ,D · ∇φk ) . (19)

In the previous expressions, j, k ∈ U , and (·, ·) denotes the inner
product taken over the entire spatial domain Ω. In our case, all
ûi for i ∈ Bc are zero and the flux on the exterior boundary was
taken to be zero, so fj = 0∀j.

The time-dependent equation (17) can be discretized using
the Crank–Nicolson scheme. Arranging the unknown (future
time step) values on the left-hand side yields the time stepping
equation (

M − ∆t
2 K

)
un+1 =

(
M + ∆t

2 K
)
un (20)

where ∆t is our time step and un represents our solution at time
step n. To solve using this scheme, we must also be given an
initial condition c(x, t = 0), which in our case represents the
time of injection, with a known, constant drug concentration
within the depot and zero concentration elsewhere. We retain
the solutions to the diffusion simulation at a set of time points
T at which we will calculate our statistics. Our simulation is
carried out over a period of 80 days with a time step of 2 h,
which has shown sufficiently accurate results for our purposes.

IV. RESULTS

The data presented in this section are computed from simula-
tion results for input data representing the discretization of the
simulation domain for depot shapes obtained by sampling our
shape parameterizations at the nine Smolyak collocation points
specified for third-order convergence.

Note that while these results give accurate characterization of
the variability based on our modeling and simulation assump-
tions, validation based on in vivo experimental studies has not
yet been performed.

We will describe and present data for three methods of ob-
taining statistics based on these simulation results. Section IV-A
deals with obtaining statistics over an area for which the location
and number of nodes of the solution u(x) differ for different
shape parameters. Section IV-B shows the mean and standard
deviation of total drug delivery to a region of interest over time,
as well as an example analysis of higher order statistics on this
data. Section IV-C shows the simpler case of computing statis-
tics over a static region of the discretized domain.

A. Domain Resampling

Since a different finite-element mesh is generated for each
depot shape (as described in Section III-C), the solution vectors
u from different discretizations do not represent weights for the

Fig. 5. Slice in the Z -plane of sampled collocation data at day 14. (a) Location
of collocation slice. (b) Material locations in slice plane, colored to match the
regions as shown in (a). (c) MCF diffusion mean values. (d) MCF diffusion
standard deviation values. (e) Morph diffusion mean values. (f) Morph diffusion
standard deviation values.

same basis functions, or even the same number of basis func-
tions. However, the solutions u(x) are defined everywhere over
the same domain Ω. We can therefore take samples at a constant
set of points in Ω, and compute statistics at these points. Since
our control volume is specifically chosen to be larger than the
area where we expect consequential levels of drug to diffuse
during our simulation period, there is no reason to sample the
entire control volume. For simplicity, we set a minimum level
of drug concentration in which we are interested and choose an
axis-aligned rectangular region encompassing all areas with at
least this drug concentration in any of the simulation solutions.
This region is then sampled on a regular grid, and the mean
and standard deviation calculated at these points. This process
is shown in Fig. 1(e) and (f). Fig. 5 shows an 11 × 11 mm
2-D region of the venous anastomosis for the solution at sim-
ulation day (tf ) 14 sampled at a resolution of 512 × 512. The
location of the slice is shown in Fig. 5(a), with the structures
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containing each sample point shown in Fig. 5(b). Note that the
gel region changes for each choice of parameter ξ, and the spe-
cific depot region shown in yellow in Fig. 5(a) and (b) is for
reference only. The mean and standard deviation at each sample
point is shown in Fig. 5(c) and (d), respectively, for the shape pa-
rameterization based on MCF. The mean and standard deviation
are similarly shown in Fig. 5(e) and (f) for the metamorphosis-
based shape parameterization.

B. Total Drug Delivery

Since we are interested in the amount of drug delivered to
the venous anastomosis over time, we also compute mean and
standard deviation of total drug in the vein wall at each time
point t ∈ T. Each element of our tetrahedralization ε ∈ T (Ω)
represents one of the materials in our domain. In particular, we
define Ev , the set of elements representing the tissue of the vein
wall (see Fig. 6). From this subset of elements, the total amount
of drug in the vein wall Vj (t) =

∫
Ev

u(x)dx is calculated for
each solution time point t ∈ T in each simulation arising from
a parameter value ξj . The mean and standard deviation at each
time point is then given by

mean(V (t)) =
q∑

j=1

wjVj (t) (21)

var(V (t)) =
q∑

j=1

wj

(
Vj (t) − mean(V (t))

)2
(22)

while as previously noted, we can compute higher order mo-
ments in a similar manner to (22).

Fig. 6(b) and (c) shows the amount of drug over time for
individual shape parameter simulations as well as the mean
and standard deviation as calculated earlier for our two shape
parameterizations.

To look more specifically at the amount of drug reaching our
target site, we define a spherical region of interest surrounding
the venous anastomosis [see Fig. 7(a)]. We then define the set
of elements Es as those falling completely within this sphere
[see Fig. 7(b)]. Of interest to us are the elements Esv = Es ∩
Ev . By the same equations [(21) and (22)], we can compute
similar statistics on this reduced region. The results are shown
in Fig. 7(c) and (d).

As noted in Section II, the resulting drug concentration dis-
tribution due to our shape parameterization is not completely
specified by a mean and variance. Further statistics can be cal-
culated, as shown in Fig. 8. This shows the skewness and kurtosis
of the distributions of total drug delivered to the venous tissue at
our sampled time points under the MCF shape parameterization.
The skewness and kurtosis are calculated from the normalized
third and fourth moments of the distribution as given in [23].
The pdf (whose domain is normalized to [0, 1]) of the distribu-
tion at day 10 is also shown. The means and variances for this
simulation are shown in Fig. 6. Comparing these figures, we
see that the skewness and kurtosis correspond to the increased
“lopsidedness” of the distributions from the mean, as we would
expect. The pdf is also as we would expect from the given time

Fig. 6. Total drug deposited in vein wall [opaque geometry in (a)] over time.
(b) MCF parameterization. (c) Morph parameterization. Results for the nine
individual collocation points (depot shapes) are shown in blue to green, with
the mean and variance shown in red.
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Fig. 7. (a) and (b) Region of interest around venous anastomosis. Total drug
deposited in the vein wall over time. (c) MCF parameterization. (d) Morph pa-
rameterization. Results for the nine individual collocation points (depot shapes)
are shown in blue to green, with the mean and variance shown in red.

point’s distribution, which has several samples grouped at the
lower end of the concentration range—note that the mean is
near the lowest concentration at the time point.

C. Nodal Statistics

While, in general, the discretization T (Ω) is different for
different parameter values of ξ, using the discretization method
described in Section III-C, the elements comprising the static
geometry are always the same. In particular, the elements Ev

comprising the tissue we are interested in are the same for any

Fig. 8. For sampled time points, skewness and kurtosis are given for concen-
tration distributions of total drug in venous tissue due to shape variability. The
pdf of the distribution at day 10 is shown inset.

Fig. 9. Drug concentration mean and standard deviation at day 14 given by
nodal statistics. (a) MCF parameterization. (b) Morph parameterization.

value of ξ. Since the concentration field within a tetrahedral
linear finite element is given by a simple linear weighting of the
values at the element’s nodes, the mean and standard deviation
fields within Ev can be completely described by computing the
means and standard deviations at the points Ev and using these
as the weights of the linear basis functions. Since sampling, as
described in Section IV-A, can be computationally expensive
at high sampling resolutions or fine discretizations of the test
volume due to the search for containing cell of each sample
point, this method can improve performance when applicable.
Fig. 9 shows the mean and standard deviation on the surface of
Esv as computed by this method.

V. DISCUSSION

The results of Section IV explore both the variability intro-
duced by changes in depot shape and the effect of a specific
parameterization of gel shape on this variability. From the re-
sults of Section IV-B, we see that the total amount of drug
delivered to the venous tissue is quite similar for both shape pa-
rameterizations. We also see that the variance due to shape vari-
ation within each parameterization is fairly small, and that the
amount of drug delivered decreases for “smoother” depot shapes
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Fig. 10. Surface area of shapes from shape parameterization.

(see Fig. 6). This agrees with our notion that increased smooth-
ness corresponds to decreased surface area, which should lead
to lower total diffusion rates. Fig. 10 shows how depot surface
area changes over our two parameterizations. While the surface
area decreases for both parameterizations, the MCF parameter-
ization has a smaller final surface area. From this, we would
expect a lower diffusion rate; however, as we can see in Fig. 6,
the curves for total delivery over time are nearly identical for
the later collocation points of the two parameterizations. This
may be due to changes in the initial location and distribution of
drug relative to the tissue in which we are interested. This effect
is more pronounced if we restrict our interest to a more specific
target site. Fig. 7 shows that if we look at only drug delivered
to the venous tissue near the anastomosis, the two parameteri-
zations are not equivalent. The MCF parameterization now has
higher peak delivery as well as higher variance compared to
the morph parameterization. A side effect of the “smoothing”
caused by MCF is the reduction of the convex hull of the depot,
concentrating more drug near the center of mass. We believe
that this explains the increased delivery seen here, as more drug
is located near the target site. As can be seen in Fig. 4, the depot
retains a larger positional “spread” during our metamorpho-
sis parameterization, and therefore, this effect is not apparent
there. The results from Section IV-A show that the variance at
any given point is closely related to the local mean concentra-
tion. This also agrees with expectations about a smooth process
such as diffusion varying by a smooth process, e.g., such as our
shape parameterization. These results are also quite helpful in
determining how drug concentration varies across the target site
and how the “front” of diffusing drug moves through the test
volume.

While the parameterization of properties such as shape can
be cumbersome and still requires judgment in determining that
the appropriate range of variation is expressed, we have demon-
strated that through methodologies such as the stochastic col-
location method, the problem of studying the impact of shape

variability on a particular forward simulation is tractable. The
basic requirements are that:

1) the variation can be expressed by a parameterized model;
2) the resulting stochastic field varies smoothly with changes

to model parameters.
Once the underlying stochastic process is characterized, quan-

tification of the introduced variability is quite straightforward
and provides an important step in the V&V process, without
which modeling (geometric, parameter, and mathematical) and
simulation error bounds on the final solution must be viewed
with some skepticism.

While our univariate shape parameterization is simple, in
many cases, such a simple model will suffice. As noted earlier,
development of this model will require judgment on the part of
the modeler and affect the accuracy of the computed statistics.
At the very least, however, a formal statement of confidence
contingent on experimental realities respecting assumptions of
the parameterization can be made.

It is worth noting that we are not limited to a univariate shape
parameterization. If such a simple parameterization is not ade-
quate, a multidimensional shape representation can be created.
In this case, we will have a multidimensional random variable−→
ξ and will use multidimensional sample points as described

in [3]. The primary restriction on this method is that the entries
of

−→
ξ must be independent. If this cannot be shown directly, the

covariance matrix of
−→
ξ can be generated in a similar manner to

the statistics previously described, and independence generated
through a Gramm–Schmidt-like procedure. Although requiring
more sample points than the univariate case, this extension scales
well to a limited number of dimensions and is quite straightfor-
ward as the simulation process is identical regardless of the
dimensionality of the underlying parameterization.
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