
SOFTWARE – PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2010; 40:23–43
Published online 21 December 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe.946

Formal methods applied to high-performance computing software
design: a case study of MPI one-sided communication-based

locking‡

Salman Pervez1, Ganesh Gopalakrishnan2,∗,†, Robert M. Kirby2, Rajeev Thakur3

and William Gropp4

1Department of Computer Science, Purdue University, West Lafayette, IN, U.S.A.
2School of Computing, University of Utah, Salt Lake City, UT 84112, U.S.A.

3Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.
4Department of Computer Science, University of Illinois, Urbana, IL 61801, U.S.A.

SUMMARY

There is a growing need to address the complexity of verifying the numerous concurrent protocols
employed in the high-performance computing software. Today’s approaches for verification consist of
testing detailed implementations of these protocols. Unfortunately, this approach can seldom show the
absence of bugs, and often results in serious bugs escaping into the deployed software. An approach called
Model Checking has been demonstrated to be eminently helpful in debugging these protocols early in the
software life cycle by offering the ability to represent and exhaustively analyze simplified formal protocol
models. The effectiveness of model checking has yet to be adequately demonstrated in high-performance
computing. This paper presents a case study of a concurrent protocol that was thought to be sufficiently
well tested, but proved to contain two very non-obvious deadlocks in them. These bugs were automatically
detected through model checking. The protocol models in which these bugs were detected were also
easy to create. Recent work in our group demonstrates that even this tedium of model creation can be
eliminated by employing dynamic source-code-level analysis methods. Our case study comes from the
important domain of Message Passing Interface (MPI)-based programming, which is universally employed
for simulating and predicting anything from the structural integrity of combustion chambers to the path
of hurricanes. We argue that model checking must be taught as well as used widely within HPC, given
this and similar success stories. Copyright 2009 John Wiley & Sons, Ltd.

Received 17 June 2008; Revised 11 September 2009; Accepted 18 September 2009

KEY WORDS: concurrent programming; formal verification; model checking; race condition; SPIN;
dynamic analysis; high-performance computing (HPC); Message Passing Interface (MPI);
one-sided communication

∗Correspondence to: Ganesh Gopalakrishnan, School of Computing, University of Utah, Salt Lake City, UT 84112,
U.S.A.

†E-mail: ganesh@cs.utah.edu
‡A shorter version of this paper was published in [1].

Contract/grant sponsor: NSF; contract/grant numbers: CNS-0509379, CCF-0811429
Contract/grant sponsor: Office of Advanced Scientific Computing
Contract/grant sponsor: Office of Science
Contract/grant sponsor: U.S. Department of Energy; contract/grant number: DE-FG02-08ER25835

Copyright 2009 John Wiley & Sons, Ltd.



24 S. PERVEZ ET AL.

1. INTRODUCTION

Adequately debugging concurrent protocols remains a fundamental challenge facing computing
practitioners. Recent studies [2] show that many concurrency bugs can take up to a month of
an expert’s time to debug. As another example, consider the concurrent software employed in
high-performance computing (HPC). This software is used for solving critical problems such
as predicting the path of hurricanes using supercomputing clusters consisting of multiple (often
thousands of) computing nodes. Each node in a cluster simulates portions of the physical space,
exchanging data with other computing nodes that simulate adjacent spaces. These communications
are almost always carried out using the Message Passing Interface (MPI) library [3], which is
considered to be the lingua franca of parallel processing. One expects such large-scale critical
simulations to yield reliable data (e.g. to avoid evacuating the wrong shorelines) and run without
crashes (e.g. so that the predictions arrive before the hurricane itself does).

Unfortunately, the state of the art in software debugging in the HPC arena consists of conven-
tional software testing methods. While testing methods do not produce false alarms (i.e. they report
only genuine bugs) they are not designed to provide any guarantees pertaining to the absence
of bugs. Testing methods are especially ineffective for concurrent systems because a concurrent
programmer—even an experienced one—finds it difficult to cultivate intuitions about selecting
effective tests. This is because of the vast number of potential interleavings possible even for
extremely short concurrent programs. For instance, a program consisting of five processes P1 to
P5 where each process i carries out five computing steps ai,1 to ai,5 has over 10 billion poten-
tial schedules (interleavings). This number derives from the following formula: for k processes,
each doing n steps, there are potentially (n ·k)!/(n!)k interleavings (concurrent schedules). For k
approaching one thousand and for n approaching a million (these are on the lower side in practice),
the number of schedules are just astronomical! In addition to interleavings, the state space of a
typical concurrent program is very large also due to the sheer size of its state elements.

According to Rushby [4] , experience shows that exhaustively analyzing a down-scaled model
of a piece of software is often more effective at finding concurrency bugs compared with the
non-exhaustive examination (e.g. through testing) of a full-scale model. A simple but powerful
idea that is aimed at this goal is known as Model Checking. In fact, the first proponents and some
of the early developers of this approach won the 2007 ACM Turing Award [5] (highest honor in
computing) for model checking. Downscaling is an age old idea: a designer simply creates a scale
model, much like an aircraft designer creates ‘wind-tunnel flight models’. In our work, we do not
offer any specific approach to downscaling, other than the suggestion that a programmer apply
his/her best judgements in deciding what to eliminate and what to keep. Luckily, this step is far
easier to teach/learn than developing intuitions about which interleavings actually matter.

Model checking [6–8] is widely regarded as the primary technique of choice for debugging a
significant number of concurrent protocols. After 25 years of research [9] that has resulted in many
important theoretical discoveries as well as practical applications and tools, designers in many
application areas now possess a good understanding of how, and to what extent model checking
can help in their work. Yet, when we began our research on applying formal methods for debugging
HPC software about three years ago, we were rather surprised to discover that designers in HPC
either did not know about model checking or its potential to help them debug concurrent protocols
of the kind they are now developing. After the initial dialog was established between the Argonne
National Laboratory (ANL) authors of this paper (primarily interested in HPC, and the principal
developers of the MPICH2 MPI library [10]) and the Utah authors of this paper (two of whom have
a model checking background, and one is primarily in HPC but with a strong awareness of model
checking), the Utah authors were given a modest-looking challenge problem by the ANL authors:
see what model checking can do in terms of analyzing a then recently published byte-range locking
algorithm [11] developed by some ANL researchers (including one of the authors of this paper).
The challenge problem held (and still holds) considerable appeal. It uses MPI’s shared-memory
extension called Remote-Memory Access (RMA) [12] (also known as one-sided communication),
which allows a process to directly read from or write to another process’s memory. Unfortunately,

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



FORMAL METHODS FOR MPI: CASE STUDY 25

the weakly synchronized shared-memory behavior of MPI’s one-sided operation comes with the
associated problems of the shared-memory programming style, namely, the potential for race
conditions. At the time the challenge problem was given to us by the ANL, it was known that
one-sided communication had proved to be rather slippery territory for the previous MPI users.
Last but not the least, the challenge was not a contrived example. It was developed to enable
an MPI Input/Output (MPI-IO) implementation to acquire byte-range locks in the absence of
POSIX [13] fnctl() (performs file control command) file locks, which some high-performance
file systems do not support. These details are not important for our purposes: we can summarize
the challenge problem as follows. Imagine processes wanting read/write accesses to contiguous
ranges of bytes were maintained in some storage device. In order to maintain mutual exclusion, the
processes must detect conflicts between their byte-ranges of interest through a suitable concurrent
protocol. Unfortunately, the protocol actions of various processes can occur only through one-
sided operations that, in effect, perform ‘puts’ and ‘gets’ within one-sided synchronization epochs.
Since these puts and gets are unordered, popular paradigms of designing locking protocols that
depend on sequential orderings of process actions (e.g. for Peterson’s algorithm [14], it would be
setting one’s own ‘interested’ bit and then seeing which other process has its turn) do not work
for the stated byte-range problem. The authors of [11] had devised a solution involving backoffs
and retries. Unlike ‘textbook’ locking protocols whose behaviors have been studied under weak
memory models (e.g. [15]), a part of the appeal of the locking protocol (to be detailed in Section 3)
from a model-checking perspective stems from its use of realistic features from a library that is
considered the de facto standard of distributed programming.

In this setting, this paper makes the following contributions. It demonstrates that by using finite-
state modeling and model checking early during the design of concurrent protocols, many costly
mistakes can be avoided. In particular, it discusses the race conditions latent in our challenge
problem (the algorithm of [11]) that result in deadlocks. These errors were found relatively easily
using model checking. Curiously, neither the authors of the algorithm nor the reviewers of the
originally published paper [11] were aware of the race condition, and conventional testing had
missed the associated bugs. In this paper, we then go on to discuss two alternative algorithms.
These algorithms have been analyzed using model checking, and found to be free of bugs such as
deadlocks. However, the algorithms have remaining resource issues (as did the original algorithm)
that required addressing on pragmatic grounds. An initial assessment, which we will present in
the current work, is that these resource issues are no worse than in the original buggy protocol.
In addition, since performance is a crucial aspect of any HPC design, an engineer has to, in
the end, employ performance analysis hand-in-hand with model-checking tools. In this regard,
our performance assessment of the two alternative protocols on a 128-node cluster reveals that
Alternative 2 performs far better than Alternative 1, both under low lock contention as well as
high lock contention.

We then detail all our contributions, discuss a few limitations of our current model-checking
approach, and briefly discuss our future work in overcoming these limitations. We also discuss
the important lesson of having to build techniques and tools that help engineers to iterate through
the option space in search of optimal choices that balance correctness, performance, and resource
issues.

Related Work. The area of formal methods applied to concurrent program design has a history
of over 50 years of research, and hence is too vast to survey. Even those efforts directed at the use
of finite-state model checking [5, 8] for concurrent and distributed program verification are too
vast to survey; applications in telecommunication software design (e.g. [16]), aerospace software
(e.g. [17]), device driver design (e.g. [18]), and operating system kernels (e.g. [19]) are four
examples of recent efforts. Focusing on the use of formal methods for HPC software design, and
in particular for MPI-based parallel/distributed program design, one finds an increasing level of
activity from a handful of researchers. The earliest use of model checking in this area is by Matlin
et al. who used the SPIN model checker [16] to verify parts of the MPD process manager used
in MPICH2 [20]. Subsequently, Siegel and Avrunin used model checking to verify MPI programs
that employ a limited set of two-sided MPI communication primitives [21]. Siegel subsequently

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



26 S. PERVEZ ET AL.

published several techniques for efficiently analyzing MPI programs [22–24] and covering the use
of their MPI-SPIN tool.

Some of the earlier publications of our group in this area pertained to the use of model checking
to analyze MPI programs [25, 26], an executable formal semantic specification of MPI [27, 28]
and an efficient model-checking algorithm for MPI [29]. One difficulty in model checking is
the need to create an accurate model of the program being verified. This step is tedious and
error-prone. If the model itself is not accurate, the verification will not be accurate. To avoid this
problem, we have developed several in situ model checkers that work directly on the parallel MPI
program and hence avoid the need to create verification models. We reported on the first such
dynamic model-checking algorithm for MPI in [30]. Techniques to enhance the efficiency of this
algorithm were reported in [31]. In recent work, we reported on an approach to model check MPI
programs directly using dynamic verification methods [32–35], introducing our algorithm ‘ISP’
in the process. We also employed our ISP algorithm for detecting the presence of functionally
irrelevant barriers in MPI programs [36]. Other groups have approached the formal verification of
MPI programs through schedule perturbation techniques [37, 38], data flow analysis [39], and by
detecting bug patterns [40].

Any new application area for model checking tends to have its own details that have to be
addressed in a domain-specific manner. In this vein, one must carry out numerous case studies
that push the existing algorithms beyond their intended roles, thus triggering the discovery of new
algorithms. In [35], we report such large case studies recently handled by ISP. In their most recent
work, Siegel et al. apply model checking to a mature, MPI-based scientific program consisting of
approximately 10k lines of code. The program, BlobFlow, implements a high-order vortex method
for solving the two-dimensional Navier–Stokes equations. Despite the complexity of the code, they
verify properties including freedom from deadlock and the functional equivalence of sequential
and parallel versions of the program using the methods they present in [41].

The case study in this paper involves one-sided communication, applies to a published algorithm,
and assesses the solution in terms of resources as well as performance. It is also an accurate
record of one of our earliest case studies that helped us to gain traction in this new and important
application area of applying model checking to analyze real-world HPC software. A shorter version
of this paper appeared in [1]. As for other tools verifying MPI programs employing one-sided
communication, the Marmot tool has been extended to detect incorrect usages of MPI one-sided
communication commands [42]. Their work does not consider the concurrency semantics of one-
sided communication or how it can impact the correctness of concurrent protocols developed using
them.

Note: In this paper, the usage of the word ‘correctness’ connotes the ability to algorithmically
demonstrate the absence of common flaws such as deadlocks and livelocks. In our Promela
experiments, we employed what are known as Büchi automata [8] to state the absence of starvation.
From a mathematical logic stance, the notion of correctness that we employ corresponds to the
ability to check a catalog of temporal logic properties.

Roadmap: The remainder of this paper is organized as follows. We begin with a brief introduction
to model checking in Section 2. We describe the byte-range locking algorithm and how we model
checked it in Sections 3 and 4. In Section 5, we present two alternative designs of the algorithm
that avoid the race condition, formally verify them using model checking, provide empirical
observations to interpret the model-checking results, and study their performance on up to 128
processors on a Linux cluster. In Section 7, we conclude with a discussion of future work.

2. OVERVIEW OF MODEL CHECKING

Model checking consists of two steps: creating models of concurrent systems and traversing these
models exhaustively while checking the truth of the desired properties. A model can be anything
from a simple finite-state machine modeling the concurrent system to the actual deployed code.
Model checking is performed by creating—either manually or automatically—simplified models

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



FORMAL METHODS FOR MPI: CASE STUDY 27

of the concurrent system to be verified, recording states and paths visited to avoid test repetitions
(an extreme case of which is infinite looping), and checking the desired correctness properties,
typically on the fly. Given that the size of the reachable state space of concurrent systems can be
exponential in the number of concurrent processes, model checkers employ a significant number
of algorithms as well as heuristics to achieve the effect of full coverage without ever storing entire
state histories. The properties checked by a model checker can range from simple state properties,
such as asserts, to complex temporal logic formulas that express classes of desired behaviors.
Model checkers are well known for their ability to track down deadlocks, illegal states (safety
[8] bugs), and starvation scenarios (liveness [8] bugs) that may survive years of intense testing.
We consider finite-state model checking where the model of the concurrent system is expressed
in a modeling language—Promela [16], in our case. (All the pseudocodes expressed in this paper
have an almost direct Promela encoding once the MPI constructs have been accurately modeled.)
By (in effect) exhaustively traversing the concurrent-system automaton, a model checker helps
to establish the desired temporal properties, such as ‘always P’ and ‘A implies eventually Q’, or
generates concrete error traces when such properties fail.

The capabilities of model checkers have been steadily advancing, with modern model checkers
being able to handle astronomically large state spaces (consisting of, for example, billions of
distinct states). A model checker that has received wide attention among the computer science
community is SPIN [16]. Despite the very large state spaces of the SPIN-MPI models discussed
in this paper, our model-checking runs finished within acceptable durations (often in minutes) on
standard workstations.

3. THE BYTE-RANGE LOCKING ALGORITHM

Often, processes must acquire exclusive access to a range of bytes, such as a portion of a file.
As mentioned on Page 2, in [11], Thakur et al. presented an algorithm by which processes can
coordinate among themselves to acquire byte-range locks, without a central lock-granting server.
The algorithm uses MPI one-sided communication (or RMA) [12]. Since it is essential to understand
the semantics of MPI one-sided communication in order to understand the algorithm, we first
briefly explain the relevant features of MPI one-sided communication.

3.1. Overview of MPI

MPI evolved in the early 1990s, borrowing ideas from APIs of the previous era. MPI programs
can be run with a specific number of processes (also called ranks). Each process can query and
determine how many ranks there are, and also determine its own rank in the population. Typically,
this is done early in the code; thereafter the computation of the MPI processes branches out into
disjoint code segments based on process ranks. The purpose of such branching in MPI programs
is to allow each MPI process to work on its own region of data (hence MPI programs are termed
‘SPMD’ or single-program multiple-data). Processes exchange computational results pertaining to
their parts of the data. High-performance MPI libraries have highly optimized versions of collective
MPI functions such as MPI Barrier (for barrier synchronization), MPI Bcast (for broadcasting
data), and MPI Reduce (for reductions such as global summation of the individual data). Whenever
they apply, these collective functions are highly recommended for use in lieu of point-to-point
operations.

MPI is an API that is designed to cater to a wide variety of programmers, cluster machines, and
applications. As a result, MPI has been equipped with over 300 functions. Most users employ under
two dozens of these calls; however, it tends to be a different subset for each application/cluster/user.
Just referring to sends and receives, MPI has at least a dozen variants all the way from rendezvous
style sends/receives (the sender/receiver wait for each other) to ready sends (the receive must be
posted to avoid failure of sends). In addition, MPI sends and receives can specify how messages
must be matched (based on process ranks and/or tags), and whether the receive is ‘wildcard’
(MPI_ANY_SOURCE) that allows an eligible send from any MPI process to match.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



28 S. PERVEZ ET AL.

MPI was designed without any shared-memory features or threading. Modern MPI implemen-
tations support different levels of threading and thread safety from ‘none’ to full thread safety.

3.2. Overview of MPI’s one-sided communication

RMA was added as a part of MPI-2 [3] to provide a put/get programming model. Earlier program-
ming models that supported these one-sided operations include the Bulk Synchronous Programming
(BSP) model [43] and the SHMEM model [44] developed by Cray. Unlike the MPI 2-sided oper-
ations (regular MPI message passing commands), MPI-2 RMA allows one process to directly
access the memory of another (in the same MPI job) without the tag matching and other over-
heads associated with the two-sided (or send/receive) operations. Because RMA operations are
one-sided, they allow for more weakly synchronized algorithms, and are particularly appropriate
when processes in a parallel program need to share data in dynamic ways.

MPI-2 added one-sided communication functions so as to offer a different programming model
from the traditional MPI-1 point-to-point operations. In one-sided communication, a process can
directly write to or read from the memory of a remote process via put (write) and get (read)
operations. Prior to invoking a one-sided communication operation, a process must specify the
memory region that it wishes to allow other processes to directly access. This memory region is
called a window and is specified via the collective function MPI_Win_create. An MPI collective
function is one that must be called from every process in order to accomplish its desired effect in
each of the processes. In this case, the MPI_Win_create collective call allows each process to
perceive the memory effects of the put/get operations carried out by all processes.

Once MPI_Win_create has been called, the one-sided communication itself is achieved
primarily through the MPI Put and MPI Get operations. (There are also additional one-sided
communication operations, such as MPI Accumulate, that we do not consider in this paper.)
MPI Put writes the data resident at the specified location of the local memory into the target
location of the remote memory. MPI Get reads the data resident at the specified location of the
remote memory into the target location of the local memory.

Both MPI Put and MPI Get are non-blocking: they initiate but do not necessarily complete
the one-sided operation. These functions are not sufficient by themselves because one needs to
know when a one-sided operation can be initiated (that is, when the remote memory is ready to be
read or written) and when a one-sided operation is guaranteed to be completed. To specify these
semantics, MPI defines three different synchronization methods. For simplicity, we consider only
one of them, namely lock–unlock, which is the one used in the byte-range locking algorithm.

We explain the basic ideas of the lock–unlock method with the help of Figure 1 where Process 1
is the target for the MPI_Win_lock actions executed by Processes 0 and 2. In the lock–unlock
synchronization method, the originating process calls MPI_Win_lock specifying the kind of
lock requested (excl, standing for ‘exclusive’ in Figure 1) and the target (1 in the figure).
MPI Win lock is not required to block until the lock is acquired (the only exception to this rule
is when the originating process and the target process are one and the same). After issuing the
one-sided operations, the originating process calls MPI Win unlock. When this call returns, the
one-sided operations are guaranteed to have been completed at the origin as well as at the target.
The target process does not make any synchronization call in our illustration.

Figure 1. The lock–unlock synchronization method for one-sided communication in MPI. The numerical
arguments indicate the target rank.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



FORMAL METHODS FOR MPI: CASE STUDY 29

for rank 0 for rank 1 for rank 2

F S E F F F F FS S S S SE E E E E

F = flag S = start offset E = end offset

Figure 2. Window layout for the original byte-range locking algorithm.

Note that MPI puts and gets are non-blocking operations, and an implementation is allowed to
reorder them within a lock–unlock synchronization epoch. They are guaranteed to be completed,
both locally and remotely, only after the unlock returns. In other words, a get operation is not
guaranteed to see the data that was written by a put issued before it in the same lock–unlock epoch.
Consequently, it is difficult to implement an atomic read–modify–write operation by using MPI
one-sided communication [45]. One cannot simply do a lock–get–modify–put–unlock because the
data from the get is not available until after the unlock. In fact, the MPI Standard defines such
an operation to be erroneous (doing a put and a get to the same location in the window in the
same synchronization epoch). One also cannot do a lock–get–unlock, modify the data, and then
do a lock–put–unlock because the read–modify–write is no longer atomic. This feature of MPI
complicates the design of a byte-range locking algorithm.

3.3. The algorithm

Below we describe the byte-range locking algorithm of [11] together with the snippets of the code
for acquiring and releasing a lock.

3.3.1. Window layout. The window memory for the byte-range locking algorithm comprises three
values for each process, ordered by process rank, as shown in Figure 2. (The window is allocated
on any one process, say rank 0.) The three values are a flag, the start offset for the byte-range
lock, and the end offset.

3.3.2. Acquiring the lock. The process wanting to acquire a lock calls MPI Win lock with
the lock type as MPI LOCK EXCLUSIVE (shown excl in Figure 1), followed by an
MPI Put, an MPI Get, and then MPI Win unlock as shown in Figure 3. The usage of
MPI LOCK EXCLUSIVE guarantees that the final effect on the window’s state will be as if the
processes accessed the target window in an exclusive (non-overlapping) manner. (The alternative
would be to use MPI LOCK SHARED, which gives the effect of accessing the window in an
overlapped manner.) The exact arguments of MPI Put are, from left to right, as follows: &val
is the source address, 3 is the number of MPI_INTs to be put, homerank is the target process
rank, 3*(myrank) specifies the target displacement for subsequent MPI_INTs, 3 is the target
count, MPI_INT is the target datatype, and lockwin is the window being written into. The
details of the remaining MPI operations are similar, and may be gathered from [3].

Following the MPI Win lock call, the process uses MPI Put to set its own three values in the
window: It sets the flag to 1 and the start and end offsets to those needed for the lock. Thereafter,
using MPI Get, the process gets the three values for all other processes (excluding its own values)
by using a suitably constructed derived datatype, for example, an indexed type with two blocks.
After MPI Win unlock returns, the process goes through the list of values returned by MPI Get.
Now, with respect to all other processes, the process first checks whether the flag is 1 and, if so,
checks whether there is a conflict between that process’s byte-range lock and the lock it wants
to acquire. If there is no such conflict with any other process, it considers the lock acquired. If a
conflict (flag and byte-range) exists with any process, it considers the lock as not acquired.

If the lock is not acquired (line 24 of Figure 3), the process resets its flag in the window to 0
by doing an MPI Win lock–MPI Put–MPI Win unlock and leaves its start and end offsets
in the window unchanged. It then calls a zero-byte MPI Recv with MPI ANY SOURCE as the
source and blocks until it receives such a message from any other process (that currently has a

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



30 S. PERVEZ ET AL.

Figure 3. Pseudocode for obtaining a byte-range lock in the original algorithm.

lock; see the lock–release algorithm below). After receiving the message, it tries again to acquire
the lock by using the same Lock_acquire algorithm.

3.3.3. Releasing the lock. The process wanting to release a lock calls MPI Win lock with
the lock type as MPI LOCK EXCLUSIVE, followed by an MPI Put, an MPI Get, and then
MPI Win unlock as shown in Figure 4. With the MPI Put, the process resets its own three
values in the window: It resets its flag to 0 and the start and end offsets to −1. With the MPI Get,
it gets the start and end offsets for all other processes (excluding its own values) by using a
derived datatype. This derived datatype could be different from the one used for acquiring the lock
because the flags are not needed. After MPI Win unlock returns, the process goes through the
list of values returned by MPI Get. For all other processes, it checks whether there is a conflict
between the byte-range set for that process and the lock it is releasing. The flag is ignored in
this comparison. If there is a conflict with the byte-range set by another process—meaning that
the process is waiting to acquire a conflicting lock—it sends a zero-byte message to that process,
in response to which that process will retry the lock. After it has gone through the entire list of
values and sent zero-byte messages to all other processes waiting for a lock that conflicts with its
own, the process returns.

4. MODEL CHECKING THE BYTE-RANGE LOCKING ALGORITHM

To model the byte-range locking algorithm, we first needed to model the MPI one-sided communi-
cation constructs used in the algorithm and capture their semantics precisely as specified in the MPI
Standard [12]. For example, the MPI Standard specifies that if a communication epoch is started
with MPI Win lock, it must end with MPI Win unlock and that the put/get/accumulate calls

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



FORMAL METHODS FOR MPI: CASE STUDY 31

Figure 4. Pseudocode for releasing a lock in the original algorithm.

made within this epoch are not guaranteed to complete before MPI Win unlock returns. Further-
more, there are no ordering guarantees of the puts/gets/accumulates within an epoch. Therefore,
in order to obtain adequate execution-space coverage, all permutations of put/get/accumulate
calls in the epoch must be examined. However, the byte-range locking algorithm uses the
MPI LOCK EXCLUSIVE lock type, which means that while a certain process has entered
the synchronization epoch, no other process may enter until that process has left. This makes
the synchronization epoch an atomic block and renders all permutations of the calls within it
equivalent from the perspective of other processes.

4.1. Concise overview of Promela

Promela is a language for formally modeling concurrent protocols with a view to model check
them. Promela strikes a good balance between expressiveness (that assists in writing clear and
intuitive protocol descriptions) and facilitation of efficient model checking (by not including
constructs that are expensive to handle during model checking). Promela descriptions tend to have a
much clearer semantics than the corresponding programming constructs: for instance, the atomicity
of a Promela construct such as x++ itself is not in doubt. In addition, the Promela compiler avoids
making optimizations that alter the semantics of the input description (unlike traditional compilers
that may perform many code rearrangements subject only to the constraint of preserving data
dependencies).

A Promela file consists of a collection of process descriptions that together define the behavior
of interest. The general use of Promela is to describe non-deterministic finite-state machines. For
specification writers, the use of non-determinism to abstract away from implementation details
is a powerful tool. In Promela, it is possible to recursively spawn processes and thereby create
infinite-state descriptions. Most Promela descriptions are, however, finite-state descriptions in the
sense that all their executions consist of moves between states belonging to a finite set of reachable
states.

The language Promela goes hand-in-hand with the model checker SPIN. The SPIN model
checker accepts a Promela description, viewing it as a non-deterministic Büchi automaton (a non-
deterministic finite-state automaton whose infinite behaviors are of interest). When using SPIN,
one can also specify temporal logic properties, either in Promela as a never automaton or in

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



32 S. PERVEZ ET AL.

Figure 5. Promela implementation of MPI Put. Put requests are simply saved in a list, and the list is
processed in MPI Win unlock.

linear time temporal logic (LTL). The xspin interface of SPIN allows LTL properties to be
automatically translated into never automata and included in the Promela description being
verified. An example of an LTL property that a user may wish to establish is ‘Henceforth, whenever
a happens, b should never be found to happen’. Such a property corresponds to all behavioral
traces in which after the occurrence of an event a, an event b is never found to happen.

For the purposes of this paper, one may view model checking as the process of verifying that
all executions of a finite-state machine satisfy a safety assertion (e.g. an assert statement) or a
liveness assertion (e.g. ‘after every occurrence of a, there will eventually be an occurrence of b’).
In Figure 5, we describe the behavior of MPI_Put as follows. MPI_Put is an inlined macro. It
declares one variable i initialized to 0. It then offers a non-deterministic selection (indicated by
the separator ::) within an infinite loop do..od. If one of the conditions written between the ::
and -> (called the guard) evaluates to true, the ensuing behavior (described after the ->) will be
considered by SPIN as being one legitimate execution to be verified. The else clause is invoked
when none of the guards is true. The break construct breaks out of the immediately enclosing
block. For details, the reader may refer to [16].

4.2. Promela modeling of the locking protocol

As an example, our Promela implementation of MPI Put is shown in Figure 5. To be consis-
tent with the MPI Standard, a put request is simply stored in a list of requests, and the list is
processed in MPI Win unlock. Modeling the byte-range locking algorithm itself was relatively
straightforward. (This experience augurs well for the checking of other algorithms that use MPI
one-sided communication, as one of the significant challenges in model checking lies in the ease
of modeling constructs in the target domain using modeling primitives in the modeling language.)
The complete Promela code used in our model checking can be found online [46].

When we model checked our model with three processes, our model checker, SPIN [16],
discovered an error indicating an ‘invalid end state’. Deeper probing revealed the following error
scenario (explained through an example, which assumes that P1 tries to lock byte-range 〈1,2〉, P2
tries to lock 〈3,4〉, and P3 tries to lock 〈2,3〉):

• P1 and P3 successfully acquire their byte-range locks.
• P2 then tries to acquire its lock, notices conflict with respect to both P1 and P3, and blocks
on the MPI_Recv.

• P1 and P3 release their locks, both notice conflicts with P2, and both perform an MPI Send,
when only one send is needed.

Hence, while P2 ends up successfully waking up and acquiring the lock, the extra MPI Sends may
accumulate in the system. This is a subtle error whose severity depends on the MPI implementation
being used. Recall that the MPI Standard allows implementers to decide whether to block on an
MPI Send call. In practice, a zero-byte send will rarely block. Nonetheless, an implementation of

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



FORMAL METHODS FOR MPI: CASE STUDY 33

2 [10,20,1]
1 [10,20,1]
3 Acquire

5 Send
6 [10,20,1]

7 [10,20,0]

9 [10,20,1]
Receive8

[10,20,0]11
13 Receive

10 [10,20,0]
Receive12

P1 P2

Figure 6. A deadlock scenario found through model checking.

the byte-range locking algorithm can address this problem by periodically calling MPI_Iprobe
and matching any unexpected messages with MPI_Recvs.

We then modeled the system as if these extra MPI Sends do not exhaust the system resources
and hence do not cause processes to block. In this case, model checking detected a far more serious
deadlock situation, summarized in Figure 6. P1 expresses its intent to acquire a lock in the range
〈10,20〉 (1), with P2 following suit (2). P1 acquires the lock (3), finishes using it and relinquishes
it (4), and performs a send to unblock P2 (5). Before P2 gets a chance to change its global state,
P1 tries to reacquire the lock (6). P1 reads P2’s current flag value as 1; hence it decides to block by
carrying out events (10) and (12). At this point, P2 changes its global state, receives the message
sent by P1 (8), and proceeds to reacquire the lock (9). P2 reads P1’s current flag value as 1; hence
it decides to block by carrying out events (11) and (13). Both processes now block on receive
calls, and the result is deadlock.

This deadlock is caused by a classic race condition, namely, a particular timing of events that
caused P1 to attempt to reacquire the lock (6) before P2 could reset its state (7). We note that
the possibility of this race condition was neither detected by the authors of the original algorithm
during their design and testing nor by the reviewers of the paper describing the algorithm [11].
Of course, after the model checker pointed out the problem, it appeared obvious and could be
reproduced in practice. This is again an example of how easy it is for humans to miss the potential
race conditions and the deadlock scenarios, whereas a model-checking tool can easily catch them.

5. CORRECTING THE BYTE-RANGE LOCKING ALGORITHM

We propose two approaches to fixing this deadlock problem, describe our experience with using
model checking on these solutions, and study their relative performance on a Linux cluster.

5.1. Alternative 1

One way to eliminate the deadlock is to add a third state to the ‘flag’ used in the algorithm. This
is shown in the pseudocode in Figure 7. In the original algorithm, a flag value of ‘0’ indicates that
the process does not have the lock, whereas a flag value of ‘1’ indicates that it either has acquired
the lock or is in the process of determining whether it has acquired the lock. In other words, the ‘1’
state is overloaded. In the proposed fix, we add a third state of ‘2’ with ‘0’ denoting the same as
before, ‘1’ now denoting that the process has acquired the lock, and ‘2’ denoting that it is in the
process of determining whether it has acquired the lock. There is no change to the lock–release
algorithm, but the lock–acquire algorithm changes as follows.

When a process wants to acquire a lock, it writes its flag value as ‘2’ and its start and end values
in the memory window. It also reads the state of the other processes from the memory window.
If it finds a process with a conflicting byte-range and a flag value of ‘1’, it knows that it does not
have the lock. Hence, it resets its flag value to ‘0’ and blocks on an MPI Recv. If no such process

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



34 S. PERVEZ ET AL.

Figure 7. Pseudocode for the deadlock-free byte-range locking algorithm (Alternative 1).

(with conflicting byte-range and flag=1) is found, but there is another process with a conflicting
byte-range and a flag value of ‘2’, the process resets its flag to ‘0’, its start and end offsets to −1,
and retries the lock from scratch. If neither of these cases is true, the process sets its flag value
to ‘1’ and considers the lock acquired. (The algorithm is described recursively in Figure 7 only
for convenience. It is implemented and modeled as an iteration.)

5.1.1. Dealing with fairness and livelock. One problem with this algorithm is the issue of fairness:
a process wanting to acquire the lock repeatedly may starve out other processes. This problem

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



FORMAL METHODS FOR MPI: CASE STUDY 35

P1 sets flag=2
P2 sets flag=2, sees P1’s 2, and decides to retry
P1 acquires the lock
P1 releases the lock and retries for the lock
P1 sets flag=2, sees P2’s 2, and decides to retry

P2 sets flag=0
P2 sets flag=2, sees P1’s 2, and decides to retry
P1 sets flag=0
P1 sets flag=2, sees P2’s 2, and decides to retry

Above sequence repeats

Figure 8. A potential livelock scenario in Alternative 1 found through model checking.

can be avoided if the MPI implementation grants exclusive access to the window fairly among the
requesting processes.

Even in the absence of this problem, model checking revealed the potential for livelock in one
particular situation when processes try to acquire the lock multiple times. The situation is similar
to the one that caused deadlock in the original algorithm, where two processes in the state of trying
to acquire the lock both block in order so that the other can go ahead. To avoid deadlock, we
introduced the intermediate state of 2, which ensures that instead of blocking on an MPI Recv,
the process backs off and retries the lock. Figure 8 shows an example of how the backoff and
retry could repeat forever if events get scheduled in a particular way. This is another example of
a race condition that is hard for humans to detect, but can be caught by a model checker. The
performance graphs presented in Section 5.5 show the possibility of these livelocks happening in
practice. The possibility of livelock can be reduced by having each process backoff for a random
amount of time before retrying, thereby avoiding the likelihood of the same sequence of events
occurring each time. Alternative 2 presented below eliminates the possibility of livelock.

5.2. Alternative 2

This approach uses the same values for the flag as the original algorithm, but when a process tries
to acquire a lock and determines that it does not have the lock, it picks a process (that currently has
the lock) to awaken it and then blocks on the receive. For this purpose, we add a fourth field (the
pick field) to the values for each process in the memory window (see Figure 9). The process trying
to acquire the lock must now decide whether to block and wait for notification from picklist[j].
This decision is based on two factors: (i) Has the process selected to wake it up already released
the lock? and (ii) Is there a possibility of a deadlock caused by a cycle of processes that wait on
each other to wake them up? The latter can be detected and avoided by using the algorithm in
Figure 10. The former can be easily determined by reading the values returned by the MPI_Get
on line 24. If the selected process has already released the lock, a new process must be picked
in its place. We simply traverse the list of conflicting processes until we find one that has not
yet released the lock. If no such process is found, the algorithm tries to reacquire the lock. Note
the added complexity of going through the list of conflicting processes and doing put and get
operations each time. However, if this loop is successful and the process blocks on MPI_Recv, we
can save considerable processor time in the case of highly contentious lock requests as compared
with Alternative 1.

The lock–release algorithm for Alternative 2 is similar to the original except that the releasing
process sends a wake-up message only to those processes that have picked it, not to all processes
that have a conflicting byte-range. This is shown in Figure 12. This procedure also reduces the
number of extra sends (but does not eliminate them altogether). A discussion of these extra sends
is provided in Section 5.4.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



36 S. PERVEZ ET AL.

Figure 9. Pseudocode for the deadlock-free byte-range locking algorithm (Alternative 2).

Figure 10. Avoiding circular loops among processes selected to awaken in Alternative 2.

5.3. Formal modeling and verification

Both alternative algorithms were prototyped by using Promela. The entire code is available
online [46]. We employ Promela channels to model MPI communication. While the creation of
such Promela models requires some expertise, accumulated evidence (described at the homepage
of the SPIN tool [47]) shows that Promela can be easily taught to engineers. Our Promela models
occupy nearly the same number of lines of code and are structured similar to the pseudocode we

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



FORMAL METHODS FOR MPI: CASE STUDY 37

Figure 11. Excerpts from Promela pseudo-code encoding of Lock acquire.

Figure 12. Excerpts from Promela pseudo-code encoding of Lock release.

have presented for the algorithms. Figure 11 shows an excerpt of the lock_acquire function
in Promela. Comparing with Figure 9, we see that the Promela code fleshes out the pseudocode by
adding an iteration across NUM_PROCS and essentially carries out the same sequence of actions
such as MPI_Win_lock and MPI_Put. We have built a support library in Promela that models
these MPI primitives. In Section 6, we discuss many related issues, including the growing success
of our direct dynamic verification approach for MPI programs [32–35].

5.4. Assessment of the alternative algorithms

Neither of these alternatives eliminates the extra sends, but, as described in Section 3, an imple-
mentation can deal with them by using MPI_Iprobe. We model checked these algorithms using

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



38 S. PERVEZ ET AL.

SPIN, which helped to establish the following formal properties of these algorithms:

• Absence of deadlocks (both alternatives). (Even if an MPI implementation blocks on a zero-
byte send, the extra sends need not cause deadlock because they can be handled by using
MPI_Iprobes.)

• Communal progress (that is, if a collection of processes request a lock, then someone will
eventually obtain it). Alternative 2 satisfies this under all fair schedules (all processes are
scheduled to run infinitely often), whereas Alternative 1 requires a few additional restrictions
to rule out a few rare schedules (meaning, the livelock problem discussed in Figure 8) [48].

That said, Alternative 2 considerably reduces these extra sends, as it restricts the number of
processes that can wake up a particular process compared with Alternative 1.

We are still seeking algorithms that would avoid the extra sends (and be efficient). There are
a few reasons to suspect that finding such algorithms will not be straightforward. For instance,
consider the scenario of a process P1 initially picking P2 to wake it up, but finding that it has
released the lock (Line 27 of Figure 9), tries to pick the next eligible process. In Figure 9, we do not
show the obvious action of P1 first ‘unpicking’ P2 before picking the next eligible process because
P1 will need access to the window before it can mark P2 as having been unpicked. This action
may actually be scheduled after P2 has anyway sent a message toward P1, thus defeating the act of
unpicking P2. Of course, theoretically correct solutions do exist. One could, for instance, consider
implementing atomic storage locations, one location per one-sided communication window, and
program, say, Peterson’s mutual exclusion algorithm [14] to be the basis for the entire byte-range
locking protocol! The drastic inefficiency of such overkill solutions will not be tolerated. This
point underscores the trio of concerns introduced in Section 1, namely that a programmer must,
in the end, learn to apply model checking to debug the overall correctness, and also balance the
issues of resources and performance in arriving at the final solution employed. The success of
formal methods applied in the HPC arena may, in the end, equally depend on the success that the
research community attains pertaining to the latter two issues, over and above the success attained
in the area of model checking.

5.5. Performance results

To measure the relative performance of the two algorithms, we wrote three test programs: one
in which all processes try to acquire non-conflicting locks (different byte-ranges), another in
which all processes try to acquire a conflicting lock (same byte-range), and a third in which all
processes acquire random locks (random byte-range between 0 and 1000). In all the tests, each
process acquires and releases the lock in a loop several times. We measured the time taken by all
processes to complete acquiring and releasing all their locks and divided this time by the number
of processes times the number of iterations. This measurement gave the average time taken by a
single process for acquiring and releasing a single lock. We ran the tests on up to 128 nodes of a
Myrinet-connected Linux cluster at Argonne using MPICH2 over GM.

Figure 13 shows the results for non-conflicting locks. In this case, there is no contention for
the byte-range lock; however, since the target window is located on one process (rank 0) and
all the one-sided operations are directed to it, the time taken to service the one-sided operations
increases as the number of processes calling them increases. Alternative 1 is slightly slower than
Alternative 2 because it always involves two steps: the flag is first set to 2, and if no conflict is
detected, it is set to 1. Alternative 2 requires only one step.

Figure 14 shows the results for conflicting and random locks. Even in these two cases, we find
that Alternative 2 outperforms Alternative 1. Alternative 1 is hampered by the need for a process
to back off for a random amount of time before retrying the lock when it detects that another
process is trying to acquire a lock (flag=2). This random wait is needed to avoid the livelock
condition described earlier. We implemented the wait by using the POSIX nanosleep function,
which delays the execution of the program for at least the time specified. However, a drawback of
the way this function is implemented in Linux (and many other operating systems) is that although
the specified time is small, it can take up to 10ms longer than specified until the process becomes

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



FORMAL METHODS FOR MPI: CASE STUDY 39

0.05

0.06

0.07

0.08

0.09

0.1

1289664483216842

T
im

e 
(m

ill
is

ec
.)

Processes

Alt.1, nonconflicting
Alt.2, nonconflicting

Figure 13. Average time per process for acquiring and releasing a non-conflicting lock.

0.5

1

1.5

2

2.5

3

1289664483216824

T
im

e 
(m

ill
is

ec
.)

Processes

Alt. 1, conflicting
Alt. 2, conflicting

Alt. 1, random
Alt. 2, random

Figure 14. Average time per process for acquiring and releasing a conflicting lock and a random lock.
The spike in the small process range for Alternative 1 is because the effect of the backoff with nanosleep
is more visible here as wasted time, whereas on larger number of processes, that time gets used by some

other process trying to acquire the lock.

runnable again. This causes the process to wait longer than needed and slows the algorithm. In
addition, there is no good way to know how long a process must wait before retrying in order
to avoid the livelock. Based on experiments, we used a time equal to (myrank×500) ns, where
myrank is the rank of the process.

For conflicting locks on a small number of processes (4–16), we find that the time taken by
Alternative 1 is substantially higher than Alternative 2. We believe this is because the effect of
nanosleep taking longer than specified to return is more visible here as wasted time. On larger
numbers of processes, that time gets used by some other process trying to acquire the lock and
hence does not adversely affect the average.

6. DISCUSSIONS

We now address several important questions concerning the viability of applying model checking
for HPC software.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



40 S. PERVEZ ET AL.

Effort required to model applications: The approach presented in this paper is ideally suited for
modeling protocols at a high level. It is ill suited for modeling large-scale applications after the
applications have been developed in sufficient detail. This is because of the extreme tedium of
understanding and modeling an already built application.

Effort to model MPI library functions: This paper’s attempt of modeling MPI’s one-sided
functions in Promela is tractable, given the relatively small number of these functions. However,
for the full MPI library, given that MPI-2 has over 300 functions, the effort becomes tedious
very quickly. MPI-SPIN [49] includes a description of many MPI functions. In [27], we wrote a
description for many MPI functions in TLA+ [50]; this was expanded into a description of nearly
150 MPI functions in [28]. The ISP tool [32, 33] bypasses the need to model MPI functions by
relying on the native semantics of an actual MPI library implementation. This of course runs the
risk of relying on the semantics of an actual MPI library implementation. In short, there appears
to be no ‘best approach’ when it comes to modeling the semantics of complex APIs such as MPI.
Each verification methodology has to adopt its own approach, and the use of multiple models is
also justified, provided one can reconcile the differences between these models.

Expected scalability of the proposed techniques: Model checking relies on the maxim that many
bugs are best caught on a much smaller scale than the typically deployed applications. In contrast,
many present-day practices are reluctant to approach software development by going through a
succession of progressively refined models. The approach in this paper is best suited for verification
after downscaling, and is not suited for verification of fully configured system deployments with
a large number of processes and runtime memory.

Techniques for high-end HPC applications: This point is related to the previous one: high-end
HPC applications suffer from many bugs that are outside the realm of today’s formal anal-
ysis methods. Bugs could arise due to incorrectly written applications, incorrectly behaving MPI
libraries, or resource consumptions in excess of the (often unstated) usage constraints. Given that
testing is the only approach for debugging, localizing faults becomes an extremely difficult propo-
sition. Therefore, development frameworks that provide multiple intuitive views as well as source
code navigation facilities are important even for formal tools. Examples include the GUIs of the
CHESS tool [51] or the ISP tool [52].

In conclusion, the methods presented in this paper are about as realistic as any other alternative
available in today’s cornucopia of available debugging methods. They underscore the importance
of finding bugs at the small scale through formal analysis. Future research can support effective
debugging by addressing the tedium of modeling as well as maintaining consistency between
various models.

7. CONCLUSIONS

We have shown how formal verification based on model checking can be used to find actual
deadlocks in a published algorithm for distributed byte-range locking. We have also discussed how
this technology can help shed light on a number of related issues such as forward progress and
the possibility of there being unconsumed messages. We presented and analyzed two alternative
algorithms for byte-range locking that avoid the race condition. We also analyzed the characteristics
of these protocols including their correctness guarantees, and also their performance.

Although concurrency-related errors, such as deadlocks and race conditions, are hard for humans
to detect but easy for a model-checking tool, the use of formal verification for parallel programming
is still in its infancy. Some of the recent encouraging developments in this area include the
CHESS tool of Microsoft Research [51, 53], the MODIST tool for verifying distributed systems by
employing model-checking techniques in a lightweight manner [54], the Utah authors’ group’s tool
Inspect for verifying C/Pthreads programs, and the MPI-SPIN, [49] which uses model checking
for concurrency analysis and symbolic execution for verifying computations. With the widespread
emergence of multicore chips and the need for concurrent programming to exploit their availability,
the need for formal methods is all the more important and timely. The availability of a good model

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



FORMAL METHODS FOR MPI: CASE STUDY 41

checker enables a designer to confidently embark on designing aggressively optimized protocols.
Thus, formal tools can not only boost confidence but also lead to the development of efficient
protocols.

One difficulty in model checking is the need to create an accurate model of the program being
verified. This step is tedious and error-prone. The approach of modeling a protocol in Promela and
verifying the model is worthwhile for short intricate protocols such as locking protocols. However,
if the model itself is not accurate, verification results can be misleading. It may still be possible
to build highly abstract models in Promela, analyze the resulting models cheaply using SPIN, find
bugs, and thereby save the tedium of having to build a finely engineered but incorrect protocol!

However, for anything but the simplest of protocols, a designer may in fact wish to directly model
check the protocol using native languages and libraries. It is also inevitable that designers build real
protocol implementations during design space exploration, so that the performance characteristics
of the protocols are well understood. We believe that this dynamic formal verification approach—as
embodied in our tools ISP (discussed in Sections 6 and 1) and Inspect, as well as external tools
such as CHESS and MODIST—holds considerable promise going forward.

There are still harder concurrency verification problems that are yet to be addressed by us or
by others. This prominently includes the topic of parameterized verification: prove for an arbitrary
number of processes that a given protocol is correct. All our formal verification exercises targeted
a specific number (three or around that number) of processes. In general, parameterized verifica-
tion is algorithmically unsolvable [8] as one can show that solving parameterized verification is
tantamount to algorithmically solving the halting problem. Despite this, parameterized verifica-
tion may be solvable in restricted cases through the use of symbolic reasoning methods. In some
cases, parameterized verification can be solved through a technique known as counterexample
guided abstraction/refinement. One such successful attempt by Chou et al. [55] is of considerable
practical interest in the area of directory-based multiprocessor cache coherency protocol modeling
and verification. This work achieves parameterized verification purely through interactive model
checking of successively (manually) refined protocols. Whether such successes can occur in the
realm of MPI programming and verification remains to be seen.

ACKNOWLEDGEMENTS

This work was supported by NSF awards CNS-0509379, CCF-0811429, by the Microsoft HPC Institutes
program, and by the Mathematical, Information, and Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under
Contract DE-FG02-08ER25835. We also thank the reviewers for their diligent reading of our paper and
their valuable comments.

REFERENCES

1. Pervez S, Gopalakrishnan G, Kirby RM, Thakur R, Gropp W. Formal verification of programs that use
MPI one-sided communication. Recent Advances in Parallel Virtual Machine and Message Passing Interface
(EuroPVM/MPI), Bonn, Germany (Lecture Notes in Computer Science, vol. 4192), 2006; 30–39. Outstanding
Paper.

2. Godefroid P, Nagappan N. Concurrency at Microsoft: An exploratory survey. EC2: Workshop on Exploiting
Concurrency Efficiently and Correctly. Available at: http://www.cs.utah.edu/ec2/papers/ec2-pp1.pdf [15 December
2009].

3. MPI Forum. MPI: A message-passing interface standard, version 2.1, June 2008. Available at: http://www.mpi-
forum.org [15 December 2009].

4. Rushby J. Model checking and other ways of automating formal methods, panel on model checking for concurrent
programs software quality week, 1995. Available at: http://www.csl.sri.com/reports/postscript/sqw95.ps.gz [15
December 2009].

5. Clarke E, Emerson EA, Sifakis J. The 2007 ACM Turing Award given to the original proponents
and developers of Model Checking for their pioneering work that began in 1981. Available at:
http://awards.acm.org/homepage.cfm?awd=140 [15 December 2009].

6. Emerson EA, Clarke EM. Using branching time temporal logic to synthesize synchronization skeletons. Science
of Computer Programming 1981; 2(3):241–266.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



42 S. PERVEZ ET AL.

7. Queille J, Sifakis J. Specification and verification of concurrent systems in CESAR. Fifth International Symposium
on Programming, Dezani-Ciancaglini M, Montanari U (eds.). (Lecture Notes in Computer Science, vol. 137).
Springer: Berlin, 1981; 337–351.

8. Clarke EM, Grumberg O, Peled D. Model Checking. MIT Press: Cambridge, MA, 1999.
9. Symposium on twenty five years of model checking, November 2006. Available at: http://www.easychair.org/FLoC-

06/25MC-preproceedings.pdf [15 December 2009].
10. The MPICH2 site. Available at: http://www-unix.mcs.anl.gov/mpi/mpich2/ [15 December 2009].
11. Thakur R, Ross R, Latham R. Implementing byte-range locks using MPI one-sided communication. Recent

Advances in Parallel Virtual Machine and Message Passing Interface, 12th European PVM/MPI Users’ Group
Meeting (Lecture Notes in Computer Science, vol. 3666). Springer: Berlin, September 2005; 120–129.

12. Message Passing Interface Forum. MPI2: A Message Passing Interface standard. International Journal of High
Performance Computing Applications 1998; 12(1–2):1–299.

13. Portable operating system interface (POSIX). Available at: http://standards.ieee.org/regauth/posix/ [15 December
2009].

14. Peterson GL. Myths about the mutual exclusion problem. Information Processing Letters 1981; 12(3):115–116.
15. Ahamad M, Bazzi RA, John R, Kohli P, Neiger G. The power of processor consistency (extended abstract).

Symposium on Parallel Algorithms and Architectures, Velen, Germany, June 1993; 251–260.
16. Holzmann GJ. The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley: Boston, MA, 2003.
17. Visser W, Havelund K, Brat G, Park S. Model checking programs. The Fifteenth IEEE International Conference

on Automated Software Engineering (ASE’00), Grenoble, France, September 2000; 3–12.
18. Ball T, Cook B, Levin V, Rajamani SK. SLAM and static driver verifier: technology transfer of formal methods

inside Microsoft. Proceedings of IFM 04: Integrated Formal Methods. Springer: Berlin, April 2004; 1–20.
19. Musuvathi M, Park D, Chou A, Engler D, Dill DL. CMC: A pragmatic approach to model checking real code.

Proceedings of the Fifth Symposium on Operating System Design and Implementation, Boston, MA, U.S.A.,
December 2002.

20. Matlin OS, Lusk E, McCune W. SPINning parallel systems software. Model Checking of Software: Ninth
International SPIN Workshop (Lecture Notes in Computer Science, vol. 2318). Springer: Berlin, 2002; 213–220.

21. Siegel SF, Avrunin GS. Verification of MPI-based software for scientific computation. Proceedings of the 11th
International SPIN Workshop on Model Checking Software (Lecture Notes in Computer Science, vol. 2989).
Springer: Berlin, April 2004; 286–303.

22. Siegel SF. Efficient verification of halting properties for MPI programs with wildcard receives. Proceedings of
the Sixth International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), Paris,
France, 2005; 413–429.

23. Siegel SF, Mironova A, Avrunin GS, Clarke LA. Using model checking with symbolic execution to verify parallel
numerical programs. Proceedings of the ACM SIGSOFT 2006 International Symposium on Software Testing and
Analysis, Portland, ME, U.S.A., July 2006; 157–168.

24. Siegel SF. Model checking nonblocking MPI programs. Proceedings of the Eighth International Conference on
Verification, Model Checking, and Abstract Interpretation, Nice, France, January 2007; 44–58.

25. Palmer R, Barrus S, Yang Y, Gopalakrishnan G, Kirby RM. Gauss: A framework for verifying scientific computing
software. Workshop on Software Model Checking (Electronic Notes on Theoretical Computer Science (ENTCS),
vol. 953), Edinburgh, Scotland, 2005. Available at: http://www.cs.utah.edu/fv [15 December 2009].

26. Palmer R, Gopalakrishnan G, Kirby RM. Formal specification and verification using +CAL: An
experience report. Proceedings of Verify’06 (FLoC 2006), Seattle, WA, U.S.A., 2006. Available at:
http://www.cs.utah.edu/fv/publications/conferences/pdf/verify06.pdf [15 December 2009].

27. Palmer R, Delisi M, Gopalakrishnan G, Kirby RM. An approach to formalization and analysis of message passing
libraries. Formal Methods for Industry Critical Systems (FMICS 2007), Leue S, Merino P (eds.). (Lecture Notes
in Computer Science, vol. 4916). Springer: Berlin, 2008; 164–181. Best Paper Award.

28. Li G, DeLisi M, Gopalakrishnan G, Kirby RM. Formal specification of the MPI-2.0 standard in tla+. Principles
and Practices of Parallel Programming (PPoPP), Salt Lake City, UT, U.S.A., 2008; 283–284.

29. Palmer R, Gopalakrishnan G, Kirby RM. Semantics driven dynamic partial-order reduction of MPI-based parallel
programs. Parallel and Distributed Systems: Testing and Debugging (PADTAD), London, U.K., 2007; 43–53.

30. Pervez S, Palmer R, Gopalakrishnan G, Kirby RM, Thakur R, Gropp W. Practical model checking method for
verifying correctness of MPI programs. EuroPVM/MPI (Lecture Notes in Computer Science, vol. 4757). Springer:
Berlin, 2007; 344–353.

31. Vakkalanka S, Sharma SV, Gopalakrishnan G, Kirby RM. ISP: A tool for model checking MPI programs.
Principles and Practices of Parallel Programming (PPoPP), Salt Lake City, UT, U.S.A., 2008; 285–286.

32. Vakkalanka S, Gopalakrishnan G, Kirby RM. Dynamic verification of MPI programs with reductions in presence
of split operations and relaxed orderings. Computer Aided Verification (CAV 2008), vol. 5123/2008, Princeton,
NJ, U.S.A., 2008; 66–79.

33. Vakkalanka S, DeLisi M, Gopalakrishnan G, Kirby RM, Thakur R, Gropp W. Implementing efficient dynamic
formal verification methods for MPI programs. Recent Advances in Parallel Virtual Machine and Message Passing
Interface (EuroPVM/MPI), vol. 5205/2008, Dublin, Ireland, 2008; 248–256.

34. Vakkalanka S, DeLisi M, Gopalakrishnan G, Kirby RM. Scheduling considerations for building dynamic
verification tools for MPI. Parallel and Distributed Systems—Testing and Debugging (PADTAD-VI), Seattle, WA,
U.S.A., July 2008. Available at: http://www.cs.utah.edu/fv/ [15 December 2009].

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe



FORMAL METHODS FOR MPI: CASE STUDY 43

35. Vo A, Vakkalanka S, DeLisi M, Gopalakrishnan G, Kirby RM, Thakur R. Formal verification of practical MPI
programs. Principles and Practices of Parallel Programming (PPoPP), Dublin, Ireland, 2009; 261–269.

36. Sharma S, Vakkalanka S, Gopalakrishnan G, Kirby RM, Thakur R, Gropp W. A formal approach to detect
functionally irrelevant barriers in MPI programs. Recent Advances in Parallel Virtual Machine and Message
Passing Interface (EuroPVM/MPI), Dublin, Ireland, 2008; 265–273.

37. Vuduc R, Schulz M, Quinlan D, de Supinski B, Saebjornsen A. Improved distributed memory applications testing
by message perturbation. Parallel and Distributed Systems: Testing and Debugging (PADTAD-IV), Portland, ME,
U.S.A., 2006. Available at: http://vuduc.org/research/jitterbug/index.html [15 December 2009].

38. Krammer B, Bidmon K, Müller MS, Resch MM. Marmot: An MPI analysis and checking tool. Parallel Computing
2003, Dresden, Germany, September 2003; 493–500.

39. Strout MM, Kreaseck B, Hovland PD. Data-flow analysis for MPI programs. International Conference on Parallel
Programming (ICPP), Columbus, OH, U.S.A., 2006; 175–184.

40. Quinlan D, Vuduc R, Misherghi G. Techniques for the specification of bug patterns. Parallel and Distributed
Systems: Testing and Debugging (PADTAD), London, U.K., 2007; 27–35.

41. Siegel SF, Mironova A, Avrunin GS, Clarke LA. Combining symbolic execution with model checking to verify
parallel numerical programs. ACM Transactions on Software Engineering and Methodology 2008; 17(2):1–34,
Article 10.

42. Krammer B, Resch MM. Correctness checking of MPI one-sided communication using marmot. Recent Advances
in Parallel Virtual Machine and Message Passing Interface (EuroPVM/MPI) (Lecture Notes in Computer Science,
vol. 4192). Springer: Berlin, 2006; 105–114.

43. Hill JMD, Skillicorn DB. Lessons learned from implementing BSP. Future Generation Computer Systems 1998;
13(4–5):327–335.

44. SHMEM API for parallel programming. Available at: http://www.shmem.org [15 December 2009].
45. Gropp W, Lusk E, Thakur R. Using MPI-2: Advanced Features of the Message-Passing Interface. MIT Press:

Cambridge, MA, 1999.
46. Pervez S. Promela encoding of byte range locking written using MPI one-sided operations, 2007. Available

at: http://www.cs.utah.edu/formal verification/benchmarks/byterange-locking-promela-models.tar.gz [15 December
2009].

47. On-the-fly LTL model checking with SPIN. Available at: http://www.spinroot.com [15 December 2009].
48. Pervez S. Byte-range locks using MPI one-sided communication. Technical Report, University of Utah, School

of Computing, 2006. Available at: http://www.cs.utah.edu/formal verification/OnesidedTR1/ [15 December 2009].
49. Siegel S. The MPI-SPIN tool webpage. Available at: http://vsl.cis.udel.edu/mpi-spin/ [15 December 2009].
50. Lamport L. Available at: research.microsoft.com/users/lamport/tla/tla.html [15 December 2009].
51. Chess: Find and reproduce Heisenbugs in concurrent programs. One may download the chess tool for evaluation

from this url: http://research.microsoft.com/en-us/projects/chess/ [15 December 2009].
52. Release of ISP: Tool for dynamic verification of MPI programs, School of Computing, University of Utah.

Available at: http://www.cs.utah.edu/formal verification/ISP-release [15 December 2009].
53. Musuvathi M, Qadeer S. Iterative context bounding for systematic testing of multithreaded programs. PLDI ’07:

Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation.
ACM: New York, NY, U.S.A., 2007; 446–455.

54. Yang J, Chen T, Wu M, Xu Z, Liu X, Lin H, Yang M, Zhang FL, Zhou L. Modist: Transparent model checking
of unmodified distributed systems. Sixth Usenix Symposium on Networked Systems Design and Implementation
(NSDI), Boston, MA, U.S.A., April 2009; 213–228.

55. Chou CT, Mannava PK, Park S. A simple method for parameterized verification of cache coherence protocols.
Formal Methods in Computer Aided Design, Austin, TX, U.S.A., 2004; 382–398.

Copyright 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2010; 40:23–43
DOI: 10.1002/spe


