
A Generic Framework for Time-Stepping PDEs:

general linear methods, object-orientated

implementation and application to fluid problems

Peter E.J. Vosa,b, Sehun Chuna, Alessandro Bolisa,

Claes Eskilssonc, Robert M. Kirbyd and Spencer J. Sherwina,∗

aDept. of Aeronautics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
bFlemish Institute for Technological Research (Vito), Boeretang 200, BE-2400 Mol, Belgium

cDept. of Shipping and Marine Technology, Chalmers Univ. of Tech., SE-412 96 Gothenburg, Sweden
dSchool of Computing, Univ. of Utah, 50 S. Central Campus Drive, Salt Lake City, UT 84112, USA

October 24, 2010

Abstract

Time-stepping algorithms and their implementations are a critical
component within the solution of time-dependent partial differential equa-
tions (PDEs). In this paper we present a generic framework – both in
terms of algorithms and implementations – that allows an almost seam-
lessly switch between various explicit, implicit and implicit-explicit (IMEX)
time-stepping methods. We put particular emphasis on how to incorpo-
rate time-dependent boundary conditions, an issue that go beyond clas-
sical ODE theory but which play an important role in the time-stepping
of the PDEs arising in computational fluid dynamics. Our algorithm is
based upon J.C. Butcher’s unifying concept of General Linear Methods
that we have extended to accommodate the family IMEX schemes that
are often used in engineering practice. In the paper we discuss design
considerations and presents an object-orientated implementation. Finally
we illustrate the use of the framework by applications to model problem
as well as to more complex fluid problems.

1 Introduction

In the development of simulation software into which numerical approximation
strategies for solving time-dependent partial differential equations (PDEs) are
utilised, the time-stepping method and its implementation typically receive a
subordinate role to the modelling and spatial discretisation choices. There exist
a myriad of reasons why this partitioning of effort exists and is justified. In
part, the Method of Lines (MoL), which is commonly employed to help simplify
the discretisation process, focuses one’s attention on distilling the partial differ-
ential equations down to a collection of coupled ordinary differential equations

∗Corresponding author. Email: s.sherwin@imperial.ac.uk

1

(ODEs) to which classic time-stepping methods can be applied (see e.g. [25] for
discussions and examples of the MoL approach). Tremendous effort is invested
into the distillation process of modelling and spatial discretisation, and often is
the final ODE integration stage viewed as a straightforward process requiring
little concentrated focus.

When ready to start time-stepping the semi-discretized PDE the multi-
stage/multi-step divide is encountered – whether to use multi-step methods like
Adams-Bashforth and Adams-Moulton, which typically require more memory
but have an economy of floating-point operations, or to use multi-stage methods
like Runge-Kutta (RK), which typically have larger stability regions and require
less memory. Whichever selection is made might require further reworking of
the simulation software to accommodate either the memory needs or evaluation
needs of the family of schemes selected. This serves further to discourage fully
exploiting all the advances that have been made in the numerical solution of
ODEs and discourages doing verification studies in which the interplay between
spatial and temporal discretisation errors (beyond just leading order-of-accuracy
statements) are quantified.

The goal of this effort was to develop a generic framework, both in terms
of algorithms and software implementations, which allows an almost seamlessly
switch between various explicit and implicit time-stepping methods. The first
challenge we encountered was the question of how to span the multi-stage/multi-
step divide. By basing our algorithms on J.C. Butcher’s unifying General Linear
Methods (GLM), as originally introduced by [6], we are able to accommodate
a wide range of the time-stepping schemes used in engineering practice, which
not only encourages the judicious use of the plethora of different methods that
exist, but also facilitates time-discretisation verification studies.

General linear methods, see e.g. [3, 4, 16, 5, 17] and the numerous refer-
ences therein, unify the analysis of ODEs with respect to consistency, stability
and convergence. In addition to GLM covering many of the classical methods, it
also includes methods such as the ‘two-step Runge-Kutta methods’ [18], ‘almost
Runge-Kutta methods’ [9, 23], ‘diagonally implicit multistage integration meth-
ods’ [7, 8] and ‘methods with inherent Runge-Kutta stability’ [30]. Examples
of existing GLM based ODE codes are due to [28, 29, 10, 15, 30]. These codes
are highly specialised implementations of a single sub-class of GLMs. We note
that our objective is quite different as we want to use the unifying property of
the GLMs as foundation for building a generic time-stepping framework.

However, the ODE concept of GLM currently does not encompass the family
of implicit-explicit (IMEX) schemes that are often used to time-integrate PDEs,
see e.g. [2, 1, 19]. In order to treat these schemes in a similar way, we have shown
that through a small modification, these schemes as well can be formulated as
a general linear method.

Although the MoL approach in principle abstracts away the spatial dis-
cretization part of the PDE, there are some specific issues arising during this
procedure that have a decisive influence on the design of a generic PDE time-
stepping framework. In particular, the question how to deal with time-dependent
boundary conditions in a generic and computationally efficient manner forms
the second major challenge of this work.

Finally, a remark regarding terminology when dealing with time-stepping
schemes that are formally explicit from an ODE point of view. Spatially dis-
cretising a PDE using a Galerkin approach generally leads to a ODE system

2

which involves the “inversion” of a global system regardless of the fact that we
are using an explicit time-stepping scheme. This situation can be referred to as
an indirect explicit method in contrast to the direct explicit method resulting
from, for example, a standard finite difference discretization.

1.1 Design Considerations

Based upon the aforementioned motivations, we set the following as the objec-
tives of our time-stepping framework:

• It should facilitate both explicit/implicit time-stepping and multi-step and
multi-stage schemes, as well as allowing implementation of more elabo-
rate partitioning schemes, e.g. IMEX-RK. However, the framework is
restricted to only incorporate implicit schemes in which the stage values
can be computed in a decoupled fashion. This includes all implicit multi-
step schemes and the diagonally implicit multi-stage schemes such as the
Diagonally Implicit Runge-Kutta (DIRK) schemes. Fully implicit multi-
stage methods, which are rarely adopted in engineering practice, do not
fit into the presented framework.

• It should be designed anticipating that the MoL has been used on a PDE
to yield a system of coupled ODEs. Therefore the framework should work
for both static and time-dependent, as well as for both weakly and strongly
enforced boundary conditions.

• It should work independent of the spatial discretisation choice (i.e. it
should work with continuous Galerkin and discontinuous Galerkin meth-
ods, as well as with finite difference and finite volume methods).

• It should provide an efficient solution for time-stepping PDEs, i.e. the
computational cost should be comparable to scheme-specific implementa-
tions.

1.2 Outline

In this paper, we document the objectives of our framework, provide a brief
overview of general linear methods, and explain how we design and implement
a software solution written in an object-oriented language (OOL) that meets
our objectives. The paper is organized as follows. We begin in Section 2 by
presenting Butcher’s idea of general linear methods and we show how IMEX
schemes can also be worked into this framework. Section 3 describes the design,
algorithms and implementation of the ODE solving framework. In Section 4,
we then present how this ODE framework can be modified into a generic PDE
time-stepping framework meeting the objectives. Therefore, we introduce the
MoL decomposition of a model problem, and we explain how to deal with time-
dependent boundary conditions in a generic and computationally efficient way.
In Section 5, we demonstrate the capabilities of the presented framework by
presenting some examples and in Section 6 we summarise and conclude the
presented work.

3

2 General Linear Methods

General linear methods (GLM) have emerged as an effort to connect two main
types of time integration schemes: linear multi-step method and linear multi-
stage method. Linear multi-step methods, such as Adams family of schemes, use
the collection of r input parameters from the previous time-levels to obtain the
solution at the next time-level. On the other hand, linear multi-stage methods
such as Runge-Kutta methods approximate the solution at the new time-level
by linearly combining the solution at s intermediate stages.

To begin, the standard initial value problem in autonomous form is repre-
sented by the ODE,

dy

dt
= f(y), y(t0) = y0, (1)

where f : RN → R
N . The nth step of the general linear method comprised of r

steps and s stages is then formulated as [3]:

Y i = ∆t

s
∑

j=1

aijF j +

r
∑

j=1

uijy
[n−1]
j , 1 ≤ i ≤ s, (2a)

y
[n]
i = ∆t

s
∑

j=1

bijF j +

r
∑

j=1

vijy
[n−1]
j , 1 ≤ i ≤ r, (2b)

where Y i are called the stage values and F i are called the stage derivatives.
Both quantities are related by the differential equation:

F i = f(Y i). (2c)

The matrices A = [aij], U = [uij], B = [bij], V = [vij] are characteristic of a
specific method, and as a result, each scheme can be uniquely defined by the
partitioned (s+ r)× (s+ r) matrix

[

A U
B V

]

. (3)

For a more concise notation, it is convenient to define the vectors Y ,F ∈ R
sN

and y
[n−1]
i ,y

[n]
i ∈ R

rN as follows:

Y =

Y 1

Y 2

...
Y s

, F =

F 1

F 2

...
F s

, y[n−1] =

y
[n−1]
1

y
[n−1]
2
...

y
[n−1]
r

, and y[n] =

y
[n]
1

y
[n]
2
...

y
[n]
r

.

(4)
Using these vectors, it is possible to write Eq. (2a) and Eq. (2b) in the form

[

Y

y[n]

]

=

[

A⊗ IN U ⊗ IN
B ⊗ IN V ⊗ IN

] [

∆tF
y[n−1]

]

, (5)

where IN is the identity matrix of dimensionN×N and ⊗ denotes the Kronecker
product. Note that it is the first element of the input vector y[n−1] and output
vector y[n] which represents the solution at the corresponding time-level, i.e.

4

y
[n]
1 = yn = y(t0 + n∆t). The other subvectors y

[n]
i (2 ≤ i ≤ r) refer to the

approximation of an auxiliary set of values inherent to the scheme. These values,
in general, are comprised of either solutions or derivatives at earlier time-levels
or a combination hereof. Many well-known, as well as lesser known, schemes
can be cast as a GLM, see Appendices A.1-A.3.

2.1 Implicit-explicit general linear methods

In this section, we extend the idea of GLM to accommodate in addition implicit-
explicit (IMEX) schemes. IMEX schemes [2, 1] were introduced to time-integrate
ODEs of the form

dy

dt
= f(y) + g(y), y(t0) = y0, (6)

where f : RN → R
N typically is a non-linear function and g : RN → R

N is a
stiff term (or where f and g have disparate time-scales). The idea behind IMEX
methods is to combine two different type of schemes: one would like to use an
implicit scheme for the stiff term in order to avoid an excessively small time-
step. At the same time, explicit integration of the non-linear term is preferred
to avoid its expensive inversion.

Following the same underlying idea as discussed in the previous sections,
IMEX linear multi-step schemes [2] and IMEX Runge-Kutta schemes [1] can be
unified into an IMEX general linear method formulation, i.e.

Y i = ∆t

s
∑

j=1

aIMij Gj +∆t

s
∑

j=1

aEX
ij F j +

r
∑

j=1

uijy
[n−1]
j , 1 ≤ i ≤ s, (7a)

y
[n]
i = ∆t

s
∑

j=1

bIMij Gj +∆t

s
∑

j=1

bEX
ij F j +

r
∑

j=1

vijy
[n−1]
j , 1 ≤ i ≤ r, (7b)

where the stage derivatives F i and Gi are defined as

F i = f(Y i), Gi = g(Y i), (7c)

and where the superscripts IM and EX are used to denote implicit and explicit
respectively. Adopting a matrix formulation similar to that shown in Eq. (5),
this can be written in the form

[

Y

y[n]

]

=

[

AIM ⊗ IN AEX ⊗ IN U ⊗ IN

BIM ⊗ IN BEX ⊗ IN V ⊗ IN

]

∆tG

∆tF

y[n−1]

. (8)

To further illustrate the formulation of IMEX schemes as a GLM, a few examples
are given in Appendix A.4.

3 A generic ODE solving framework

Just as Butcher’s general linear methods provide a general framework to study
the basic properties such as consistency, stability and convergence of different
families of numerical methods for ODEs, it can also serve as a starting point
for a unified numerical implementation. For maximum generality we base our

5

implementation on the IMEX-GLM formulation described in Section 2.1: for
purely explicit methods we simply define AIM, BIM as well as g(y) equal to
zero. For purely implicit schemes we analogously set AEX, BEX and f(y) to be
zero.

3.1 Evaluation of general linear methods

Inspecting Eq. (7) it can be appreciated that a single step from level n − 1 to
n for an IMEX-GLM formulation can be evaluated through the following algo-
rithm:

input : the vector y[n−1]

output: the vector y[n]

// Calculate stage values Y i and the stage derivatives F i

and Gi

for i = 1 to s do

// calculate the temporary variable xi

(A1.1) xi = ∆t
∑i−1

j=1 a
IM
ij Gj +∆t

∑i−1
j=1 a

EX
ij F j +

∑r
j=1 uijy

[n−1]
j

// calculate the stage value Y i

(A1.2) solve
(

Y i − aIMii ∆tg(Y i)
)

= xi

// calculate the explicit stage derivative F i

(A1.3) F i = f(Y i)

// calculate the implicit stage derivative Gi

(A1.4) Gi = g(Y i) =
1

aIM

ii
∆t

(Y i − xi)

end

// Calculate the output vector y[n]

for i = 1 to r do

// calculate y
[n]
i

(A1.5) y
[n]
i = ∆t

∑s
j=1 b

IM
ij Gj +∆t

∑s
j=1 b

EX
ij F j +

∑r
j=1 vijy

[n−1]
j

end

Algorithm 1: A GLM-based ODE solving algorithm.

Here we first observe that the algorithm, by virtue of the GLM framework,
is independent of the actual numerical scheme used – only the values of the
coefficients a and b change for different methods. Further, if we are using a
purely explicit scheme then aIMii = 0 and the stage value is equal to the the
temporary value computed in step (A1.1), i.e. step (A1.2) is greatly simplified
to Y i = xi. It is also worth noting that the stage derivative Gi = g(Y i)
in (A1.4) need not be explicitly evaluated, but is given by already computed
values, as seen by reordering Eq. (A1.2). Indeed, steps (A1.2) and (A1.3) are
the only instances in the algorithm where specific information from the ODE is
required, all other steps in the algorithm simply involve linear combinations of
precomputed information. These two steps are to be considered external parts

6

representing the ODE rather than being a part of the numerical GLM algorithm.
We thus need to define the following external functions:

• If AIM 6= 0 we must supply a routine for solving a system of form (A1.2),

(Y − λg(Y)) = x, (9)

for Y ∈ R
N , given as input the vector x ∈ R

N and the scalar λ ∈ R.
g : RN → R

N denotes the function prescribing the terms of the ODE that
are to be implicitly evaluated. In general, the solution or fixed point of
this system can be found through root finding algorithms. In the case g is
a linear operator, one may opt for a direct solution method to solve this
system through the inverse operator (I − λg)−1, where I : RN → R

N is
the identity function.

• If AEX 6= 0 we must also supply a routine for evaluating (A.1.3), i.e. a
function f : RN → R

N that maps the stage values to the stage derivatives
for the terms of the ODE that are explicitly evaluated

F = f(Y). (10)

The external functions are specific for the ODE under consideration and have to
be specified to the framework. The decoupling of the external components from
the GLM algorithm naturally leads to a level of abstraction allowing a generic
object-oriented implementation, in a programming language such as C++, to
be discussed in the next section.

3.2 Encapsulation of key concepts

As outlined in the introduction, it is our goal to implement an ODE solving
toolbox where switching between numerical schemes is as simple as changing an
input parameter. To accomplish this, we have encapsulated the key concepts
observed in the previous section into a set of C++ type classes, depicted in Fig.
1. It is not our intention to necessarily advocate using only C++ but rather
to highlight how any OOL could be used to encapsulate the concepts. We
acknowledge that many OOL exist which could be used for this implementation
stage.

3.2.1 The class TimeIntegrationOperators

This class provides a general interface to the external components (see Section
3.1) needed for time marching. As a result, this class can be seen as the ab-
straction of the ODE. As data members, it contains two objects which can be
thought of as function pointers : m_explicitEvaluate should point to the im-
plementation of (10) and m_implicitSolve should point to the implementation
of solving system (9). Note that the actual routines pointed to by the function
pointers are not part of the framework and must be provided as they are spe-
cific for each ODE under consideration. The function pointers can be linked
to these implementations by means of the methods DefineExplicitEvaluate
and DefineImplicitSolve. The encapsulation of these functions into another

7

m inputTimeLevels

data members

methods

class

data members

methods

GetSolution

class
TimeIntegrationSolution

data members

m A

m B

class
TimeIntegrationScheme

m implicitSolve

m explicitEvaluate

DefineExplicitEvaluate

DefineImplicitSolve

DoExplicitEvaluate

DoImplicitSolve

TimeIntegrationOperators

m solutionvector

methods

m U

m V

InitializeScheme

TimeIntegrate

Figure 1: Overview of the classes in the implementation of the generic ODE
solving framework.

class is needed to ensure that both these functions can be accessed from within
the time-stepping algorithms in a unified fashion, independent of which ODE
is being solved. Therefore, the class TimeIntegrationOperators also contains
the methods DoExplicitEvaluate and DoImplicitSolve for internal use.

3.2.2 The class TimeIntegrationSolution

This class is the abstraction of the vector y[n] as defined in Eq. (4). One

can think of it as an array of arrays. The first entry y
[n]
1 = yn represents

the approximate solution at time-level n, and can be obtained by means of the
method GetSolution.

3.2.3 The class TimeIntegrationScheme

This class can be considered as the main class as it is the abstraction of a general
linear method. As each scheme is uniquely defined by the partitioned coefficient
matrix (3), the sub-matrices A, B, U and V are core data members of this
class, implemented respectively as m_A, m_B, m_U and m_V. In addition, this class
contains the data member m_inputTimeLevels which reflect the structure of the
input/output vector y[n] associated to the scheme. Based upon the fact that all
input vectors can be ordered such that the stage values are listed first before the
explicit stage derivatives and the implicit stage derivatives, m_inputTimeLevels
can be seen as an array existing of three parts that indicate the time-level
at which the values/derivatives are evaluated. As an example, consider the
second-order Crank-Nicholson/Adams-Bashforth scheme with input vector y[n]

as defined in Eq. (73). The data member m_inputTimeLevels is then defined
as

m_inputTimeLevels =

0
0
0
1

. (11)

Furthermore, this class is equipped with the two methods needed for the actual
time-marching. The function InitializeScheme converts the initial value y0 in

8

an object of the class TimeIntegrationSolution. This object is then going to
be advanced in time using the method TimeIntegrate. It is the TimeIntegrate
method which actually implements the GLM algorithm in Section 3.1 and hence
integrates the ODE for a single time-step. Note that internally, this method
calls the functions DoExplicitEvaluate and DoImplicitSolve of the class
TimeIntegrationOperators in order to evaluate Eq. (10) and solve Eq. (9)
respectively.

3.3 Use of the framework

As mentioned earlier the functionality described by Eqs. (9) and (10) are ODE
specific and must be implemented and provided to the framework according to
the prototype defined in Code 1.

Code 1 Prototype of functions required to be provided by the user

double* ExplicitEvaluate(double* x)

{

... // ODE specific implementation

}

double* ImplicitSolve(double* x, double lambda)

{

... // ODE specific implementation

}

These functions, together with the classes of the toolbox, can then be used
to numerically solve the ODE. A typical example of this is shown in the example
Code 2. In this particular example, the constructor call

scheme = TimeIntegrationScheme(FORWARD_EULER)

loads the object with the coefficient matrices of the forward Euler scheme. How-
ever, none of the external ODE specific implementation changes when selecting
a more advanced time-stepping method. Other schemes can simply be loaded by
changing the input argument (e.g. from FORWARD_EULER to CLASSICAL_RK_4).
This example illustrates how the presented framework can be used to numer-
ically solve an ODE in a unified fashion, independent of the chosen scheme.

3.3.1 Initiating multi-step schemes

For multi-step schemes, a slight modification is required to properly start-up the
system. In the framework we use the classic start-up procedure of employing
the first k − 1 step of a k-step multi-step scheme using a kth order multi-
stage scheme, as illustrated for the third-order Adams-Bashforth scheme in the
example Code 3. For non-stiff problem we use an explicit RK scheme while for
stiff problems the start-up could be performed by means of a DIRK scheme.

Underneath, this starting-up procedure is founded upon the data member
m_inputTimeLevels. When making the call

9

Code 2 Example demonstrating how the framework can be used to solve an
ODE

TimeIntegrationOperators ode;

TimeIntegrationSolution y_n;

TimeIntegrationScheme scheme;

ode.DefineExplicitEvaluate(&ExplicitEvaluate);

ode.DefineImplicitSolve(&ImplicitSolve);

scheme = TimeIntegrationScheme(FORWARD_EULER);

y_n = scheme->InitializeScheme(dt,y_0,ode);

for(n = 0; n < nsteps; ++n)

{

scheme->TimeIntegrate(dt,y_n,ode);

}

Code 3 Example demonstrating the initiation of multi-step schemes.

scheme = TimeIntegrationScheme(ADAMS_BASHFORTH_ORDER3);

startup_scheme = TimeIntegrationScheme(RK_ORDER3);

y_n = scheme->InitializeScheme(dt,y_0,ode);

startup_scheme->TimeIntegrate(dt,y_n,ode); // step n = 0

startup_scheme->TimeIntegrate(dt,y_n,ode); // step n = 1

for(n = 2; n < nsteps; ++n)

{

scheme->TimeIntegrate(dt,y_n,ode);

}

startup_scheme1->TimeIntegrate(dt,y_n,ode)

the TimeIntegrate routine recognises that the input vector y_n is initialised
according to another scheme. It is therefore going first to construct an input
vector according to the start-up scheme, and it will map the information from
the vector y_n to the newly constructed input vector, thereby making use of the
data member m_inputTimeLevels. If the start-up scheme requires information
in its input vector that is not available in the provided input vector y_n it will
simply assume zero for these stage values or derivatives. Once the solution is
advanced in time for a single time-step using the start-up scheme, the output
vector is mapped back to the vector y_n, again making use of the information
in m_inputTimeLevels.

The start-up procedure effectively integrates the ODE k− 1 steps. If this is
not desirable then the derivatives in y[0] must be estimated by a more elaborate
starting procedure, see e.g. [28, 30, 17].

10

4 Time-dependent partial differential equations

Ordinary differential equations are generally used to model initial value prob-
lems. However, many physical processes can be regarded as initial boundary
value problems which are described by partial differential equations. A first
step in solving time-dependent PDEs consists of reducing the PDE to a system
of ODEs through the MoL approach. For this procedure, which involves the
discretisation of the spatial dimensions, we will primarily adopt the spectral/hp
element method [21] in this work. We will show that the application of the MoL
introduces some typical issues which prevent the straightforward application of
the ODE framework discussed before. We distinguish the following issues:

• strongly enforced essential boundary conditions, and

• computational efficiency.

To facilitate the discussion we will use the scalar advection-diffusion equation
as an illustrative example throughout this section. It is given by

∂u

∂t
+∇ · F (u) = ∇2u, in Ω× [0,∞), (12a)

u(x, t) = gD(x, t), on ∂ΩD × [0,∞), (12b)

∂u

∂n
(x, t) = gN (x, t) · n, on ∂ΩN × [0,∞), (12c)

u(x, 0) = u0(x), in Ω, (12d)

where Ω is a bounded domain of Rd with boundary ∂Ω = ∂ΩD

⋃

∂ΩN and n de-
notes the outward normal to the boundary ∂Ω. Furthermore, we will abbreviate
the advection term as f(u) = −∇ · F (u) in the following sections.

4.1 The Method of Lines

We start with a (possibly high-order) finite element approach to reduce the
advection-diffusion equation (12) to a system of ODEs using the MoL. Following
the standard Galerkin formulation we multiply Eq. (12a) by a smooth test
function v(x), which by definition is zero on all Dirichlet boundaries. Integrating
over the entire spatial domain leads to the following variational formulation:
Find u ∈ U such that

∫

Ω

v
∂u

∂t
dx−

∫

Ω

vf(u)dx =

∫

Ω

v∇2udx, ∀v ∈ V, (13)

where U and V are suitably chosen trial and test spaces respectively. We obtain
the weak form of the diffusion operator by applying the divergence theorem to
the right-hand-side term yielding: Find u ∈ U such that

∫

Ω

v
∂u

∂t
dx−

∫

Ω

vf(u)dx = −
∫

Ω

∇v · ∇udx+

∫

∂Ω

v∇u · ndx, ∀v ∈ V. (14)

As v(∂ΩD) is equal to zero, only Neumann conditions will give contributions to
the boundary integral, and we enforce the conditions weakly through substitut-
ing ∇u = gN in the boundary integral. In order to impose Dirichlet boundary

11

conditions one can choose to adopt a lifting strategy where the solution is de-
composed into a known function, uD and an unknown homogeneous function
uH , i.e.

u(x, t) = uH(x, t) + uD(x, t). (15)

Here uD satisfies the Dirichlet boundary conditions, uD(∂ΩD) = gD, and the
homogeneous function is equal to zero on the Dirichlet boundary, uH(∂ΩD) = 0.
The weak form (14) can then be formulated as: Find uD ∈ U0 such that,
∫

Ω

v
∂(uH + uD)

∂t
dx−

∫

Ω

vf(uH + uD)dx =−
∫

Ω

∇v · (∇uH +∇uD)dx

+

∫

∂ΩN

vgN · ndx, ∀v ∈ V.

(16)

Following a finite element discretisation procedure, the solution is expanded
in terms of a globally C0-continuous expansion basis Φi that spans the finite
dimensional solution space Uδ. We also decompose this expansion basis into the
homogeneous basis functions ΦH

i and the basis functions ΦD
i having support on

the Dirichlet boundary such that

uδ(x, t) =
∑

i∈NH

ΦH
i (x)ûH

i (t) +
∑

i∈ND

ΦD
i (x)ûD

i (t). (17)

Finally, employing the same expansion basis ΦH
i to span the test space V, Eq.

(16) leads to the semi-discrete system of ODEs

[

MHD MHH
] d

dt

[

û
D

û
H

]

= −
[

LHD LHH
]

[

û
D

û
H

]

+ ΓH + f̂
H

(18)

where

MHH [i][j] =

∫

Ω

ΦH
i ΦH

j dx i ∈ NH , j ∈ NH ,

MHD[i][j] =

∫

Ω

ΦH
i ΦD

j dx i ∈ NH , j ∈ ND,

LHH [i][j] =

∫

Ω

∇ΦH
i · ∇ΦH

j dx i ∈ NH , j ∈ NH ,

LHD[i][j] =

∫

Ω

∇ΦH
i · ∇ΦD

j dx i ∈ NH , j ∈ ND,

f̂
H
[i] =

∫

Ω

ΦH
i f(u)dx i ∈ NH

ΓH [i] =

∫

∂ΩN

ΦH
i gN · ndx i ∈ NH .

This can be rewritten in terms of the unknown variable û
H as

dûH

dt
=
(

MHH
)−1

{

−
[

LHD LHH
]

[

û
D

û
H

]

+ ΓH + f̂
H −MHD dûD

dt

}

,

(19)
which, in the absence of Dirichlet boundary conditions, simplifies to

dû

dt
= −M−1 (Lû− Γ) +M−1f̂ (20)

12

4.2 Use of the ODE framework for time integrating PDEs

At first sight, it may seem feasible to apply ODE framework of Section 3 to
time-integrate Eq. (19) (or Eq. (20)). However, this straightforward approach
appears to lead to two problems.

4.2.1 Computational efficiency

Considering Eq. (20) in the context of the IMEX algorithm of the ODE frame-
work (Algorithm 1), it can be appreciated that for the explicit advection term,
step (A.1.4) requires the calculation of the term

M−1f̂ , (21)

while for the implicit diffusion term, step (A.1.2) would require solving a system
of the form

(

I +∆tM−1L
)

û = x̂. (22)

It appears that next to the implicit term, the explicit term now also requires
a global matrix inverse due to M−1. This means that the generic ODE time-
stepping algorithm would require two global matrix inverses at every timestep/timestage.
For comparison, let us consider the (single-stage) first-order Backward Eu-
ler/Forward Euler IMEX scheme given by Eq. (70). A scheme-specific imple-
mentation of this method (that is, not making use of the proposed framework)
can integrate Eq. (20) for a single time-step as

ûn = (M +∆tL)
−1
(

Mûn−1 +∆tf̂n−1 +∆tΓn

)

. (23)

Clearly, this only involves a single global matrix inversion, i.e. (M +∆tL)
−1

.
Such global matrix inversions can be assumed to be the critical cost of the time-
integration process as they typically –especially for three-dimensional simulations–
require an iterative solution method which induce a far bigger cost than the other
“forward” operations. Because of this substantial performance penalty, using
the ODE framework to time-integrate PDEs can be argued to be impractical.

4.2.2 Time-dependent Dirichlet boundary conditions

The second complication with applying the framework to time integrate Eq.

(19) or (20) arises from the term dûD

dt
in Eq. (19) which is due to a strong

imposition of the Dirichlet boundary conditions. Although the value û
D(t) of

the Dirichlet boundary conditions would typically be given for arbitrary t, a

prescription of its time rate-of-change dûD

dt
is not usually available. This again

prevents a straightforward application of the presented ODE framework.

4.3 A generic PDE time-stepping framework

In order to alleviate both the issues of efficiency and time-dependent boundary
conditions, we propose a modified framework designed to time-integrate PDEs
in a generic and efficient manner. The new framework is largely founded on the
fact that a finite or spectral/hp element approximation uδ(x, t) can be described
not only by a set of global degrees of freedom û (in coefficient space), but also

13

by a set of nodal values u (in physical space). These nodal values represent
the spectral/hp solution at a set of quadrature points xi (or collocation points),
such that they can be related to the global coefficients as

u[i] = uδ(x, t) =
∑

j∈N

Φj(xi)ûi(t), (24)

which, in matrix notation, can be written as u = Bû, where B[i][j] = Φj(xi).
In case of a lifted Dirichlet solution, this becomes

u =
[

BD BH
]

[

û
D

û
H

]

, (25)

with BD[i][j] = ΦD
j (xi) and BH [i][j] = ΦH

j (xi).
As commonly is the case in finite or spectral/hp methods, we will also use

this nodal interpretation for the explicit treatment of the (non-linear) advection

term. The term f̂ in Eq. (20) will then be computed as

f̂ = B⊤Wf , (26)

where f represents the original advection term evaluated at the quadrature
points, i.e. f [i] = f(u(xi)), and W is a diagonal matrix containing the quadra-
ture weights needed for an appropriate numerical evaluation of the integral.
Such a collocation approach is also known as the pseudo-spectral method [14].

4.3.1 The Helmholtz problem and the projection problem

Before we derive the new framework, we will first introduce the following two
concepts which will facilitate the derivation.

The Galerkin projection Consider the discrete solution space Uδ(Ω, t) of
C0-continuous piecewise polynomial functions that satisfy the (possibly time-
dependent) Dirichlet boundary conditions. In a finite or spectral/hp methods
we typically define the projection of an arbitrary function f(x), denoted as

u = P(f, t), (27)

as the L2 projection of f onto Uδ(Ω).
This projection is equivalent to solving the following minimisation problem

using a traditional Galerkin finite element approach: Find u ∈ Uδ(Ω) such that
||u − f ||L2 is minimal. In a nodal/collocated context, this projection can be
computed as:

• in case of strongly enforced Dirichlet boundary conditions

u = P(f , t) =
[

BD BH
]

û
D(t)

(

MHH
)−1

{

(

BH
)⊤

Wf −MHDû
D(t)

}

 ,

(28)

• which in the absence of strongly enforced Dirichlet boundary conditions,
simplifies to

u = P(f , t) = BM−1B⊤Wf . (29)

14

The Galerkin Helmholtz problem Given an arbitrary function f , we define
the Helmholtz problem as finding the Galerkin finite element solution to the
(steady) elliptic Helmholtz equation

u− λ∇2u = f, in Ω, (30a)

u(x) = gD(x), on ∂ΩD, (30b)

∂u

∂n
(x) = gN (x) · n, on ∂ΩN . (30c)

We will also denote this problem as

u = H(f, λ, t). (31)

Once again evaluating the solution at nodal/collocation points, this problem
can be discretely evaluated as

• in case of strongly enforced Dirichlet boundary conditions

u = H(f , λ, t) =
[

BD BH
]

û
D(t)

(

HHH
)−1

{

(

BH
)⊤

Wf + λΓH(t)−HHDû
D(t)

}

 ,

(32)

• which in the absence of strongly enforced Dirichlet boundary conditions,
simplifies to

u = H(f , λ, t) = BH−1
(

B⊤Wf + λΓ(t)
)

. (33)

In the expressions above, the matrix H represents the Helmholtz matrix defined
as

H[i][j] =

∫

Ω

ΦiΦj + λ∇Φi · ∇Φjdx i, j ∈ N . (34)

Properties We will use the following properties of the operators P and H in
the subsequent sections:

• In case λ = 0, the operator H reduces to the projection operator P , i.e.

H(f , 0, t) = P(f , t). (35)

• The operators can be shown to have the following properties:

P(P(f , tm), tn) = P(f , tn), (36)

H(P(f , tm), tn) = H(f , tn) (37)

,P(g +P(f , tm), tn) = P(g + f , tn), and (38)

H(g +P(f , tm), tn) = H(g + f , tn). (39)

15

4.3.2 Derivation of the framework

According to Eq. (7a), the calculation of the ith stage (for convenience of
notation denoted as û

H
i) of an arbitrary GLM applied to Eq. (19) can be

represented as

û
H
i =∆t

i
∑

j=1

aIMij

(

MHH
)−1

ĝ
H
j − MHD dûD

dt

∣

∣

∣

∣

∣

j

+∆t

i−1
∑

j=1

aEX
ij

[

(

MHH
)−1

f̂
H

j

]

+

r
∑

j=1

uijû
H[n−1]
j , (40)

where for simplicity we have used the notation

ĝ
H
j = −

[

LHD LHH
]

[

û
D
j

û
H
j

]

+ ΓH
j . (41)

For generality we will assume a GLM with an input/output vector of the form

û
H[n] =

û
H
n

û
H
n−1

∆tGn

∆tGn−1

∆tF n

∆tF n−1

, (42)

which applied to the advection-diffusion example under consideration, leads to

û
H[n] =

û
H
n

û
H
n−1

∆t
(

MHH
)−1

(

ĝ
H
n − MHD dûD

dt

∣

∣

∣

∣

∣

n

)

∆t
(

MHH
)−1

(

ĝ
H
n−1 − MHD dûD

dt

∣

∣

∣

∣

∣

n−1

)

∆t
(

MHH
)−1

f̂
H

n

∆t
(

MHH
)−1

f̂
H

n−1

. (43)

In order to deal with the time-derivative of the Dirichlet boundary condition,
we first would like to note that we have chosen to treat the term involving
dûD

dt
implicitly in Eq. (40). However, this is an arbitrary choice and we could

equally well have chosen to treat this term explicitly, leading to exactly the same
framework. If we then acknowledge that the variable û

D can be understood to
satisfy the ODE

(

û
D
)′

=
dûD

dt
, (44)

we can apply the same GLM to this ODE as the one we have used for the
original ODE in terms of ûH , i.e. Eq. (40), to arrive at

û
D
i = ∆t

i
∑

j=1

aIMij
dûD

dt

∣

∣

∣

∣

∣

j

+

r
∑

j=1

uijû
D[n−1]
j . (45)

16

There are no explicit stage derivatives F j appearing in the equation above (or
more precisely, F j = 0) due to the fact that we also choose to treat the right-

hand-side term
dûD

dt
in Eq. (44) implicitly. As a result, the input/output vector

of the GLM under consideration, see Eq. (42), applied to Eq. (44) takes the
form

û
D[n] =

û
D
n

û
D
n−1

∆t
dûD

dt

∣

∣

∣

∣

∣

n

∆t
dûD

dt

∣

∣

∣

∣

∣

n−1

0
0

. (46)

To eliminate the Dirichlet derivative in Eq. (40), we substitute Eq. (45) into
Eq. (40), yielding

û
H
i =∆t

i
∑

j=1

aIMij

[

(

MHH
)−1

ĝ
H
j

]

+∆t

i−1
∑

j=1

aEX
ij

[

(

MHH
)−1

f̂
H

j

]

+
(

MHH
)−1

MHD

r
∑

j=1

uijû
D[n−1]
j − û

D
i

+
r
∑

j=1

uijû
H[n−1]
j , (47)

which after rearranging and multiplication with MHH leads to

MHH û
H
i +MHDû

D
i =∆t

i
∑

j=1

aIMij ĝ
H
j +∆t

i−1
∑

j=1

aEX
ij f̂

H

j

+
r
∑

j=1

uij

[

MHH û
H[n−1]
j +MHDû

D[n−1]
j

]

, (48)

or

HHH û
H
i +HHDû

D
i =∆t

i−1
∑

j=1

aIMij ĝ
H
j +∆t

i−1
∑

j=1

aEX
ij f̂

H

j

+

r
∑

j=1

uij

[

MHH û
H[n−1]
j +MHDû

D[n−1]
j

]

+ aIMii ∆tΓH
i ,

(49)

where H is the Helmholtz matrix, see Eq. (34), with λ = aIMii ∆t. This

elimination of
dûD

dt
appears to give rise to a modified input/output vector

MHH û
H[n−1]
j + MHDû

D[n−1]
j , which after combining Eq. (43) and Eq. (46)

17

can be appreciated to be equal to

MHH û
H[n] +MHDû

D[n] =

MHH û
H
n +MHDû

D
n

MHH û
H
n−1 +MHDû

D
n−1

∆tĝH
n

∆tĝH
n−1

∆tf̂
H

n

∆tf̂
H

n−1

. (50)

Following a collocation approach to calculate the advection term, see Eq. (26),
and adopting a nodal interpretation for the solution values at the time-levels n
and n− 1 according to Eq. (25), this input/output vector can be considered as
the inner product of an input/output vector u[n] in physical space, i.e.

MHH û
H[n]+MHDû

D[n] =
(

BH
)⊤

Wu[n] =
(

BH
)⊤

W

un

un−1

∆tgn

∆tgn−1

∆tfn

∆tfn−1

, (51)

where we have made use of the relationship MHD =
(

BH
)⊤

WBD. In ad-

dition, we have also adopted a nodal interpretation gn of the implicit stage
value ĝH

n which will be further discussed in the next section. Making use of this
formulation in physical space, Eq. (49) can be written as

HHH û
H
i +HHDû

D
i =

(

BH
)⊤

W

∆t

i−1
∑

j=1

aIMij gj +∆t

i−1
∑

j=1

aEX
ij f j +

r
∑

j=1

uijuj

+aIMii ∆tΓH
i . (52)

Finally also adopting a nodal interpretation ui for the solution at stage i, the
calculation of the ith stage value can be recognised as

ui = H

∆t
i−1
∑

j=1

aIMij gj +∆t
i−1
∑

j=1

aEX
ij f j +

r
∑

j=1

uijuj , a
IM
ii ∆t, tn

 . (53)

This formulation allows for a well defined procedure to advance the solution in
time as the calculation of the stage values only involves solving the associated
Helmholtz problem. Note that for a pure explicit method, the Helmholtz prob-
lem reduces to the L2 projection. This solution procedure is very attractive in
particularly for the following three reasons:

• uniform treatment of Dirichlet boundary conditions (i.e. the Dirichlet
boundary conditions only come into play when enforcing them while solv-
ing the global matrix system),

• only one global matrix inverse is required per stage, and

• it is sufficiently generic to be extended to the entire range of GLMs (see
next section).

18

Note that the derivation of this framework was founded on the following two
steps:

• adopting a consistent-order discretisation of the Dirichlet derivative con-
sistent to the discretisation of the original ODE, and

• formulating the GLM algorithm in physical space.

4.3.3 Algorithm

A PDE time-stepping algorithm that time-integrates the advection-diffusion
equation (12) from time-level n− 1 to n can then be formulated as:

input : the vector u[n−1]

output: the vector u[n]

// Calculate stage values U i and the stage derivatives F i

and Gi

for i = 1 to s do

// calculate the temporary variable xi

(A2.1) xi = ∆t
∑i−1

j=1 a
IM
ij Gj +∆t

∑i−1
j=1 a

EX
ij F j +

∑r
j=1 uiju

[n−1]
j

// calculate the stage value U i

(A2.2) U i = H
(

xi, a
IM
ii ∆t, ti

)

// calculate the explicit stage derivative F i

(A2.3) F i = f(U i)

// calculate the implicit stage derivative Gi

(A2.4) Gi =
1

aIM

ii
∆t

(U i − xi)

end

// Calculate the output vector u[n]

if last stage equals new solution then
(A2.5) un = U s

else

(A2.6) u
[n]
1 = u

[n]
1 =

P

(

∆t
∑s

j=1 b
IM
1j Gj +∆t

∑s
j=1 b

EX
1j F j +

∑r
j=1 v1ju

[n−1]
j , tn

)

end

for i = 2 to r do

(A2.7) u
[n]
i = ∆t

∑s
j=1 b

IM
ij Gj +∆t

∑s
j=1 b

EX
ij F j +

∑r
j=1 viju

[n−1]
j

end

Algorithm 2: A GLM based PDE time-stepping algorithm

The only subtlety that arises in comparison with the backward/forward Euler
example of the previous section is due to the term Gi. To formally fit into the
framework, a proper definition of Gi, denoted as Ḡi, should be

Ḡi = BH
(

MHH
)−1

ĝ
H
i , (54)

19

with ĝ
H
i as defined in Eq. (41). By recombining the terms in the Helmholtz

problem associated to step (A2.2) it can be demonstrated that this term can be
evaluated as

Ḡi = P

(

U i − xi

aIMii ∆t
, ti

)

, (55)

which corresponds to the L2 projection of our initial definition of Gi, i.e. Ḡi =
P (Gi, t) However, do due the properties (38-39) it can be appreciated that
using Gi in steps (A2.1), (A2.6) and (A2.7) is equivalent to the use of Ḡi,
thereby keeping the number of global system inverses per stage to one.

Comparing this PDE time-stepping algorithm with the original ODE algo-
rithm (Algorithm 1), one can identify the following differences:

• While step (A1.2) of the original algorithm essentially is a pure algebraic
problem (that is, for schemes with an implicit component), step (A2.2)
also as an broader analytical interpretation in the sense that it is the
solution of the elliptic Helmholtz partial differential equation.

• It has been indicated before that for purely explicit time-stepping methods
(i.e. aIMII = 0), the evaluation of step (A1.1) actually vanishes as it is
reduced to Y i = xi. However, in the new algorithm, step (A2.2) now also
requires a global system inverse, as the Helmholtz problem is reduced to
the projection problem for explicit schemes.

• In addition, step (A2.6) of the new algorithm also requires a L2 projection.
This is necessary to ensure that the solution is in the solution space, as
the right-hand-side cannot be guaranteed to be in this space. Note that
this requires an additional global system inverse.

• In order to possibly eliminate the cost associated to this additional global
system inverse in step (A2.6), we have included an optimisation check in
step (A2.5). In case the last row of coefficient matrices A and U is equal
to the first row of respectively the matrices B and V , the last stage U s

is equal to the new solution un And the (expensive) evaluation of step
(A2.6) can be omitted. Fortunately, all multi-step schemes – and many
more methods as can be seen from the GLM tableau’s (66,68,69,73) –
can be formulated to satisfy this condition. As a result, evaluating any
linear multi-step method for a single time-step based upon the proposed
algorithm only requires a single global system inverse.

Similar to the optimisation check in step (A2.5), the framework can be
equipped with another optimisation feature which checks whether the first
stage value U1 is equal to the solution un−1 at the previous time-level,
a condition which holds if the first row of the coefficients matrices A and
U consists solely of zeros, except for the first entry U which should be
U [1][1] = 1. Examples include the explicit Runge-Kutta schemes such
as e.g. given by Eq. (63). For such schemes, steps (A2.1) and (A2.2)
can be omitted for i = 1, thereby avoiding any unnecessary global system
inverses.

In order to evaluate this PDE time-stepping algorithm for an arbitrary gen-
eral linear method, the framework should be supplied with the following three
external routines:

20

• a routine that evaluates the advection term f(u, t) according to the spatial
discretisation scheme at the quadrature/collocation points (in order to
evaluate step (A.2.3)),

• a routine which solves the projection problem of Section 4.3.1 (in order to
evaluate step (A.2.2) in case aIMii = 0 and step (A.2.6)), and

• a routine that solves the Helmholtz equation of Section 4.3.1 (in order to
evaluate step (A.2.2) in case aIMii 6= 0).

Recall that all three routines should be defined in physical space, i.e. both input
and output arrays correspond to functions evaluated at the quadrature/collocation
points.

Remark 1 Although the framework has been derived by means of the advection-
diffusion equation, it is also applicable for other PDEs as well (see also Section
5). The advection term f(u) could in principal also represent a possible reaction
term, while the diffusion term ∇2u could be replaced by a more general term g(u)
to be treated implicitly. In the latter case, the user should supply the framework
with a routine that solves the PDE u − λg(u) = f rather than the Helmholtz
equation.

Remark 2 Because the algorithm is formulated in physical space, the proposed
framework is applicable in case of finite volume or finite difference methods as it
is natural to think of these methods in physical space. Is it also possible to verify
that the algorithm is valid in case of a Discontinuous Galerkin discretisation
(see also Section 5). In this case, the projection operator P even reduces to the
identity operator (because the Dirichlet boundary conditions are weakly imposed).

4.3.4 Object-oriented implementation

The class structure presented in Section 3.2 that implements the ODE frame-
work can be slightly modified in order to accommodate this PDE time-stepping
framework. An overview of the required classes is shown in Figure 2. The un-
derlying idea remains identical and only the class TimeIntegrationOperators
should altered to take into account the projection operator. Therefore, this
class should now be equipped with an additional function pointer m_project

that points to the implementation of the L2 projection operator, i.e. Eq. (28).
In order to set and evaluate this function pointer, the class now also contains
the methods DefineProject and DoProject.

5 Computational Examples

In this section we present examples demonstrating the capabilities of the PDE
time-stepping framework presented in the previous section. First we verify the
algorithm by considering an advection-diffusion problem and then we apply the
framework to two fluid problems: standing waves in shallow water and vortex
shedding around a cylinder. In all our examples we use the spectral/hp element
method [21] for the spatial discretisation. More specifically we will use the modal
and hierarchical expansion basis based upon modified Jacobi polynomials, see
[21]. If not mentioned otherwise, we use the standard C0-continuous Galerkin
version in the following.

21

m inputTimeLevels
DefineExplicitEvaluate

DoImplicitSolve

DoProject

DefineImplicitSolve

DefineProject

DoExplicitEvaluate

data members

class

data members

methods

GetSolution

class
TimeIntegrationSolution

m explicitEvaluate

TimeIntegrationOperators

m solutionvector

m implicitSolve

m project

data members

m A

m B

class
TimeIntegrationScheme

methods

m U

m V

InitializeScheme

TimeIntegrate

methods

Figure 2: Overview of the classes in the implementation of the generic PDE
time-stepping framework.

5.1 Linear advection-diffusion equation

As a first example, we investigate the popular linear advection-diffusion problem
of a Gaussian hill convected with a velocity V while spreading isotropically with
a diffusivity ν [11, 22]. The analytical solution is given by

u(x, t) =
1

4t+ 1
exp

(

−
(

x− x0 − Vxt

ν(4t+ 1)

)

−
(

y − y0 − Vyt

ν(4t+ 1)

))

. (56)

The problem is defined in the domain x ∈ [−1 , 1] × [−1 , 1] and is discretised
in space on an unstructured triangular mesh of 84 elements using a 12th-order
spectral/hp element expansion. The Gaussian hill is initially located a x0 =
[−0.5 ,−0.5] and is convected with a velocity V = [1 , 1] for one time unit and
the diffusivity is set to ν = 0.05. Time-dependent Dirichlet boundary conditions
given by the analytical solution are imposed on the domain boundaries.

We have applied the time-stepping framework on this equation both for
multi-stage and multi-step IMEX time-integration schemes. Therefore, we have
supplied the framework with the three necessary external routines as explained
in Section 4.3.3, i.e. a function that evaluates the linear advection term, a
projection operator and a Helmholtz solver. In order to verify that the frame-
work integrates the PDE correctly, we have checked the order of convergence in
function of the time-step ∆t. Fig. 3(a) confirms the correct convergence rate
for the 2nd- and the 3rd-order IMEX-DIRK schemes as respectively presented
in [2, 1] (see also Eq. (74)). In Fig. 3(b), we can observe that the L2 error
converges according to the expected rate for the multi-step stiffly stable schemes
introduced in Section 5.3 when using the framework.

5.2 Shallow water equations

The shallow water equations (SWE) are frequently used for simulating flows in
shallow coastal regions and rivers, for example storm surges, tsunamis and river

22

∆t

L
2

e
r
r
o
r

1

1

3

2

2nd-order

3rd-order

10−5 10−4
10−3

10
−12

10−11

10−10

10−9

10−8

(a) Multi-stage IMEX-DIRK schemes

∆t

L
2

e
r
r
o
r

1

1

1

3

2

1

1st-order

2nd-order

3rd-order

10−5
10−4 10−3

10−12

10
−10

10−8

10−6

10−4

10−2

(b) Multi-step stiffly stable IMEX schemes

Figure 3: Error convergence in function of ∆t for various IMEX schemes when
using the PDE time-stepping framework of Section 4.3.

flooding. The SWE can be formulated as

∂u

∂t
+∇ · F (u) = 0. (57)

For an appropriate definition of the flux term F the reader is referred to e.g.
[13]. Due to their hyperbolic nature, explicit methods are typically employed
for time-stepping the SWE. As a result, the user should only provide a proper
implementation of the term ∇·F (u) together with a projection method in order
to use the framework.

The objective of this example is twofold:

• We would like to demonstrate that the framework can be applied with dif-
ferent spatial discretisation techniques. Therefore, we solve the SWE us-
ing both the discontinuous Galerkin (DG) method and the C0 continuous
Galerkin (CG) method. Note that in the former case, the user-supplied
function that evaluates the flux term should include the numerical flux
term typical to the DG method.

• We also want to compare the computational efficiency of the framework.
Therefore, we will compare the run-time of solving the SWE using the
framework with a specialised implementation of the chosen time-stepping
schemes.

Within the DG community the third-order three-stage Strong-Stability-Preserving
(SSP) RK schemes are popular and we use the third-order four-stage SSP-RK
scheme [24] for the SWE test-case.

We compute the simple case of two super-positioned standing linear waves
with wavelengths L (one wave aligned in the x1 direction and wave aligned
in the x2 direction) in a basin x ∈ [0 , L] × [0 , L] of constant depth with slip
conditions at the wall boundaries. For the DG method the boundary conditions
are implemented weakly through the use of the numerical flux using standard
mirroring technique, while for the CG method we apply u = 0, ∂v/∂n = 0,
∂ζ/∂n = 0 at the north/south boundaries and ∂u/∂n = 0, v = 0, ∂ζ/∂n = 0 at
the east/west boundaries, respectively.

23

We are using a 3rd order spectral/hp element method on a mesh of 16 quadri-
lateral elements and we solve the problem for t ∈ [0 , 100T] wave where T de-
notes the wave period. Table 1 present the required time step, the measured
run-time and memory usage (based upon the heap profiler Massif of Valgrind’s
tool suite) for obtaining an error less than 1 × 10−4. First of all, it can be
concluded that the framework has been successfully applied for both the spatial
discretisation techniques. We can also see from Table 1 that the run-time over-
head of using the framework is in the order of a percent when compared to the
scheme-specific implementations while the memory usage is equal. As a result,
we can conclude that next to the high-level of generality, the framework also is
competitive with scheme-specific implementations in terms of performance.

Table 1: The SWE for standing waves. Computational results for obtaining an
L2 error less than 1× 10−4.

DG method CG method

∆t T/69 T/70
L2 error 9.88E-05 9.73E-06

GLM Run-time 16.8 s 13.7 s
framework Storage 15.7 MB 8.0 MB

Specialised Run-time 16.7 s 13.5 s
implementation Storage 15.7 MB 8.0 MB

5.3 Incompressible Navier-Stokes equation

As an illustrative example of the use of the time-integration framework to solve
more complex fluid dynamics problems, we consider a DNS simulation of the
two-dimensional flow past a circular cylinder in a free stream. The incompress-
ible Navier-Stokes (NS) equations are solved using a spectral/hp element dis-
cretisation in space combined with the high-order stiffly stable splitting scheme
of [20] for the discretisation in time. In this splitting scheme, each time step is
subdivided into three substeps, and the solution of the discretised Navier-Stokes
equation is advanced from time-step n− 1 to time-step n as follows:

ŭ−∑Ji

q=1 αqu
n−q

∆t
=−

Je−1
∑

q=1

βq [(u · ∇)u]
n−q

, (58a)

∇2pn =∇ ·
(

ŭ

∆t

)

, (58b)

γ0u
n − ŭ

∆t
=ν∇2un −∇pn. (58c)

The splitting scheme decouples the velocity field u from the pressure p, leading
to an explicit treatment of the advection term and an implicit treatment of
the pressure and the diffusion term. Ji is the integration order for the implicit
terms and Je is the integration order for the explicit terms. The values of the

24

coefficients γ0 , αq and βq of this multi-step IMEX scheme are given in Table 2
for different orders. In order to use the PDE time-stepping framework of Section

Table 2: Stiffly stable splitting scheme coefficients

1st-order 2nd-order 3rd-order
γ0 1 3/2 11/6
α0 1 2 3
α1 0 −1/2 −3/2
α2 0 0 1/3
β0 1 2 3
β1 0 −1 −3
β2 0 0 1

4, we first formulate the stiffly stable scheme as a general linear method. For
the second-order variant for example, this yields

[

AIM AEX U

BIM BEX V

]

=

2
3 0 4

3 − 1
3

4
3 − 2

3
2
3 0 4

3 − 1
3

4
3 − 2

3

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

with y[n] =

yn

yn−1

∆tF n

∆tF n−1

.

(59)
where the values in the first two rows have been scaled with γ0 compared to
the values in Table 2. Furthermore, we need to properly define the external
functions needed for the time-stepping framework:

• For the explicit term, this should be a function f that evaluates the ad-
vection term, i.e.

f(u) = − (u · ∇)u. (60)

Because we will follow a pseudo-spectral approach for the advection term,
this term should simply be evaluated at the quadrature/collocation points.

• The projection operator to be provided to the system is identical to the
one defined in Section 4.3.1.

• For the implicit part of the scheme, a routine that solves the following
problem is required. Given an arbitrary function f , a scalar λ and a
time-level t, find the velocity field u such that

∇2p =∇ · (f
λ
), (61a)

u− νλ∇2u =f − λ∇p, (61b)

and subject to the appropriate boundary conditions. It can be observed
that this problem involves the consecutive solution of three elliptic prob-
lems: a Poisson problem and two (in 2D) scalar Helmholtz problems. This
routine can also be used to solve the unsteady Stokes equations.

25

Figure 4 shows the vorticity field of a flow past a cylinder with a Re = 100
after solving the NS equations with the framework presented in Section 4. The
solution, which highlights the vortex shedding, has been obtained using the 3rd

order stiffly stable splitting scheme with ∆t = 0.0001s and 7th order spectral/hp
expansion on a mesh of 1500 quadrilaterals. The cylinder has a diameterD = 0.4
and the domain is defined by a rectangle x ∈ [−4 , 16] × [−5 , 5] as shown in
Figure 4. Boundary conditions are of Dirichlet type at the inflow, where a
constant velocity in x-direction is imposed (u = 1 and v = 0) and of Neumann
type (homogeneous) at the outflow and on the upper and lower domain limits.
Similar results have been obtained by different authors with other techniques,
e.g. [26, 27].

x

y

0 5 10 15

-4

-2

0

2

4

Z Vorticity: -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7

Figure 4: Vorticity field for a flow past a cylinder at Re = 100

6 Summary

We proposed a generic framework, both in terms of algorithms and implementa-
tions, that facilitates the application of a broad range of time-stepping schemes
in a uniform way. We based our algorithm on Butcher’s unifying theory of Gen-
eral Linear Methods, a concept widely accepted within the ODE community but
little known from a PDE point of view. The framework should allow CFD users,
who often tend to limit themselves to a single (family of) schemes, to explore the
plethora of different methods that exist – implicit versus explicit, multi-stage
versus muli-step – without any additional effort. We illustrated that the ab-
stract character of the framework allows for an object-oriented implementation
where switching between different schemes is as simple as changing an input
parameter. Although we first presented an generic ODE solving framework, the
main emphasis of this work is on time-integrating PDEs. Therefore, we first

26

showed how IMEX schemes – a family of time-stepping schemes popular within
the CFD community – can be formulated as a General Linear Method. Then we
demonstrated how through some modifications, the framework can be adapted
to accommodate the time-integration of PDEs, characterised by some typical
features such as time-dependent boundary conditions, in a generic and com-
putationally efficient way. Overall we believe the paper provides the essential
building blocks for time-integrating PDEs in a unified way. Finally, please note
that even though we mainly followed a finite element procedure for the spatial
discretisation the presented techniques are general and can be used within a
finite volume or finite difference context.

Acknowledgment

The authors would like to acknowledge the insightful input of Professor Ray
Spiteri of the University of Saskatchewan. SJS would like to acknowledge the
support under an EPSRC Advance Research Fellowship, SC would like to ac-
knowledge support from the CardioMath initiative of the Institute of Mathemat-
ical Science at Imperial College London, and RMK would like to acknowledge
support under the Leverhulme Foundation Trust.

References

[1] U.M. Ascher, S.J. Ruuth, and R.J. Spiteri. Implicit–explicit Runge–Kutta
methods for time-dependent partial differential equations. Appl. Numer.
Math., 25(2–3):151–167, 1997.

[2] U.M. Ascher, S.J. Ruuth, and B.T.R. Wetton. Implicit-explicit methods
for time-dependent partial differential equations. SIAM J. Numer. Anal.,
32(3):797–823, 1995.

[3] K. Burrage and J. C. Butcher. Non-linear stability of a general class of
differential equation methods. BIT, 20:185–203, 1980.

[4] J. C. Butcher. The Numerical Analysis of Ordinary Differential Equations:
Runge-Kutta and General Linear Methods. Wiley, Chichester, 1987.

[5] J. C. Butcher. General linear methods. Acta Numerica, 15:157–256, 2006.

[6] J.C. Butcher. On the convergence of numerical solutions of ordinary dif-
ferential equations. Math. Comp., pages 1–10, 1966.

[7] J.C. Butcher. Diagonally-implicit multi-stage integration methods. Appl.
Numer. Math., 11:347–363, 1993.

[8] J.C. Butcher. An introduction to DIMSIMs. Math. Appl. Comput., 14:59–
72, 1995.

[9] J.C. Butcher. An introduction to Almost Runge-Kutta methods. Appl.
Numer. Math., 24:331–342, 1997.

[10] J.C. Butcher, P. Chartier, and Z. Jackiewicz. Experiments with a variable-
order type 1 DIMSIM code. Numer. Algorithms, 22:237–261, 1999.

27

[11] J. Donea, S. Giuliani, H. Laval, and L. Quartapelle. Time-accurate solution
of advection-diffusion problems by finite elements. Comput. Methods Appl.
Mech. Engrg., 45(1-3):123–145, 1984.

[12] J. Donelson and E. Hansen. Cyclic composite multistep predictor-corrector
methods. SIAM Journal for Numerical Analysis, 8(1):137–157, 1971.

[13] C. Eskilsson and S. J. Sherwin. A triangular spectral/hp discontinuous
galerkin method for modelling 2d shallow water equations. Int. J. Numer.
Meth. Fluids, 45:605–623, 2004.

[14] D. Gottlieb and S. A. Orszag. Numerical analysis of spectral methods:
theory and applications. CBMS-NSF. Society for Industrial and Applied
Mathematics, Philadelphia, 1977.

[15] Z. Jackiewicz. Implementation of DIMSIMs for stiff differential equations.
Appl. Numer. Math., 42:251–267, 2002.

[16] Z. Jackiewicz. Construction and implementation of general linear methods
for ordinary differential equations. A review. J. Sci. Comp., 25:29–49, 2005.

[17] Z. Jackiewicz. General Linear Methods for Ordinary Differential Equations.
Wiley, 2009.

[18] Z. Jackiewicz and S. Tracogna. A general class of two-step Runge-Kutta
methods for ordinary differential equations. SIAM J. Num. Anal., 32:1390–
1427, 1995.

[19] A. Kanevsky, M.H. Carpenter, D. Gottlieb, and J.S. Hesthaven. Applica-
tion of implicit-explicit high order Runge-Kutta methods to discontinuous-
galerkin schemes. J. Comp. Phys., 225:1753–1781, 2007.

[20] G. E. Karniadakis, M. Israeli, and S. A. Orszag. High-order splitting
methods for the incompressible navier-stokes equations. J. Comput. Phys.,
97:414–443, 1991.

[21] G. E. Karniadakis and S. J. Sherwin. Spectral/hp Element Methods for
CFD. Oxford University Press, second edition edition, 2005.

[22] B. J. Noye and H. H. Tan. Finite difference methods for solving the two-
dimensional advection-diffusion equation. Int. J. Numer. Meth. Fluids,
9(1):75–89, 1989.

[23] N. Rattenbury. Almost Runge-Kutta methods for stiff and non-stiff prob-
lems. PhD thesis, The University of Auckland, 2005.

[24] S. J. Ruuth and R. J. Spiteri. High-order strong-stability-preserving Runge-
Kutta methods with downwind-biased spatial discretizations. Siam J. Nu-
mer. Anal., 42(3):974–996, 2004.

[25] W. E. Schiesser. The Numerical Method of Lines: Integration of Partial
Differential Equations. Academic Press, San Diego, 1991.

[26] C.C.S. Song and M. Yuan. Simulation of vortex-shedding flow about a
circular cylinder at high Reynolds numbers. J. Fluids Eng., 112, 1990.

28

[27] B. Souza Carmo. On Wake Interference in the Flow around Two Circular
Cylinders: Direct Stability Analysis and Flow-Induced Vibrations. PhD
thesis, Department of Aeronautics, Imperial College London, 2009.

[28] J. vanWieren. Using diagonally implicit multistage integrations methods
for solving ordinary differential equations. part 1: Introduction and explicit
methods. NAWCWPNS TP 8340, Naval Air Warfare Center Weapons
Division, 1997.

[29] J. vanWieren. Using diagonally implicit multistage integrations methods for
solving ordinary differential equations. part 2: Implicit methods. NAWCW-
PNS TP 8356, Naval Air Warfare Center Weapons Division, 1997.

[30] W. Wright. General Linear Methods with Inherent Runge-Kutta Stability.
PhD thesis, University of Auckland, 2002.

A Coefficients of GLM methods

A.1 Common multi-stage methods

Since multi-stage methods consist only of a single step with many stages, they
can be represented as a general linear method with r = 1. It is sufficient to
write U = [1 1 · · · 1]⊤, V = [1] and to set the coefficient matrices A and B
to the matrix A and the single row b⊤ of the corresponding Butcher tableau [5]
respectively. For example, the classic fourth-order Runge-Kutta method with
Butcher tableau

c A

b⊤
=

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

, (62)

has the following GLM representation

[

A U
B V

]

=

0 0 0 0 1
1
2 0 0 0 1
0 1

2 0 0 1
0 0 1 0 1
1
6

1
3

1
3

1
6 1

. (63)

A.2 Common multi-step methods

In contrast to multi-stage methods, multi-step methods have a single stage,
but the solution at the new time-level is computed as a linear combination of
information at the r previous time-levels. Linear multi-step methods can be
formulated to satisfy the relation

yn =

r
∑

i=1

αiyn−i +∆t

r
∑

i=0

βiF n−i. (64)

29

This corresponds to the general linear method with input and output

y[n−1] =

yn−1

yn−2
...

yn−r

∆tF n−1

∆tF n−2

...
∆tF n−r

, y[n] =

yn

yn−1
...

yn−r+1

∆tF n

∆tF n−1

...
∆tF n−r+1

, (65)

and the partitioned coefficient matrix

[

A U
B V

]

=

β0 α1 α2 · · · αr−1 αr β1 β2 · · · βr−1 βr

β0 α1 α2 · · · αr−1 αr β1 β2 · · · βr−1 βr

0 1 0 · · · 0 0 0 0 · · · 0 0
0 0 1 · · · 0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 0 · · · 1 0 0 0 · · · 0 0
1 0 0 · · · 0 0 0 0 · · · 0 0
0 0 0 · · · 0 0 1 0 · · · 0 0
0 0 0 · · · 0 0 0 1 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 0 0 0 · · · 1 0

.

(66)
Note that in the vectors and matrices above, the solid lines denote the demar-
cation of the matrices A, B, U and V whereas the dotted lines merely help to
highlight the typical structure of a linear multi-step method. As an example
of a multi-step scheme consider the well-known third-order Adams-Bashforth
scheme

yn = yn−1 +∆t

(

23

12
f(yn−1)−

4

3
f(yn−2) +

5

12
f(yn−3)

)

, (67)

which has the following GLM representation

[

A U
B V

]

=

0 1 23
12 − 4

3
5
12

0 1 23
12 − 4

3
5
12

1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

. (68)

A.3 Beyond common multi-step or multi-stage methods

The general linear methods framework also encompasses methods that do not
fit under the conventional Runge-Kutta or linear multi-step headings. This
includes, for example, the cyclic composite method of [12]. In addition, the
general linear structure of the GLM in itself gave rise to the development of

30

new numerical methods. An example of one such class of methods is the class of
Almost Runge-Kutta Methods [9]. To appreciate its typical combined multi-stage
multi-step character consider the following third-order scheme due to [23]:

[

A U
B V

]

=

0 0 0 1 1
3

1
18

1
2 0 0 1 1

6
1
18

0 3
4 0 1 1

4 0

0 3
4 0 1 1

4 0

0 0 1 0 0 0

3 − 3 2 0 − 2 0

. (69)

A.4 Common implicit-explicit methods

The first-order Backward Euler/Forward Euler IMEX scheme,

yn = yn−1 +∆t
(

g(yn) + f(yn−1)
)

, (70)

can be written as a general linear method as

[

AIM AEX U

BIM BEX V

]

=

1 0 1 1

1 0 1 1

0 1 0 0

with y[n] =

[

yn

∆tF n

]

.

(71)
The second-order Crank-Nicholson/Adams-Bashforth linear multi-step scheme,

yn = yn−1 +∆t

(

1

2
g(yn) +

1

2
g(yn−1) +

3

2
f(yn−1)−

1

2
f(yn−1)

)

, (72)

can be represented as

[

AIM AEX U

BIM BEX V

]

=

1
2 0 1 1

2
3
2 − 1

2
1
2 0 1 1

2
3
2 − 1

2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

with y[n] =

yn

∆tGn

∆tF n

∆tF n−1

.

(73)
The third-order (2, 3, 3) IMEX Runge-Kutta scheme (see [1]) is represented by
the partitioned coefficient matrix where γ = (3 +

√
3)/6:

[

AIM AEX U

BIM BEX V

]

=

0 0 0 0 0 0 1

0 γ 0 γ 0 0 1

0 1− 2γ γ γ − 1 2(1− γ) 0 1

0 1
2

1
2 0 1

2
1
2 1

.

(74)

31

