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Abstract. We discuss the use of stochastic collocation for the solution of optimal control
problems which are constrained by stochastic partial differential equations (SPDE). Thereby the
constraining SPDE depends on data which is not deterministic but random. Assuming a deter-
ministic control, randomness within the states of the input data will propagate to the states of the
system. For the solution of SPDEs there has recently been an increasing effort in the development of
efficient numerical schemes based upon the mathematical concept of generalized polynomial chaos.
Modal-based stochastic Galerkin and nodal-based stochastic collocation versions of this methodol-
ogy exist, both of which rely on a certain level of smoothness of the solution in the random space
to yield accelerated convergence rates. In this paper we apply the stochastic collocation method to
develop a gradient descent as well as a sequential quadratic program (SQP) for the minimization of
objective functions constrained by an SPDE. The stochastic function involves several higher-order
moments of the random states of the system as well as classical regularization of the control. In
particular we discuss several objective functions of tracking type. Numerical examples are presented
to demonstrate the performance of our new stochastic collocation minimization approach.
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1. Introduction. The modeling, simulation, and optimization with partial dif-
ferential equations (PDE) has become an important research field in applied mathe-
matics. It is driven by the engineering disciplines and the desire to observe, analyze,
and optimize physical phenomena without performing real physical experiments, or to
predict future states of a physical system. Mostly for practically relevant simulations
and optimizations, the parameters, coefficients, or boundary conditions of the PDE
models are based on measurement data. Of course these measurements carry errors;
thus for many applications not only the measured data but also its errors should be
taken into account for further processing. In particular, for biological systems there is
an intrinsic heterogeneity within and also between objects or species under consider-
ation. This poses a particular problem if models which are built using a certain set of
measurements are applied to new objects or species which are of the same type but for
which measurements cannot be obtained. An example of this is the patient-specific
simulation and optimization of cancer treatment therapies [1] in which the biophysical
properties of the tissue are uncertain.

Uncertainty and errors in parameters, coefficients, and boundary and initial con-
ditions are often modeled as random processes. Thereby the original differential
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2660 H. TIESLER, R. M. KIRBY, D. XIU, AND T. PREUSSER

equations are transformed into stochastic ordinary or partial differential equations
(SODE/SPDE). For equations involving randomness, the classical approach is the
Monte Carlo (MC) method, which generates samples of the investigated states from
random realizations of the input data. Although the convergence rate of the MC
method is slow, it is a very robust approach, which moreover is independent of the
stochastic dimensionality.

The main stochastic theoretical underpinning of our work presented herein is
generally referred to as generalized polynomial chaos (gPC). Based on the Wiener–
Hermite polynomial chaos expansion [27], gPC seeks to approximate second-order
random processes by a finite linear combination of stochastic basis functions. Once one
has chosen an approximation space of the random process of interest, a solution within
that space can be found by solving the SPDE of interest in the weak form. Because
of its analogy with the classic Galerkin method as employed in the finite element
method (FEM), this methodology is often referred to as the generalized polynomial
chaos–stochastic Galerkin (gPC-SG) method. It has been applied as a method for
uncertainty quantification in the field of computational mechanics for a number of
years and has recently seen a revival of interest [18, 8, 9, 17, 10, 15, 29, 31].

Although the SG method provides a solid mathematical framework from which
one can do analysis and derive algorithms, it is not always the most computationally
efficient means of solving large problems. Nor is it the case that one always has the
freedom to rearchitect their currently available deterministic solver to employ gPC-
SG. To address these issues, the stochastic collocation (SC) method was developed
[28], combining the advantages of the MC approach (as a sampling methodology) with
the idea of there being an underlying approximation representation of the stochastic
process (gPC). The gPC–SC method evaluates solutions of a stochastic system at
carefully chosen points within the random space to compute accurate statistics with
significantly fewer solution evaluations than MC methods.

In this work, we will employ the gPC–SC approach specifically for these reasons
in order to perform efficient optimization in the presence of uncertainty. In particular
we will develop a gradient descent and a sequential quadratic programming (SQP)
method for optimal control problems under constrained SPDEs. Our algorithms are
based on the weak formulation for SPDEs, which involves the expectation of the clas-
sical weak form of the corresponding deterministic PDEs. Since the expectation of a
random process is nothing other than integration of the process with respect to the
corresponding probability measure, the derivation of the optimality system is anal-
ogous to the deterministic case. Moreover, for the development of the optimization
algorithms we take advantage of the fact that the expectation of smooth random
processes can be evaluated very conveniently with the SC method. Thus, we obtain
methods which can be implemented by using components of our existing determinis-
tic optimization code that must be interwoven with the evaluation of expectations in
order to get descent directions and updates of iterates.

For a long time scientists have been working in the field of PDE constrained op-
timization. References and efforts are too numerous to be briefly summarized here.
An overview of the subject can be found in, e.g., [5]. However, related work on the
optimization and the optimal control of SPDE constrained problems is sparse. Most
publications in this area discuss theoretical results. Almost no work exists on the
design of efficient algorithms for the solution of the optimality systems. Øksendal [22]
considers the optimal control of a quasi-linear stochastic heat equation and proves
verification theorems of maximum principle type. Mortensen [19, 20] considers dy-
namic programming (Bellman algorithm) for SPDEs and noisy observations of the
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states of the system. The regularity of the value function and the connection between
viscosity solutions of the Bellman equation and the value function is studied by Nisio
[21]. Cao [7] solves stochastic optimization using the MC approach. The estimation of
parameters in the presence of noisy measurements has been treated with the Bayesian
inference approach, which uses known information about the parameters to create a
priori distribution [25, 26]. First approaches to stochastic inverse problems are pre-
sented by Narayanan and Zabaras in [3]. In [32] Zabaras and Ganepathysubramanian
use a gradient descent method to solve the stochastic inverse heat equation with the
polynomial chaos methodology.

Paper organization. In section 2 we give a short overview of the theory of
SPDEs, the SG method, and the SC approach. For a general second-order elliptic
SPDE we focus on the optimization with SPDE constraint in section 3, thereby de-
riving the optimality systems as well as focusing on a gradient descent and an SQP
method. We also discuss particular objective functions which involve the stochastic
moments of the states of the system. In section 4 we focus on an exemplary diffu-
sion equation with uncertain diffusion coefficient and a tracking-type function. Our
numerical results show the influence of the stochastic moments within the objective
function. Conclusions are drawn in section 5.

2. Stochastic partial differential equations. Let (Ω,A, π) be a complete
probability space, where Ω denotes the event space, let A ⊂ P(Ω) be the σ-algebra of
subsets of Ω, and let π be the probability measure. Following the theory of Wiener [27],
Cameron and Martin [6], as well as Xiu and Karniadakis [30], we can represent any
general second-order random process X(ω), ω ∈ Ω, in terms of a collection of finitely
many random variables ξξξ = ξξξ(ω) = (ξ1(ω), . . . , ξN (ω)) with independent components.
Let ρi : Γi → R

+ be the probability density functions (PDFs) of the random variables
ξi(ω), ω ∈ Ω, and let their images Γi ≡ ξi(Ω) ∈ R be intervals in R for i = 1, . . . , N .
Then

ρ(ξξξ) =

N∏
i=1

ρi(ξi) ∀ξξξ ∈ Γ

is the joint PDF of the random vector ξξξ with the support Γ =
∏N

i=1 Γi ⊂ R
N . On Γ

we have the probability measure ρ(ξξξ)dξξξ.
As commented in [30], this allows us to conduct numerical formulations in the

finite dimensional (N-dimensional) random space Γ. Let us denote L2(Γ) as the
probabilistic Hilbert space [16] in which the random processes based upon the random
variables ξξξ reside. The inner product of this Hilbert space is given by

〈X,Y 〉 =
∫
Γ

(X · Y ) ρ(ξξξ)dξξξ for X,Y ∈ L2(Γ),

where we have exploited independence of the random variables to allow us to write
the measure as product of measures in each stochastic direction. We similarly define
the expectation of a random process X ∈ L2(Γ) as

(2.1) E[X(ξξξ)] =

∫
Γ

X(ξξξ) ρ(ξξξ)dξξξ,

and we refer to the expectation of the powers E[X i(ξξξ)] as the ith moment of the
random process.
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Additionally considering a spatial domain D ⊂ R
d, we define a set of random

processes, which are indexed by the spatial position x ∈ D; i.e., we consider mappings

f : D × Γ → R.

Such a set of processes is referred to as a random field [13], which can also be inter-
preted as a function-valued random variable, because for every ξξξ ∈ Γ the realization
f(·, ξξξ) : D → R is a real valued function on D. For a vector-space Y the class
L2(Γ) ⊗ Y denotes the space of random fields whose realizations lie in Y for a.e.
(almost every) ξξξ ∈ Γ. If Y is a Banach space, a norm on L2(Γ) ⊗ Y is induced by
|||f(x,ξξξ)|||2 = E[‖f(x,ξξξ)‖2Y ]; for example, on L2(D)⊗ L2(Γ) we have

|||f(ξξξ, x)|||2 = E[‖f(ξξξ, x)‖2L2(D)] =

∫
Γ

∫
D

(
f(ξξξ, x)

)2
dx ρ(ξξξ)dξξξ;

that is, |||·||| denotes the expected value of the L2-norm of the function f .
In the following we consider elliptic SPDEs of the type

(2.2)
−div (a(ξξξ, x)∇y(ξξξ, x)) + c0(ξξξ, x)y(ξξξ, x) = β(ξξξ, x)u(ξξξ, x) in D a.e. ξξξ ∈ Γ,

y(ξξξ, x) = g(ξξξ, x) on ∂D a.e. ξξξ ∈ Γ,

where a, c0, β ∈ L2(Γ) ⊗ L∞(D), g ∈ L2(Γ) ⊗ L2(∂D) are given random fields. Here
and in the following we consider stochastic controls u ∈ L2(Γ)⊗L2(D). In some of the
subsequent examples we will reduce u to a deterministic control u ∈ L2(D), which is
also relevant for some practical applications.

The existence of solutions to (2.2) has been shown by Vage in [24] in the case
when there exist constants c1, c2 > 0 such that a and c0 fulfill

(E[a]∇v,∇v)L2(D) ≥ c1‖∇v‖2L2(D) ∀v ∈ H1(D)

and

(E[c0]v, v)L2(D) ≥ c2‖v‖2L2(D) ∀v ∈ L2(D).

These conditions assert the coercivity of the corresponding bilinear form, and thus
guarantee the existence of solutions through the Lax–Milgram lemma. For the case of
a vanishing Helmholtz term in (2.2), i.e., for c0 ≡ 0, Babuška, Tempone, and Zouraris
[2] show the existence of solutions if the classical ellipticity condition is guaranteed
almost everywhere in Γ, i.e., if

(a(ξξξ, x)∇v,∇v)L2(D) ≥ c1‖v‖2H1(D) ∀v ∈ H1(D), a.e. Γ.

Various variants and specializations of (2.2) have been studied, including different
boundary conditions, as well as first-order derivatives. For an overview we refer the
reader to [13].

The SPDE (2.2) is a model for the steady state of (heat) diffusion

(2.3)
−div (a(ξξξ, x)∇y(ξξξ, x)) = β(ξξξ, x)u(ξξξ,x) in D a.e. ξξξ ∈ Γ,

y(ξξξ, x) = 0 on ∂D a.e. ξξξ ∈ Γ,

where the diffusion tensor a represents the thermal conductivity, and the control u
being the right-hand side of (2.3) models heat sources and sinks. In this model, the
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diffusion tensor a and the coefficient β are uncertain. The actual form of a and β
and their statistics or PDFs depend on the problem, as they can result from noisy
or error-prone experimental measurements or other a priori data. We emphasize that
although we work with a scalar diffusivity a, it is straightforward to transport the
material presented in this paper to a symmetric and positive definite diffusion matrix
(tensor). Finally, the random field β ∈ L2(Γ) ⊗ L∞(D) can also be used to restrict
the heat source u to a subdomain of D.

The notion of the weak solution for SPDEs of type (2.2), which have divergence
form, is based on an extension of the classical theory: Test functions become random
fields, and an integration over the stochastic space is done with respect to the cor-
responding measure. Thus the weak form involves expectations of the weak problem
formulation in the physical space. Correspondingly, y ∈ L2(Γ) ⊗ H1

0 (D) is a weak
solution of (2.3) if for all test functions v ∈ L2(Γ)⊗H1

0 (D),

(2.4) E

[∫
D

a(ξξξ, x)∇y(ξξξ, x) · ∇v(ξξξ, x) dx

]
= E

[∫
D

β(ξξξ, x)u(ξξξ,x)v(ξξξ, x) dx

]
.

2.1. Monte Carlo simulation. A classical and very popular approach for the
numerical treatment of (2.2) of the form of (2.3) is the Monte Carlo (MC) method.
For the MC method, Q realizations ξξξj := (ξij)

N
i=1, j = 1, . . . , Q, of the vector of random

variables ξξξ are generated. Consequently, Q deterministic problems are solved, which
are obtained from (2.3) by considering the realizations of A, c0, and β corresponding
to ξξξj . Finally, the statistics of the solution samples yj = y(ξξξj , x) lead to the desired
result. On the one hand, the MC approach is extremely robust and requires no
assumptions on the smoothness of the underlying stochastic processes. On the other
hand, the convergence is very slow and goes asymptotically with 1/

√
Q.

2.2. The stochastic Galerkin method. The SG method utilizes the weak
formulation (2.4) on finite-dimensional stochastic subspaces P (Γ) ⊂ L2(Γ). The
approximating subspaces can be constructed by, for example, the gPC approach
[11, 29, 30, 31]. Thereby any second-order stochastic process X ∈ L2(Γ) is expressed
by a weighted (infinite) sum of polynomials Li, which are functions of the vector of
random variables ξξξ = (ξ1, . . . , ξN ) of known PDF ρ(ξξξ), and thus

(2.5) X(ξξξ) =

∞∑
i=0

X̂iLi(ξξξ), X̂i ∈ R.

An approximation of a stochastic process is obtained by truncating the infinite ex-
pansion (2.5) to Q+ 1 terms for some Q ∈ N. Thus, we can write our approximation
X̃ of X ∈ L2(Γ) as
(2.6)

X(ξξξ) ≈ X̃(ξξξ):=

Q∑
i=0

X̂iLi(ξξξ), with X̂i =

(∫
Γ

L2
i (ξξξ) ρ(ξξξ)dξξξ

)−1∫
Γ

X(ξξξ)Li(ξξξ)ρ(ξξξ) dξξξ,

where the coefficients X̂i result from a projection of the stochastic process X onto
the space spanned by the polynomials. The statistics of processes represented is
evaluated as the stochastic moments of X̃, which can be computed by integration of
the expansion (2.6) over the stochastic space (cf. (2.1)), thus involving integrals of
the Li and linear combinations of the coefficients X̂i.

The linear system resulting from the approximation of processes in the weak
form (2.4) becomes sparse in the stochastic dimension if the Li are orthogonal with
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2664 H. TIESLER, R. M. KIRBY, D. XIU, AND T. PREUSSER

Fig. 2.1. A comparison between a sparse grid constructed by Smolyak’s algorithms (left, 145
grid points) and a full tensor product grid (right, 1089 grid points) is shown. The interpolation
nodes are based on the extrema of the Chebyshev polynomials.

respect to the corresponding measure ρ(ξξξ)dξξξ. For example, in the case of a uniformly
distributed single random variable ξ, Legendre polynomials are used; if ξ is Gaussian,
Hermite polynomials will be the choice, etc. [13]. Basis functions for higher stochastic
dimensions result from tensor products of the single variable orthogonal polynomials.

2.3. The stochastic collocation method. An approach related to the SG
method is the generalized polynomial chaos–stochastic collocation (gPC–SC) method
[28], in which we employ an interpolation of the stochastic process in some polynomial
space P for accomplishing integrations over the stochastic domain (as, for example,
in (2.1), (2.4), and (2.6)). Analogous to classical polynomial interpolation is the use
of Lagrange interpolation, which is particularly convenient: Given a set of colloca-
tion points {ξξξj}Qj=0 and corresponding characteristic Lagrange polynomials li obeying

li(ξξξj) = δij , a process X ∈ L2(Γ) is interpolated by

(2.7) X(ξξξ) ≈ X̃(ξξξ) :=

Q∑
j=0

X̂j lj(ξξξ), with X̂j = X(ξξξj) ∈ R.

Thus the interpolation involves evaluations of the stochastic process at the sampling
points ξξξj , and thus is much more convenient than (2.6). Moreover, the interpola-

tion is constructed such that the residual R(X(ξξξ) − X̃(ξξξ)) between the interpolated
system X̃ and the true process X is zero at the collocation points. Note that each
collocation point ξξξj is a vector of sampling points for the N random variables, i.e.,

ξξξj = (ξ1j , . . . , ξ
N
j ).

For the choice of the collocation points ξξξj it has become popular to use points
which lie on a sparse grid in the stochastic space (cf. Figure 2.1) generated by
Smolyak’s algorithm [28]. For high stochastic dimensions N the Smolyak sparse grids
have significantly fewer points than the full tensor product grid, but the order of con-
vergence is reduced only by some logarithmic factor. The accuracy of the collocation
approach in multidimensions is often discussed in terms of the so-called level k of inte-
gration (a term which is related to the space of functions which is integrated exactly).
The level k is the maximal degree of the polynomials used for the interpolation. The
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number of nodes used in the collocation approach is approximately 2k

k! N
k for N � 1,

which is 2k times larger than the dimension of the space of polynomials of total degree
at most k. This means that the number of nodes in the Smolyak algorithm overruns
the number of expansion terms in the SG method. On the other hand, the factor
2k is independent of the stochastic dimension N , which means that the algorithm
may be considered as optimal. For more details on sparse grids used in the gPC–SC
approach, we refer the reader to [28] and [4]. In the following we report the level k
and number of quadrature points in accordance with [28].

With the interpolation (2.7) we can approximate the expectation of the process
by

(2.8) E[X(ξξξ)] ≈ E[X̃(ξξξ)] =

Q∑
j=0

ωjX̂j , with ωj =

∫
Γ

lj(ξξξ)ρ(ξξξ)dξξξ.

For an evaluation of the higher-order centered moments we consider E
[(
X(ξξξ) −

E[X ]
)m]

for some m ≥ 2. Although using the interpolation X̃ in this formula in-

volves powers of X̃ , it is popular to use a polynomial approximation of the same
degree as X̃ , and thus

(2.9) E
[(
X(ξξξ)− E[X ]

)m] ≈ E

[(
X̃(ξξξ)− E[X̃ ]

)m]
≈

Q∑
j=0

ωj

(
X̂j − E[X̃ ]

)m
.

Any of the above presented stochastic discretization techniques can be combined
with a spatial discretization of choice for the solution of (2.2). The combination of the
SG method with a FEM in the physical space D is investigated in, e.g., [10]. These
discretizations involve the canonical generalizations of the above approximations of
stochastic processes to random fields; i.e., a random field f ∈ L2(Γ) ⊗ H1(D) is
approximated by

f̃(ξξξ, x) =

Q∑
j=0

f̂j(x)lj(ξξξ), with f̂j(x) = f(ξξξj , x) ∈ H1(D).

Thus, the solution of (2.2) with gPC–SC involves the evaluation of the solution y
at the nodes ξξξj , which corresponds to solving Q + 1 deterministic counterparts of
(2.2) at each ξξξ. In this sense the SC method has the same sampling character as
the MC approach; however, in gPC–SC we assume smoothness of the underlying
process in order to gain enhanced convergence properties. In contrast to the SG
approach, the equations which have to be solved are decoupled and, furthermore,
existing deterministic code can be reused easily.

Let us finally note that the collocation approach discussed above is one of multiple
possible collocation methods used in the solution of SPDEs [13]. With increasing rate
of convergence (and increasing assumptions on smoothness) one can use approaches
based on, for example, the classical MC method, the Newton–Cotes formulas, Gaus-
sian or Clenshaw–Curtis quadrature, or the sparse-grid spectral collocation method
discussed here.

3. Optimization with SPDE constraints. We will now apply the gPC–SC
methodology reviewed above to the solution of optimal control problems which are
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constrained by an SPDE. To this end consider the optimal control problem

(SCP)

min
(y,u)

F (y, u)

subject to h(y, u) = 0,
u ∈ Uad

with a convex and continuous function F and a nonempty, bounded, closed, and
convex set Uad ⊂ L2(Γ)⊗ L2(D). The objective function

F (y, u) : L2(Γ)⊗H1(D)× L2(Γ)⊗L2(D) −→ R

depends on the state y being a random field in L2(Γ)⊗H1(D) and the random field
control u ∈ Uad ⊂ L2(Γ) ⊗ L2(D). Here we assume that the SPDE constraint de-
noted by h : L2(Γ) ⊗ H1(D) × L2(Γ)⊗L2(D) → (L2(Γ) ⊗ H1(D))∗ is of the type
(2.2) and that the condition h(y, u) = 0 is evaluated in a distributional sense. Since
L2(Γ) ⊗ H1(D) as well as L2(Γ) ⊗ L2(D) are Hilbert spaces, the results from de-
terministic optimization theory (see, e.g., Chapter 2 in [23]) can be applied to the
stochastic problem. Therewith, we can show that there exists an optimal solution for
the problem (SCP) above.

In the following our aim is to derive the optimality system for (SCP). Note
that extensions of the following derivations and algorithms to multiple constraints
is straightforward. For ease of presentation we will denote the elliptic differential
operator in (2.2) by Ay(ξξξ, x) := −div(a(ξξξ, x)∇y(ξξξ, x)), and for the dual pairing in
L2(Γ)⊗ L2(D) we will write 〈·, ·〉.

For the definition of the Lagrange function

L : L2(Γ)⊗H1(D)× L2(Γ)⊗L2(D)× L2(Γ)⊗H1(D) −→ R,

we use a random field μ(ξξξ, x) ∈ L2(Γ)⊗H1(D) as the Lagrange multiplier in the weak
form of (2.2). Thus, we have

(3.1)

L(y, u, μ) := F (y, u)− 〈h(y, u), μ〉

= F (y, u)− E

[ ∫
D

(Ay + c0y − βu)μ dx−
∫
∂D

(y − g)μ dx

]
.

Analogous to the optimization under deterministic PDE constraints, the adjoint equa-
tion can be calculated by the derivative of the Lagrangian with respect to y,

(3.2) Ly(y, u, μ)(w) = 〈Fy(y, u)− hy(y, u)
∗μ,w〉 = 0 ∀w ∈ L2(Γ)⊗ L2(D),

which leads to

hy(y, u)
∗μ = Fy(y, u),

where ∗ denotes the adjoint operator, and the adjoint state is μ. Moreover, for the
variational inequality obtained from the derivation of the Lagrangian with respect to
u, we need

Lu(y, u, μ)(v − u) = 〈Fu(y, u)− hu(y, u)
∗μ, v − u〉

= 〈Fu(y, u), v − u〉+ E

[∫
D

βμ(v − u)dx

]
.

D
ow

nl
oa

de
d 

01
/0

4/
13

 to
 1

55
.9

8.
20

.5
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STOCHASTIC COLLOCATION FOR OPTIMAL CONTROL 2667

Hence, a control u ∈ L2(Γ)⊗L2(D) is a solution for (SCP) if and only if u fulfills
the following optimality system:

(3.3)

u ∈ Uad,

〈Fu(y, u)− hu(y, u)
∗μ, (v − u)〉 ≥ 0 ∀v ∈ Uad,

Ay + c0y = βu, A∗μ+ c0μ = Fy(y, u) in D a.e. ξξξ ∈ Γ,
y = g, μ = 0 on ∂D a.e. ξξξ ∈ Γ.

In the following two sections we describe a gradient descent method and an SQP
method for the solution of (3.3), which we will discretize using the gPC–SC method
introduced in section 2.3.

3.1. The gradient descent method. Gradient descent methods are among
the most intuitive and simplest methods used in solving optimal control problems.
Starting from an initial guess, an iteration with updates in the direction of the steepest
descent of the objective function is performed until a local minimum is reached. Let
us denote the iterates of the gradients with u(n) for n ∈ N, and thus u(0) is the initial
guess. The state and the adjoint state corresponding to the control iterate at step n
are denoted by y(n) and μ(n), respectively.

Let us assume that we have initialized the method by choosing u(0) ∈
L2(Γ)⊗L2(D) appropriately and by setting n = 0. In the following we describe one
iteration step of the gradient projection method for (3.3) in terms of the collocation
method from section 2.3. In section 4.3 we will apply the abstract algorithm to a
concrete problem of the form (2.3) as follows:

1. State and adjoint state. For each collocation point ξξξj solve the deterministic

counterparts of the SPDEs in (3.3) to obtain the state y
(n)
j and the adjoint

state μ
(n)
j for the actual control u

(n)
j .

2. Search direction. Taking the samples y
(n)
j and μ

(n)
j of the current state and

adjoint state, respectively, we can use the polynomial expansion (2.7) and
the quadrature formula (2.8) to evaluate the descent direction vn, i.e., the
antigradient

v(n) := −Fu(y
(n), u(n))− β μ(n) ∈ L2(Γ)⊗L2(D).

3. Step size control. As in the deterministic case, the optimal step size sn is
determined by

F
(
y(n), PUad

(
u(n) + snv

(n)
))

= min
s>0

F
(
y(n), PUad

(
u(n) + sv(n)

))
,

where PUad
is the projection onto the space of admissible controls. To actually

compute the optimal step width, there exists a variety of approaches such as
the bisection method or Armijo’s rule.

4. Update. Finally, the control iterate is updated according to u(n+1) :=
PUad

(u(n) + snv
(n)), and n is incremented.

As usual, this iteration is continued until ‖u(n+1) − u(n)‖ < ε for an appropriately
chosen ε > 0.

Note that in an implementation it is not necessary to store all states and adjoint

states in step 1 if Fu does not depend on y. In fact, in this situation, each sample y
(n)
i

can be discarded after the right-hand side of the adjoint equation has been computed.
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Moreover, the samples of μ can be discarded after they have been accumulated for
the computation of the antigradient in step 2.

If a deterministic control u ∈ L2(D) is used, the stochasticity of the problem is
reduced in the computation of the descent direction (step 2). The search direction
becomes a deterministic function, as we use the following term instead of the stochastic
function above:

v(n) := −Fu(y
(n), u(n))− E[β μ(n)] ∈ L2(D).

This simplifies the calculations such that we have an algorithm similar to the de-
terministic case. In fact this is due to the involvement of the expectation in the
weak formulation. For a stochastic control as described above, the stochasticity is
transferred to the descent direction through the derivative Fu, and consequently the
implementation of the gradient descent is more involved.

3.2. Sequential quadratic programming. In the following we will derive a se-
quential quadratic program for the SPDE constrained optimal control problem (SCP).
Analogous to a classical SQP method with deterministic constraints, the goal is to
fulfill the Karush–Kuhn–Tucker (KKT) conditions and in particular the vanishing of
the derivative of the Lagrangian (3.1). Thus, we are looking for points (ȳ, ū, μ̄) such
that ∇L(ȳ, ū, μ̄) = (Ly ,Lu,Lμ)(ȳ, ū, μ̄) = 0. In SQP we use Newton’s method to find
this desired root of ∇L. In the following we describe one step of the SQP method for
(SCP).

Again let us assume that we have initialized the method appropriately by choosing
u(0) ∈ L2(Γ)⊗L2(D) and y(0), μ(0) ∈ L2(Γ)⊗H1(D) and by setting n = 0. Then one
step of the SQP method is as follows:

1. Check KKT conditions. Check whether ∇L = 0 is fulfilled, i.e., whether
∇L(y(ξξξj), u(ξξξj), μ(ξξξj)) = 0 for every collocation point ξξξj . If this is the case,
then stop. This involves checking (3.2) by evaluating the expected value as
described in (2.8).

2. Solve the stochastic quadratic program. Calculate the KKT-point (δy(n),
δu(n), μ(n+1)) ∈ L2(Γ) ⊗ H1(D) × L2(Γ)⊗L2(D) × L2(Γ) ⊗ H1(D) as the
solution of the stochastic quadratic problem
(3.4)

min
(y,u)

∇F (yn, un)
T ·

(
δy(n)

δu(n)

)
+
1

2

(
δy(n)

δu(n)

)T

· ∇2L(y(n), u(n), μ(n))

(
δy(n)

δu(n)

)

subject to h(y(n), u(n)) +∇h(y(n), u(n))T ·
(
δy(n)

δu(n)

)
= 0.

Here, the stochasticity appears in the optimization vector (δy(n), δu(n))T =
(y − y(n), u − u(n))T with functions y, y(n) ∈ L2(Γ) ⊗ H1(D) and u, u(n) ∈
L2(Γ)⊗L2(D). Using SC we can split the stochastic problem into a set of
independent deterministic problems which can be solved with classical deter-
ministic methods. In the case of a linear SPDE as treated here the constraint
is given by our SPDE (2.2). This quadratic problem can be solved, for exam-
ple, with an inner point method or an active set method. In this paper we
use a conjugate gradient method.

3. Choice of weight parameter. We define the weighting function η(n+1) ∈ R

according to

η(n+1) := max
{
η(n),E[‖μ(n+1)‖∞] + ε

}
.
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Thus, we use the expectation of the maximum values of μ in the physical
domain to determine a real valued weight η(n+1) ∈ R for the step size control.
Another choice would be a stochastically distributed weight η ∈ L2(Γ), which
means we use all μ instead of the expectation. In turn, the stochastic weight
could be reduced to a real value by choosing finally the expectation E[η(ξξξ)]
as the weighting function for the step size control.

4. Step size control. For a chosen real valued penalty function ϕ (see below) and
some γ ∈ (0, 1), σ ∈ (0, 1), choose the step size

αn = max
{
α = γj

∣∣ j ∈ N, ϕ(yn + αδny , un + αδnu ; η)

≤ ϕ(yn, un; η) + σα∇ϕ(yn, un; η)(δ
n
y , δ

n
u)
}
.

5. Update. The new iterates for the state and the control are given by

yn+1 := yn + αnδ
n
y , un+1 := un + αnδ

n
u .

Finally, we increment n and continue with step 1.
As in the classical deterministic case we have various choices for the penalty function
ϕ. However, in our setting we need to reduce the stochasticity in order to obtain real
valued functions; thus our penalty functions will always involve an expectation E[h]
of the constraint. For example, we can use the L1-penalty function as well as the
augmented Lagrangian La,

L1(y, u; η) := F (y, u) + ηE
[‖Ay + c0y − βu‖L1(D)

]
,(3.5)

La(y, u, μ; η) := L(y, u, μ)− η

2
|||Ay + c0y − βu|||.

In our implementations we use the L1-penalty function.

4. Optimal SPDE control problem with tracking-type objective func-
tions. Having addressed an arbitrary objective function, let us now be more descrip-
tive by discussing in more detail the SPDE constraint (2.3) and possible choices for
objective functions. First, we discuss possible objective functions of tracking type,
and in the following sections we derive the optimality system and show numerical
results for two of the tracking-type functionals discussed herein.

4.1. Exemplary objective functionals.

Fitting of the expected temperature. Let us assume that we have measure-
ments of the temperatures in the physical domain, resulting from an experiment. We
interpret the measurement data Y1 ∈ L2(D) as the expected temperature, to which
we would like to match our calculated states as well as possible. An objective function
for this task is

FE(y, u) :=
λ1

2
|||y − Y1|||2 +

q∑
k=2

λk

2
E

[(
‖y‖2L2(D)

)k
]
+R(u)(4.1)

for some k ∈ N, λi ≥ 0, and where R(u) is a regularization of the control u, e.g.,
R(u) := λu‖u‖2L2(D), with 0 ≤ λu ∈ R. In this objective function the first term mea-

sures the expectation of the L2-difference of the measured data and the calculated
temperature. In the second term the higher-order moments of the calculated tem-
perature are measured. These terms act as regularizations in the stochastic space,
since they prefer temperatures with small variance or small higher-order moments,
depending on the choice of the λk. In section 4.3 we show some numerical results for
this type of objective function.
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Fitting of stochastic moments. In addition we can consider the case that we
have multiple experimental measurements Y (k) ∈ L2(D), which represent the physical
temperature distribution under investigation. From these samples we can evaluate the
statistics of the experiments, thus leading to Yk ∈ L2(D), k = 1, . . . , q, which represent
the expected distribution of the temperature as well as higher-order moments of the
experimental temperature distribution. To these we would like to fit the statistics of
the calculated temperature distribution. Thus, we define (cf. also [32])

(4.2) FM (y, u) :=

q∑
k=1

λk

2

∥∥E [
yk

]− Yk

∥∥2
L2(D)

+R(u),

where again λk ≥ 0 for k = 1, . . . , q and R(u) is a regularization of the control u (see
above). This objective function penalizes deviations of the moments of the computed
temperature distribution from the ones of the measured data. Thus it can be seen as
a functional that penalizes deviations of the statistics of the calculated temperature
from the statistics of the measured temperature. In section 4.3 we show numerical
results for this type of objective function.

Fitting of probability density function. Finally, if we have even more infor-
mation about the physical process under investigation, we can also match the PDF of
the calculated and the measured temperature distribution. However, to simplify the
computations we consider the inverse of the cumulative distribution function (CDF),
which represents the stochastic distribution in a different way and which, moreover,
is defined on the unit interval. Denoting by Υ−1[X ] : [0, 1] → R the inverse CDF of
a stochastic process X , we define the following for the matching of the inverse CDF
of calculated and measured temperature (cf. also [32]):

(4.3) FD(y, u) :=

∥∥∥∥
∫ 1

0

(
Υ−1[y](ϑ)−Υ−1[Y ](ϑ)

)2

dϑ

∥∥∥∥
2

L2(D)

.

Thus, the objective function compares the difference of the inverse CDF of the com-
puted temperature y and the measured temperature Y in an L2-sense over the physical
domain and the unit interval.

4.2. Solving the optimal control problem. Let us now focus on the actual so-
lution of the minimization of one of the above discussed objective functions under the
SPDE constraint (2.3) with homogeneous Dirichlet boundary data, i.e., for g(ξξξ, x) ≡ 0.
Note that the incorporation of nonhomogeneous Dirichlet boundary conditions g is
obtained straightforwardly through the corresponding boundary integral on the right-
hand side. In the following we use the notation (u, v)L2(Γ)⊗L2(Y ) = E

[∫
Y
uv dx

]
.

First, we consider the objective function (4.1). To formulate the optimality system
for this optimal control problem, we use the Lagrange function
(4.4)
L(y, u, μ) :=FE(y, u)− (−div(a(ξξξ, x)∇y(ξξξ, x)) − β(ξξξ, x)u(ξξξ,x), μ(ξξξ, x))L2(Γ)⊗L2(D)

− (y(ξξξ, x), μ(ξξξ, x))L2(Γ)⊗L2(∂D)

=
λ1

2
E

[∫
D

(
y(ξξξ, x)− Y1(x) dx

)2]
+

q∑
k=2

λk

2
E

[(∫
D

y(ξξξ, x)2 dx

)k
]

+R(u)− E

[∫
D

(− div(a(ξξξ, x)∇y(ξξξ, x))− β(ξξξ, x)u(ξξξ,x)
)
μ(ξξξ, x) dx

]

− E

[∫
∂D

y(ξξξ, x)μ(ξξξ, x) · ν(x) ds(x)
]
.
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To calculate the adjoint equation we use the formal Lagrange technique, which means
that we calculate the derivative of the Lagrangian with respect to y(ξξξ, x). Therefore
for the optimization itself we need the derivative of the objective function with respect
to y in the direction of the random field δy,

〈(FE)y(y, u), δy(ξξξ, x)〉 =λ1E

[∫
D

(y(ξξξ, x)− Y1(x)) δy(ξξξ, x) dx

]

+

q∑
k=2

kλk E

[(∫
D

y(ξξξ, x)2dx

)k−1 ∫
D

y(ξξξ, x)δy(ξξξ, x) dx

]
.

Consequently, we get

−div (a(ξξξ, x)∇μ(ξξξ, x)) = λ1 (y(ξξξ, x)− Y1(x)) +

q∑
k=2

kλk

(∫
D

y(ξξξ, x)2dx

)k−1

y(ξξξ, x)

(4.5)

in D for almost all ξξξ ∈ Γ,

μ(ξξξ, x) = 0 on ∂D for almost all ξξξ ∈ Γ(4.6)

as the adjoint equation for our state system (2.3). Furthermore, from the derivative
of L(y, u, μ) with respect to the control u(ξξξ,x), we obtain

(4.7) Lu(y, u, μ)δu(ξξξ,x) = E

[∫
D

δu(ξξξ,x)β(ξξξ, x)μ(ξξξ, x) dx

]
+Ru(u)δu(ξξξ,x).

Hence, the descent direction for the gradient descent method (cf. step 2 in sec-
tion 3.1) can be calculated from the antigradient of the objective, considered as a
function of u. That means the descent direction v is given by the negative gradient,
which is calculated by the variational inequality (4.7),

(4.8) v = −βμ−Ru(u).

Here μ denotes the adjoint state. In the case of a deterministic control u, the gradient
reduces again to a deterministic function, and the search direction becomes

v = −E[βμ](x)−Ru(u).

For the SQP method we also need the second derivatives of the Hessian matrix. To
this end, we obtain as the pure second derivatives of the objective function

(4.9) 〈(FE)yy(y(ξξξ, x), u(ξξξ,x)), δy(ξξξ, x)δy(ξξξ, x)〉

= λ1|||δy|||2 +
q∑

k=2

2k(k − 1)λkE

[(
‖y‖2L2(D)

)k−2
(∫

D

yδydx

)2
]

+

q∑
k=2

kλkE

[(
‖y‖2L2(D)

)k−1

‖δy‖2L2(D)

]

and

〈(FE)uu(y(ξξξ, x), u(ξξξ,x)), δu(ξξξ,x)δu(ξξξ,x)〉 = Ruu(u)δu(ξξξ,x)δu(ξξξ,x).
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Moreover, the L1-penalty function for the SQP method introduced in (3.5) becomes

L1(y, u; η) =
λ1

2
|||y − Y1|||2 +

q∑
k=2

λk

2
E

[(
‖y‖2L2(D)

)k
]
+R(u) + ηE

[‖h(y, u)‖L1(D)

]
,

and its derivative in the direction of δ = (δy, δu)
T is

L′
1(y, u; η)δ =λ1E

[∫
D

(y(ξξξ, x)− Y1(x)) δy(ξξξ, x) dx

]

+

q∑
k=2

kλkE

[(∫
D

y(ξξξ, x)2dx

)k−1 ∫
D

y(ξξξ, x)δy(ξξξ, x) dx

]

+Ru(u)δu(ξξξ,x) + η
∑
h>0

∇h(y, u)δ − η
∑
h<0

∇h(y, u)δ

+ η
∑
h=0

|∇h(y, u)δ|.

For the other type of objective functions (4.2) and (4.3) we proceed analogously
by formulating the Lagrangian and computing the corresponding derivatives. Indeed,
the derivation is very similar for (4.2) and leads to

〈(FM )y(y, u), δy(ξξξ, x)〉 =
q∑

k=1

kλk

∫
D

(
E[yk]− Yk

)
E[yk−1δy] dx.

Let us finally mention that for (4.3) we have

〈(FD)y(ξξξ, x), δy(ξξξ, x)〉 =
∫
D

[∫ 1

0

(
Υ−1[y](ϑ)−Υ−1[Y ](ϑ)

)2
dϑ

×
∫ 1

0

(
Υ−1[y](ϑ)−Υ−1[Y ](ϑ)

) ∂

∂y
Υ−1[y](ϑ)δy(ξξξ, x)dϑ

]
dx.

With the derived Lagrangian and its derivatives, we are now able to solve our
optimal control problem with one of the algorithms described in section 3. For the
gradient descent algorithm we need only the total derivative of the objective function,
e.g., (4.8), to calculate the descent direction. However, for the SQP method we need
the gradient of the Lagrangian, and the Hessian too, to set up the KKT-matrix and
the corresponding right-hand side (see below).

4.3. Numerical results. In the following we first construct a test scenario and
show results of the SC method applied to the forward problem (2.3) with uncertain
heat conductivity. Second, we show results of the optimal control problem for the
tracking-type objective functions (4.1) and (4.2). For all numerical results shown
here we use a spatial discretization with the FEM on piecewise linear shape functions
on the unit interval D := (0, 1). The resulting linear systems of equations are solved
with a classical conjugate gradient method without preconditioning.

The forward problem. Let us emphasize that, in particular for optimization
with stochastic constraints and stochastic inverse problems, it is advisable to have
proper control of the numerical errors and the accuracy achieved by iterative solvers.
In [12] Kaipio and Somersalo discuss that limited numerical accuracies (i.e., discretiza-
tion errors) can sometimes (effectively or ineffectively) be interpreted as the behavior
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Fig. 4.1. Left: Various realizations of the coefficient a(ξξξ, x) for κ = 3 and 11 collocation points
for stochastic dimension N = 5. Middle: The state y(ξξξ, x) corresponding to a(ξξξ, x) and with a
constant right-hand side u(x). Right: The corresponding PDF for y(ξξξ, x), i.e., at the spatial point
x = 0.25.

of a random process. Therefore before proceeding to the optimization problem we
discuss some numerical tests on the solution of the forward problem.

For reasons of simplicity we restrict our discussion to the case β(ξξξ, ·) ≡ 1, and we
use homogeneous Dirichlet boundary values only. Also, in this experiment we use a
deterministic right-hand side u(ξξξ, x) = u(x). As discussed in section 2 we consider a
vector of random variables ξξξ = (ξi)Ni=1, where the ξi are independent and uniformly
distributed on [−1, 1]. The uncertain diffusion coefficient is defined as (cf. [28])

(4.10) a(ξξξ, x) = 1 + κ

N∑
i=1

1

i2π2
cos(2πix)ξi,

and thus in our example the random variables ξi being the components of the random
variable vector ξξξ steer different frequencies of the diffusion coefficient. Our diffusivity
fulfills E[a(ξξξ, ·)] ≡ 1 on D and it is bounded by 1− κ

6 ≤ a(ξξξ, x) < 1 + κ
6 for all ξξξ. We

have set κ = 3, the stochastic dimension N = 5, and the number of collocation points
Q = 10. The spatial discretization contains M = 129 nodes.

We solve the problem (2.3) with the stochastic diffusion coefficient (4.10) by the
SC method described in section 2.3. In Figure 4.1 we show the realizations of the
diffusivity a and the state y at the collocation points, as well as an approximation
[14] of the PDF of the state y(ξξξ, 0.25), i.e., at the spatial position x = 0.25. Here we
have fixed the right-hand side to be u(x) ≡ 1.

In Figure 4.2 we show the state y(ξξξ, x) for the same SPDE and the same coefficient
a(ξξξ, x) as above but with a linear right-hand side u(x) = x. Also shown is the
corresponding variance of the state y and again an approximation of the PDF of
y(ξξξ, 0.25), i.e., at the spatial position x = 0.25. For the variance graph, it might be
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Fig. 4.2. Left: The state y(ξξξ, x) corresponding to the above a(ξξξ, x) and with a linear right-hand
side u(x). Middle: The variance of the solution. Right: The corresponding PDF at the spatial point
0.25.
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Fig. 4.3. Convergence of the stochastic solution to the deterministic solution as κ → 0: κ vs.
the L2-norm of the difference of the mean of the stochastic solution and deterministic solution.

surprising at first that the highest variance in the solution is obtained where a has the
smallest variance. However, this is a consequence of the global character of diffusion.
At the positions with small variance in a(ξξξ, x) we have almost the same derivatives
for all different realizations of y(ξξξ, x). However, the large differences in the diffusion
coefficient at the other points lead to a dispersion of the function values at these points.

To further test the solver for the forward problem, we investigate the convergence
of the stochastic solution as κ → 0, i.e., as the variance of the diffusion coefficient
tends to zero. Indeed, in Figure 4.3 we see the expected convergence to the function
resulting from the solution of the deterministic PDE in which the diffusivity is set to
a(ξξξ, ·) ≡ 1.

Finally, we investigate the convergence of the stochastic solution as the number
of collocation points increases. To this end we evaluate in the tensor product space
L2(Γ)⊗L2(D) the quotient of solutions obtained with different numbers of collocation
points, i.e.,

‖E[y(k)]‖2L2(D)

‖E[y(k−1)]‖2L2(D)

,
‖Var[y(k)]‖2L2(D)

‖Var[y(k−1)]‖2L2(D)

,
|||y(k)|||

|||y(k−1)||| , k ∈ N.

Here y(k) denotes the solution of the SPDE with (2.3), with the stochastic diffusion
coefficient (4.10) computed at level k of the sparse grid approximation (cf. section
2.3). The results of the convergence test for N = 5 and a spatial discretization
with M = 65 grid points are shown in Table 4.1. From these results we see a rapid
convergence in the expectation, i.e., for the norms |||·||| and ‖E[·]‖. The convergence in
the variance (‖Var[·]‖) is much slower. Note that the variance Var[·] is defined as the
second-order centered moment; see (2.9) for the definition of higher-order centered
moments. Further investigations on the convergence with respect to the number of
collocation points are discussed in [28] as well.

Table 4.1

Convergence of the stochastic solution for increasing number of collocation points. The spatial
discretization has M = 65 grid points, the stochastic dimension is N = 5, and the coefficient is set
to κ = 3.

k Q
‖E[y(k)]‖2

L2(D)

‖E[y(k−1)]‖2
L2(D)

‖Var[y(k)]‖2
L2(D)

‖Var[y(k−1)]‖2
L2(D)

|||y(k)|||
|||y(k−1)|||

1 10 0.999321 8250.85 0.998458
2 60 0.999979 3.95767 0.999956
3 240 1 2.24199 1
4 800 1 1.77461 1
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The optimal control problem. For the following numerical results for the
optimal control problem, we choose the same diffusion coefficient a(ξξξ, x) as before
(cf. (4.10)). First, we generate the optimal state y by prescribing a fixed right-hand
side (control) u(ξξξ,x) = 0.34 + 2.56x, which does not depend on ξξξ, and computing y
through the SG method. We end up with a random field y, whose expectation and
stochastic moments we use in the following as the parameters Yk defining the objective
function. Note that this control u cannot be resolved by our finite element space of
piecewise linear functions, which vanish at the boundary. As before, we discretize
the problem in space with the FEM with piecewise linear shape functions. We use
M = 129 grid points in the physical space, a stochastic dimension N = 2, and SC at
level k = 3, i.e., involving 29 collocation points (Q = 28).

In the second step of this experiment we aim at finding the optimal control that
best approximates the precomputed state y in the sense of the objective functions
(4.1) or (4.2). Therewith, the control is assumed to be a random field u(ξξξ, x). We
present results for different weightings of the stochastic moments up to 10th order, i.e.,
q = 10. For the objective (4.1) we use the SQP method described in section 3.2, and
for comparison we use the gradient descent method from section 3.1. The results for
the objective (4.2) are generated with the gradient descent method. In all numerical
experiments, we use the regularization term R(u) = 1

2λuE[‖u‖2L2(D)] with λu = 10−4.

For the objective (4.1), we can obtain the full second-order derivative in the fully
discrete form, thus no longer involving the directional derivatives in direction δy(ξξξ, x)
(cf. (4.9)). For the other objective functions (4.2) and (4.3), the situation is more
complicated, as the order of the integrations is reversed; i.e., the stochastic integral is
taken inside the integral over the physical space. However, for the objective function
(4.2) we can change the order of evaluations in the optimization algorithm accordingly
such that we solve the stochastic problem at every spatial point, instead of solving the
deterministic problem at every SC point. With this adaptation of the optimization
algorithm, we may use the FEM as well and take advantage of symmetric matrices,
as in the latter case above. A discrete version of the third objective function (4.3) has
been considered by Zabaras and Ganapathysubramanian in [32]. We refer the reader
to this publication, and here we do not consider numerical experiments for this type
of objective function.

In Figure 4.4 we show results of the optimization with the SQP method for the
first objective function (4.1) for various weightings of the stochastic moments. The
particular settings of the weights λi in the objective functions are listed in the top
part of Table 4.2. First, comparing experiments A, B, and C shows the regularizing
influence of the weight of the variance. It is clearly visible from the right column in
Figure 4.4 how the distribution becomes smaller (i.e., with less variance) and higher
if the weight λ2 is increased. We also observe that this is connected to a variation
of the expectation of y as part of the compromise between fitting the expectation
and minimizing the variance made by the optimization. Thus, adding the second
moment, we obtain a smaller PDF, whereas the fitting to the expectation is not as
good as without the additional moment.

Second, comparing experiments A and D shows a minor influence of the third
moment. The results match the given data better, but the variance of the PDF
is larger as before. Finally, comparing experiments E, F, and G demonstrates the
influence of the moments of order from 4 to 10. We see that—as one would expect—
taking into account these higher order moments does result in small changes to the
distribution only. It can be seen that the expectation is matched slightly worse as in
the latter cases.
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Fig. 4.4. Results for the minimization of (4.1), solved with the SQP method described in

section 3.2. From left to right are depicted the expectation and the variance of the state y, where the
expectation is compared with the given Y1(x) (dotted lines), and the calculated control u, compared
with the given linear right-hand side u∗. Finally, on the right we show the probability functions at
the spatial position of the optimal state y at the spatial location x = 0.25. From top to bottom the
settings of the weights vary according to the values listed in Table 4.2. Note that for the prescribed
data we have Y1(0.25) ≈ 0.1347.
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Table 4.2

Top (A–G): Weights used for the optimization with the objective (4.1) and the SQP method.
The weights in A–E are additionally used for the gradient descent method with the objective (4.1).
Bottom (H–J): Weights used for the optimization with the objective (4.2) and the gradient descent.
The label given in the left column corresponds to the respective rows in Figures 4.4, 4.5, and 4.6.

Label # weights �= 0 Value of nonzero weights in the objective function
A 1 λ1 = 1
B 2 λ1 = 1, λ2 = 2
C 2 λ1 = 1, λ2 = 8
D 3 λ1 = 1, λ2 = 0, λ3 = 4
E 4 λ1 = 1, λ2 = 2, λ3 = 4, λ4 = 8
F 6 λ1 = 1, λ2 = 2, λ3 = 4, λ4 = 8, λ5 = 16, λ6 = 32
G 10 λ1 = 1, λ2 = 2, λ3 = 4, λ4 = 8, λ5 = 16, λ6 = 32, λ7 = 64,

λ8 = 128, λ9 = 246, λ10 = 492
H 1 λ1 = 1
I 4 λ1 = 1, λ2 = 2, λ3 = 4, λ4 = 8
J 4 λ1 = 1, λ2 = 100, λ3 = 1000, λ4 = 10000

In these results we can observe that the choice of the objective, and especially of
the additional moments, has an influence on the outcome of the optimization. The
outcome depends on the number of used moments as well as on the used weighting
factors. Since the moments are calculated by the expectation of the exponentiated
states, their values decrease for higher degrees of the moments. Thus, we need sig-
nificantly larger weighting factors to take higher degrees into account. However these
experiments also show that we have a wealth of degrees of freedom for the design of the
objective function, which allows us to construct the objective carefully corresponding
to the requirements of the application under investigation.

To compare the SQP method with the gradient descent method for the optimiza-
tion of the objective functional (4.1), some of the results are depicted in Figure 4.5.
The weights λi, used for the presented results, are chosen according to the settings
in rows A and E in Table 4.2. In principle, using the gradient descent requires more
iterations to obtain a comparable result—approximately 40 times more iterations.
However, the number of iterations can be slightly reduced by choosing a larger maxi-
mal step size, but still the gradient descent method will require more iterations. In the
configurations A–E from Table 4.2 the number of required iterations is in the range of
17–110 for the SQP method and in the range of 1396–2202 for the gradient descent.

Altogether the results from the SQP method match the results from the gradient
descent method. However, for the gradient descent method the calculated states show
a smoother PDF than the results from the SQP method. This is based on the fact
that in the gradient method the states are calculated via the constraints appropriate
to the controls, whereas in the SQP method both the states and the controls are
optimization variables. Therefore, the states in the gradient method need to fulfill
the constraints, whereas the states in the SQP method are only as good as possible,
i.e., in the present case only as smooth as possible.

The L2-norms of the difference in the expectation of the states, in the variance
of the states, and in the expectation of the control for the two methods and the
configurations A–E from Table 4.2 are

∥∥E[ySQP ]− E[yGD]
∥∥2
L2 ∈ [1.289 · 10−9, 1.28 · 10−8],∥∥Var[ySQP ]−Var[yGD]

∥∥2
L2 ∈ [6.989 · 10−15, 3.123 · 10−13],∥∥E[uSQP ]− E[uGD]

∥∥2
L2 ∈ [3.772 · 10−5, 2.6 · 10−4].
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Fig. 4.5. Comparison of the minimization of (4.1) with the gradient descent method and the
SQP. From left to right the expectation of y, the calculated control u, and the PDF of the calculated
state y at the spatial position x = 0.25 are depicted. In the graphs (left and middle) the results
for the expectation value and the control are shown for the given values (dotted lines), the gradient
descent (solid line), and the SQP method (dashed lines). The plots on the right show the PDF of
the calculated state y from the SQP method (light grey) and from the gradient descent (dark grey).
From top to bottom the settings of the weights vary according to the values listed in Table 4.2.

The best matches between the two different methods are obtained for the optimization
without any higher moments, i.e., λi = 0, i ≥ 1 (case A).

In Figure 4.6 we show results from the minimization of the objective function
(4.2). As described above, we take the stochastic moments of the precomputed state
y as the functions Yk defining the objective function (4.2). In this setting we reduce the
control u(ξξξ, x) to a deterministic control u(x). This is possible, since the control is the
only optimization variable in the gradient descent method. In this case the state y and
adjoint state μ are given by the constraints. The settings of the weights λi are shown
in the bottom part of Table 4.2. Comparing the results from experiments H–J we see
a better fitting of the prescribed data as more moments are taken into account and
also—as expected—if the weighting for the higher-order moments is stronger. Again,
from the results it is visible how the adjustment of the weights for the higher-order
moments also influences the fitting of the expectation.

Comparison with Monte Carlo. In our final numerical experiments we com-
pare the presented SQP SC method with the most prominent and robust method for
stochastic computations, the MC method (cf. section 2.1). We consider the optimal
control problem with the objective (4.1) as described above but without taking higher
moments into account, i.e., λi = 0 for i > 1. Instead of computing the samples of
the states and adjoint states at the Q collocation points, we sample at randomly
distributed points in the stochastic space.

In Figure 4.7 we show the expectation and the variance of the computed optimal
state as well as the optimal control resulting from the MC runs. Also, the same data
is shown for the SC approach, and we see a convergence of the MC results to the
SC result. In Table 4.3 we report the difference between the optimal state resulting
from the SC approach ySC and the optimal states resulting from the MC method
with m-samples yMCm

. From the table and the graphs a clear tendency of the MC
solutions towards the SC solution is visible in the L2-norm of the expectation and the
variance. However, with the MC approach we need considerably more realizations to
obtain a result similar to that for the collocation approach.
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Fig. 4.6. Results for the minimization of the objective function (4.2) with a gradient descent
method and for up to q = 4 stochastic moments. From left to right the expectation of y, the third
moment of the state y, as well as the calculated control u in comparison with the given linear right-
hand side u∗, are shown. The expectation and the third moment of the state are each compared with
the given values (dotted lines). From top to bottom the settings of the weights vary according to the
values listed in Table 4.2.
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Fig. 4.7. The expectation (left) and the variance (middle) of the optimal state y as well as the
expectation of the optimal control u (right) resulting from the minimization of FE (4.2) without any
higher moments (λi = 0 for i > 1). In the graphs the result from the collocation SQP method is
compared with the results of MC sampling for an increasing number of sampling points (MC 29–MC
200).

Table 4.3

The L2-norm of the difference between the expectation of the solution with the collocation
method and the expectation of the solution obtained with the MC method for a different number of
evaluation points for the Monte Carlo method. On the right are shown the L2-norm of the difference
between the variance of the solution with the collocation method and the variance of the solution
with the MC method.

m ‖E[ySC]−E[yMCm ]‖L2 ‖Var[ySC]−Var[yMCm ]‖L2

29 2.96957e-06 3.11497e-13
50 5.32986e-06 5.58844e-12

100 2.92863e-07 6.3303e-14
150 4.50538e-06 1.97644e-13
200 8.78526e-08 2.08923e-13
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5. Conclusions. We have presented two approaches for the treatment of optimal
control problems with SPDE constraints. In the SPDE constraints we consider a
stochastic control and stochastic states as well as stochastic parameter functions.
Thus, the resulting states are random fields, i.e., random variables, which are indexed
by a spatial coordinate. The gradient descent method as well as the SQP method
discussed here are based on a spectral discretization of the constraining PDEs with
the SC method. The SC method assumes that the underlying stochastic processes
can be approximated by polynomials of random variables, and thus it assumes a
certain smoothness in the stochastic space. The SC method can be combined with any
spatial discretization technique. Here we combine it with a simple FEM incorporating
piecewise linear basis functions. We have shown that both optimization approaches
presented here can be implemented very conveniently and are memory effective. In
fact, the final scheme results in multiple deterministic evaluations of the state or the
adjoint state of the system, where the stochasticity is evaluated at different sample
points.

As possible applications of the minimization techniques we have discussed three
different objective functions: The first aiming at the fitting of the expectation of the
stochastic state to a given (measured) function; the second aiming at the fitting of
several moments of the stochastic state to prescribed data; and the third aiming at a
fitting of the cumulative density function of the stochastic state. We have applied the
minimization of two of the aforementioned objective functions to the problem of op-
timal heat source. Thereby the SPDE constraining the optimization is the stochastic
analogue of the steady state heat diffusion, where the diffusion coefficient is a random
field.

For this application problem we have first investigated the convergence of the
SC solution for the constraining PDE. Our results show a convergence of the solu-
tions with increasing number of collocation points, as well as a convergence to the
solution of the deterministic problem as the variance of the stochastic diffusion coef-
ficient tends to zero. Second, we have investigated the influence of the number and
weighting of the stochastic moments in the objective functions for the optimal control
problem. Our results show that we can steer very well the behavior of the objective
function and construct it such that it matches the requirements of the application
under investigation.

Moreover, we have compared the two optimization methods for an objective func-
tional fitting the expectation and penalizing large higher-order moments. The numer-
ical results show that the gradient descent method requires more iterations than the
SQP method, especially near the optimum, which is a characteristic behavior of the
gradient descent method. That means the SQP method is more efficient, as known
from the deterministic optimization. But there exist further considerations when
choosing the optimization method. For example, the gradient method allows us to
use a deterministic control, as we have described for an objective, which fits the
stochastic moments, while the constraints are still SPDEs.

Finally we have compared our new minimization technique to the most prominent
and widely used technique for treating stochastic problems, the MC approach. Our
numerical results show that we achieve the same results by the SC optimization and
the MC optimization. However, for our application problem the MC approach needs
about 10 times more evaluations of the deterministic state and adjoint state than
the collocation method. This shows that under the assumption of smoothness of
the underlying stochastic processes, our SC optimization algorithms outperform the
classical MC approach.
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Future research directions include the application of the presented methodology
to real world problems in the area of optimization in medicine, such as treatment
planning. Medical applications are prime examples for modeling with uncertain pa-
rameters and SPDEs due to the intrinsic variability of biological tissue. However,
it is inevitable that the uncertainty and variability of the parameters are taken into
account in the modeling in order to allow for robust and patient-specific optimal
treatment.
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[10] M. Deb, I. Babuška, and J. Oden, Solutions of stochastic partial differential equations us-

ing Galerkin finite element techniques, Comput. Methods Appl. Mech. Eng., 190 (2001),
pp. 6359–6372.

[11] R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag,
New York, 1991.

[12] J. Kaipio and E. Somersalo, Statistical inverse problems: Discretization, model reduction
and inverse crimes, J. Comput. Appl. Math., 1098 (2007), pp. 493–504.

[13] A. Keese, Numerical Solution of Systems with Stochastic Uncertainties: A General Pur-
pose Framework for Stochastic Finite Elements, Ph.D. thesis, Technical University Braun-
schweig, Braunschweig, Germany, 2004.
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