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SINC SOLUTION OF BIHARMONIC PROBLEMS

FRANK STENGER, THOMAS COOK AND ROBERT M. KIRBY

ABSTRACT. In this paper we solve two biharmonic prob-
lems over a square, B = (−1, 1) × (−1, 1). (1) The problem
∇4U = f , for which we determine a particular solution, U ,
given f , via use of Sinc convolution; and (2) The boundary
value problem ∇4V = 0 for which we determine V given V = g

and normal derivative Vn = h on ∂B, the boundary of B. The
solution to this problem is carried out based on the identity

V = <
n

(z − c) E + F
o

= (x− a) u+ (y − b) v + φ ,

where E = u + i v and F = φ + i ψ are functions analytic in
B, and where c = a + i b is an arbitrary constant. We thus
determine approximations to the harmonic functions u, v and
φ on ∂B, via use of Sinc quadrature, and Sinc approximation
of derivatives. We then use a special, explicit Sinc-based ana-
lytic continuation procedure to extend the functions u, v and
φ to the interior of B. These procedures enable us to deter-

mine functions W which solve a boundary problem of the form
∇4W = f in B, given f in B and given W and its normal
derivative, Wn on the boundary of B.

Given any ε > 0, the time complexity of sequential computa-
tion of an approximation of Wε to W to within a uniform error
of ε in B, i.e., such that sup(x,y)∈B |W (x, y) −Wε(x, y)| < ε,

is O
`

(log(ε))6
´

.

1 Introduction and summary This paper deals with the numer-
ical solution of the PDE problem,

(1.1)

∇4W (x, y) = f(x, y), (x, y) ∈ B

W (x, y) = g(x, y) and
∂U(x, y)

∂n
= h(x, y), (x, y) ∈ ∂B .

Here B is assumed to be the square, i.e., B = (−1, 1)×(−1, 1) ⊂ R
2 and

n = n(x, y) denotes the outward normal at (x, y) on ∂B, the boundary of
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B. We shall assume, for simplicity, that f , g and h are given, real-valued
functions.

The computation of the solution of the above problem consists of
three parts.

Part I. Particular Solution of ∇4U = f . We first construct a particu-
lar solution, U—i.e., without resort to satisfying boundary conditions—
of the above PDE problem by evaluating of the Green’s function integral
expression

(1.2) U(x, y) =

∫ ∫

B

G(x − ξ , y − η) f(ξ , η) dξ dη ,

via use of Sinc convolution. This is accomplished by means of the pro-
gram package [15], the theory of which is described in [13]. Essential
details of this procedure are given in Section 2 which follows.

Part II. Solution of the BIE. Here we describe an explicit procedure,
based on use of analytic functions, to solve the homogeneous boundary
value problem

(1.3)

∇4 V (x, y) = 0, (x, y) ∈ B

V (x, y) = g(x, y), and
∂V (x, y)

∂n
= h(x, y), (x, y) ∈ ∂B,

where g and h are given. We thus describe an explicit procedure, based
on Sinc approximation, for obtaining the boundary values functions E
and F which are analytic functions of z = x + i y in the region B =
{(x, y) : −1 < x < 1 , −1 < y < 1}, and where c = a + i b is an
arbitrary constant, such that

(1.4) V = <
{

(z − c) E + F
}

= (x− a)u+ (y − b) v + φ .

It may be shown [8] that the right hand side of (1.4) satisfies the equation
∇4V = 0 and moreover, every solution to ∇4V = 0 is of the form (1.4).
In the form (1.4) it thus suffices to determine the real parts of E and F
on the boundary of B (since, with u = <E , we also have v = =E = Su,
where S denotes the Hilbert transform, see [20]), by the requirement
that V must also satisfy the boundary conditions, for (x, y) ∈ ∂B.

Part III. Analytic Continuation of V into B. This part of the solution
can be carried out via a Sinc procedure based on §4.3 of [18] and §4.3.13
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of [13]; given a function g defined on ∂B, we are able to construct an
approximation to a function u that is harmonic in B, where u = g on
∂B. Indeed, our procedure yields a solution V that is uniformly accurate
in B, even when g and h have singularities, or even discontinuities at
the corners of B.

Part IV. Examples. In Section 4 the above procedures are tested via
a Matlab program, using the Sinc package [15]. Given functions f , g
and h, we solve problem (1.1) according to the following procedure:

(a) First determine a function U via accurate approximation of the
integral (1.2) by use of Sinc convolution. This phase is described in
greater detail in Section 2 below. We thus get an approximation of
the particular solution U given by (1.2) at the Sinc points (xj , xk)
in the interior of B. We also compute approximations of the partial
derivatives, Ux and Uy via use of Sinc convolution.

(b) Solve the PDE ∇4 V = 0 for V at the Sinc points of ∂B via use of
the analytic function procedure described in Section 3, subject to
the given boundary conditions

(1.5)

V (x, y) = g(x, y),

∂V (x, y)

∂n
= h(x, y).

We thus determine approximate values of the functions u, v and φ
at the Sinc points of ∂B.

(c) Determine v on ∂B from values of u on ∂B via Sinc approximation
of Hilbert transforms.

(d) Use the analytic continuation procedure of Section 4 to extend the
definitions of the harmonic functions u, vand φ into B, i.e., evaluate
these functions at the Sinc points (xj , xk) in the interior of B, and
then form the solution V = (x− a)u+ (y − a) v + φ at these same
Sinc points.

The time complexity of our method, i.e., the amount of time required
to construct an approximationWε toW , such that sup(x,y)∈∂B |W (x, y)−

Wε(x, y)| ≤ ε is O
(
(log(ε))6

)
.

2 The particular solution We illustrate here the approximate
evaluation of the integral (1.2), which satisfies the equation

(2.1) ∇4U = f in B = (−1, 1) × (−1, 1).



394 FRANK STENGER, THOMAS COOK, ROBERT M. KIRBY

Our procedure for this evaluation is via use of Sinc convolution. The
theory of one dimensional Sinc convolution and its extension to rect-
angular regions in more than one dimension may be found in §4.6 of
[18], and while unnecessary for our purposes in this paper, extensions to
multi-dimensional curvilinear regions may be found in §5.5 of [13]. Here
we give only an algorithmic description of this procedure, i.e., without
proof.

2.1 Sinc parameters and matrices Let us define numbers σk and
ek, by

(2.2)

σk =

∫ k

0

sinc(x) dx, k ∈ Z,

ek =
1

2
+ σk,

and let us then define an m × m Toeplitz matrix Im by Im = [ej−k],
with ej−k denoting the (j, k)th element of Im. For j = −N, . . . , N , let
tj = (ejh − 1)/(ejh + 1) denote the Sinc points of the interval (−1, 1),
and let wj = 2h ejh/(1+ejh)2 denote the corresponding Sinc quadrature
weights. Let D denote the diagonal matrix, D = diag (w−N , . . . , wN ).
Set P = Im D, and Q = (Im)T D. If r(t) is a function defined on
the interval (−1, 1), set rj = r(tj), and form the column vector r =

(r−N , . . . , rN )
T
. Then, for each j = −N, . . . , N , the component R+

j of

the vector R+ =
(
R+

−N , . . . , R
+
N

)T
= A r is an accurate approximation

of the function R+(x) =
∫ x

−1
r(t) dt evaluated at x = tj . Similarly,

the component R−

j of the vector Q r is an accurate approximation to

R−(x) =
∫ 1

x
r(t) dt evaluated at the points x = tj .

We next need to diagonalize the matrices P and Q above, in the form

(2.3) P = X SXi, Q = Y S Y i,

where X and Y are the matrices of eigenvectors of P and Q respectively,
Xi = X−1, Y i = Y −1, and where S is a diagonal matrix of eigenval-
ues sj , j = −N, . . . , N . We may note that P and Q have the same
eigenvalues.

2.2 “Laplace transform” of the Green’s function The Sinc con-
volution procedure for approximating the function U in (1.2) requires
the use of the two dimensional “Laplace transform” G of the Green’s
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function G, where

(2.4) G(x, y) =
1

8π

(
x2 + y2

)
log

(√
x2 + y2

)
.

The “Laplace transform” G of G is derived in [13]. It is given by

G(s, σ) = Ĝ(s, σ) =

∫
∞

0

∫
∞

0

G(x, y) exp
(
−
x

s
−
y

σ

)
dx dy

=

(
1

s2
+

1

σ2

)−2 (
1

4
+R(s, σ)

)
,

(2.5)

where

(2.6) R(s, σ) =
1

8π

(
(7 − 6 γ)

( s
σ

+
σ

s

)
+ T (s, σ) + T (σ, s)

)
,

where γ denotes Euler’s constant, and where

(2.7) T (s, σ) = log(s)

(
6s

σ
+

2 s3

σ3

)
.

Moreover, in order to approximate Ux and Uy in B, we also need the
“Laplace transforms” of the derivatives of the Green’s function. The
partial derivatives of U can be also computed on B and ∂B via use of
Sinc convolutions, using the “Laplace transforms”

(2.8)

Ĝx(s, σ) =
1

s
G(s, σ) −

σ3

4π
(3 − 2 γ + 2 log(σ)) ,

Ĝy(s, σ) =
1

σ
G(s, σ) −

s3

4π
(3 − 2 γ + 2 log(s)) .

2.3 Computation of U , Ux , and Uy via Sinc convolution Next,
we form two m×m matrices, F = [f(tj , tk)] and G = [G(sj , sk)].

We then form an m×m matrix U via execution of the following four-
line Matlab program, which is just the two dimensional Sinc convolution
algorithm for approximating the integral (1.2):

U = X*(G.*(Xi*F*Xi.’))*X.’;

U = U + Y*(G.*(Yi*F*Xi.’))*X.’;

U = U + X*(G.*(Xi*F*Yi.’))*Y.’;

U = U + Y*(G.*(Yi*F*Yi.’))*Y.’;
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The resulting matrix U now has the property that the (j, k)th element
of U is an approximation to the function U(tj , tk), where U is defined
in (1.2).

The partial derivatives Ux and Uy my be computed via a similarly
simple algorithm. Note, however, due to requirement of consistency with
the original “models” p and q as given in Eqs. (4.6.1) of [18], due to the
fact that Gx(x, y) is an odd function of x, we first write the derivative
with respect to x of (1.2) in the form

Ux(x, y) =

∫ x

−1

∫ 1

−1

Gx(x − ξ , y − η) f(ξ, η) dξ dη

−

∫ 1

x

∫ 1

−1

Gx(ξ − x, y − η) f(ξ, η) dξ dη .

(2.9)

Thus, if GX denotes the m×m matrix of the two dimensional “Laplace
transform” of Gx(x, y) evaluated at the eigenvalues (sj , sk), the Matlab
convolution algorithm for approximating Ux in B takes the form:

Ux = X*(GX.*(Xi*F*Xi.’))*X.’;

Ux = Ux + Y*(GX.*(Yi*F*Xi.’))*X.’;

Ux = Ux - X*(GX.*(Xi*F*Yi.’))*Y.’;

Ux = Ux - Y*(GX.*(Yi*F*Yi.’))*Y.’;

Similarly, if GY denotes the m × m matrix of the two dimensional
“Laplace transform” of Gy(x, y), the Matlab convolution algorithm for
approximating Uy in B takes the form:

Uy = X*(GY.*(Xi*F*Xi.’))*X.’;

Uy = Uy - Y*(GY.*(Yi*F*Xi.’))*X.’;

Uy = Uy + X*(GY.*(Xi*F*Yi.’))*Y.’;

Uy = Uy - Y*(GY.*(Yi*F*Yi.’))*Y.’;

3 Solution of the homogeneous boundary value problem In
this section we shall determine boundary values on ∂B of harmonic
functions u and v and φ , such that the expression

(3.1) V = <[ (z − c) E + F ] = (x− a)u+ (y − b) v + φ,

in which E = u+ i v and F = φ+ i ψ, solves the boundary value problem

(3.2) ∇4V = 0 in B = (−1, 1)× (−1, 1).
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subject to given values of V = g and Vn = h. where the subscript
“{·}n” denoted differentiation in the direction of the outward normal.
In (3.1), E and F are analytic in B, while u, v, φ and ψ are harmonic
in B. For the sake of simplicity, we assume the constant c has the form
c = (1 + i) a, where a is real-valued.

As discussed at length in [8], every solution V of this boundary value
problem can be represented via use of the above expression (3.1).

It will suffice to just determine u and φ on ∂B, since v can be ex-
pressed as the Hilbert transform of u over ∂B. Let us describe the
explicit details for setting up the system of algebraic equations to deter-
mine u and φ. After solving for u and φ on the boundary, ∂B, we shall
also determine v on ∂B, which will then enable us to determine V on
the interior of B, via an analytic continuation procedure based on Sinc
methods, and which is described in Section 4 below.

3.1 The boundary equations We deduce from (3.1) and (1.5) that

(3.3)
(x− a)u+ (y − a) v + φ = g,

xn u+ (x− a)un + yn v + (y − a) vn + φn = h,

where the subscript {·}n denotes differentiation in the direction of the
outward normal.

3.2 The oriented boundary of B We parametrize Γ = ∂B =
⋃4

j=1 Γj

in an oriented fashion in complex variable notation as follows:

(3.4)

Γ1 =
{
z = z1(t) = 1 + i t, −1 ≤ t ≤ 1

}
,

Γ2 =
{
z = z2(t) = i− t, −1 ≤ t ≤ 1

}
,

Γ3 =
{
z = z3(t) = −1− i t, −1 ≤ t ≤ 1

}
,

Γ4 =
{
z = z4(t) = −i+ t, −1 ≤ t ≤ 1

}
.

Next, we define uj , vj , φj and ψj , respectively in terms of u, v, φ and
ψ as follows:

If z = 1 + iτ ∈ Γ1, then set u1(τ) = u(z),

If z = −τ + i ∈ Γ2, then set u2(τ) = u(z),

If z = −1− iτ ∈ Γ3, then set u3(τ) = u(z),

If z = τ − i ∈ Γ4, then set u4(τ) = u(z),
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and similarly for vj , φj , and ψj . In this notation, the boundary Γ =
∂B =

⋃4
j=1 Γj is oriented in a counter-clockwise fashion. This means,

of course, as τ increases, we traverse from bottom to top along Γ1, from
right to left along Γ2, from top to bottom along Γ3, and from left to
right along Γ4.

3.3 The Hilbert transform and its collocation The Hilbert trans-
form relates u and v along Γ as follows, for z ∈ Γ:

(3.5)

v(ζ) = Su(z) =
P.V.

π i

∫

Γ

u(ζ)

z − ζ
dζ,

u(ζ) = Sv(z) =
P.V.

π i

∫

Γ

v(ζ)

z − ζ
dζ.

It then readily follows, assuming that u and v are real-valued, if z ∈ Γj

we must have

(3.6) <

{
P.V.

π i

∫

Γ

u(ζ)

z − ζ
dζ

}
= 0.

This property enables us to accurately approximate the Hilbert trans-
forms using only Sinc quadrature, i.e., without use of Sinc-Hilbert trans-
form methods (see §1.7 of [13] and §5.6 of [14]).

For example, if z = 1 + i τ ∈ Γ1, then we have

v1(τ) =
1

π

∫ 1

−1

{
(1 − τ)u2(t)

(1 + t)2 + (1 − τ)2

+
2u3(t)

4 + (t+ τ)2
+

(1 + τ)u4(t)

(1 − t)2 + (1 + τ)2

}
dt.

(3.7)

That is, we use the Sinc quadrature approximation,

(3.8)

∫ 1

−1

p(t) dt =

N∑

k=−N

wk p(tk),

in which tj are the Sinc point tk = (ekh − 1)/(ekh + 1), while the wk are
the Sinc weights, given by wk = 2h ekh/(ekh + 1)2. We set u`

j = u`(tj),

we define vectors, u` =
(
u`
−N , . . . , u

`
N

)T
, and similarly for v`

j and v`,
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and we define matrices, P 2 =
[
P 2

jk

]
, P 3 =

[
P 3

jk

]
, and P 4 =

[
P 4

jk

]
by

means of the equations

(3.9)

[
P 2

jk

]
=

(1 − tj)wk

π ((1 − tj))2 + (1 + tk)2)
,

[
P 3

jk

]
=

2wk

π (4 + (tj + tk)2)
,

[
P 4

jk

]
=

(1 + tj)wk

π ((1 + tj)2 + (1 − tk)2)
.

Thus, we get v1 = P 2 u2+P 3 u3+P 4 u4. Because of our above definition
of Γ = ∂B =

⋃4
j=1 Γj as an oriented arc, and because of the symmetry

of B, we similarly obtain v2 = P 2 u3 + P 3 u4 + P 4 u1, and so on, i.e.,
we get the following block system of equations:

(3.10)




v1

v2

v3

v4


 =




0 P 2 P 3 P 4

P 4 0 P 2 P 3

P 3 P 4 0 P 2

P 2 P 3 P 4 0







u1

u2

u3

u4


 .

These equations will be used below, initially to eliminate v , and later,
to compute the function v on Γ = ∂B .

3.4 The equations on the oriented boundary The first equation
in (3.3) for z = x + i y reduces to the following four equations on the
arcs Γj , for j = 1, 2, 3, 4:

(3.11)

(1 − a)u1(t) + (t− a)S u1(t) + φ1(t) = g1(t),

(−t− a)u2(t) + (1 − a)S u2(t) + φ2(t) = g2(t),

(−1 − a)u3(t) + (−t− a)S u3(t) + φ3(t) = g3(t),

(t− a)u4(t) + (−1 − a)S u4(t) + φ4(t) = g4(t).

Let us now turn to the second equation in (3.3). The Cauchy-Riemann
equations enable us to write this equation in the form

(3.12) yt u+ (x− a) vt − xt v − (y − a)ut + ψt = h,

where the subscript {·}t denotes differentiation along Γ. Now using the
notation of (3.4), and noting, e.g., that (t− a)ut = {(t− a)u}t − u, we
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can rewrite this equation along each arc Γj in the form

(3.13)

2u1 − {(t− a)u1}t + (1 − a) v1
t + ψ1

t = h1,

2 v2 − {(t+ a) v2}t − (1 − a)u2
t + ψ2

t = h2,

−2u3 + {(t+ a)u3}t − (1 + a) v3
t + ψ3

t = h3,

−2 v3 + {(t− a) v4}t + (1 + a)u4
t + ψ4

t = h4.

3.5 Collocation of the equations Some basic matrices we shall use
are 0, the m ×m matrix of zeros, I, the identity matrix, D, the Sinc-
derivative matrix, which replaces a vector p = (p(z−N ), . . . , p(zN))

T
by

an approximation to q = (q(z−N ), . . . , q(zN ))
T
, where q(z) = p′(z), i.e.,

Dp = q, the diagonal matrix T = diag (t−N , . . . , tN )
T

of Sinc points, as
well as the representation (3.10), which will enable us to eliminate the
function v in the above equations.

By using these matrices we are able to reduce the solution of the
system of eight equations (3.11) and (3.13) into an (eight) × (eight)
block system of the form

(3.14) Bw = k

where

B =




B11 B12 B13 B14 B15 B16 B17 B18

B21 B22 B23 B24 B25 B26 B27 B28

B31 B32 B33 B34 B35 B36 B37 B38

B41 B42 B43 B44 B45 B46 B47 B48

B51 B52 B53 B54 B55 B56 B57 B58

B61 B62 B63 B64 B65 B66 B67 B68

B71 B72 B73 B74 B75 B76 B77 B78

B81 B82 B83 B84 B85 B86 B87 B88




,(3.15)

w =




u1

u2

u3

u4

Φ1

Φ2

Φ3

Φ4




, k =




g1

g2

g3

g4

h1

h2

h3

h4




.(3.16)
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Here, e.g., Φ1 =
(
φ1
−N , . . . , φ

1
N

)T
, etc.

Also, using the convenient definitions Zm = Z−a∗ I, Zp = Z+a∗ I,
Wm = 2 ∗ I − D ∗ Zm, and Wp = 2 ∗ I − D ∗ Zp, we can now make
the following definitions for the entries of the above matrix B. To this
end, we omit m ×m zero matrices. First, for the collocation of (3.11)
we shall use the nonzero matrices:

(3.17)

B11 = (1 − a) I, B12 = ZmP 2, B13 = ZmP 3,

B14 = ZmP 4, B15 = I,

B21 = (1 − a)P 4, B22 = −Zp, B23 = (1 − a)P 2,

B24 = (1 − a)P 3, B26 = I,

B31 = −ZpP3, B32 = −ZpP 4, B33 = −(1 + a) I,

B34 = −ZpP 2, B37 = I,

B41 = −(1 + a)P 2, B42 = −(1 + a)P 3, B43 = −(1 + a)P 4,

B44 = Zm, B48 = I.

Next, the nonzero matrices for the collocation of (3.13) are:

(3.18)

B51 = Wm, B52 = (1 − a)DP 2,

B53 = (1 − a)DP 3, B54 = (1 − a)DP 4,

B56 = DP 2, B57 = DP 3, B58 = DP 4,

B61 = WpP 4, B62 = −(1 − a)D,

B63 = WpP 2, B64 = WpP 3,

B65 = DP 4, B67 = DP 2, B68 = DP 3,

B71 = −(1 + a)DP 3, B72 = −(1 + a)DP 4,

B73 = −Wp, B74 = −(1 + a)DP 2,

B75 = DP 3, B76 = DP 4, B78 = DP 2,

B81 = −WmP 2, B82 = −WmP 3,

B83 = −WmP 4, B84 = (1 + a)D,

B85 = DP 2, B86 = DP 3, B87 = DP 4.
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4 Sinc approximation and analytic continuation In this sec-
tion we describe a procedure for extending the functions u, v and φ
which were computed on ∂B to all of B.

4.1 Sinc basis It is imperative to first recall the Sinc basis.
The function ϕ(x) = log((1 + x)/(1 − x)) transforms the interval

(−1, 1) onto the real line R. The Sinc points are defined corresponding
to a spacing h on R by tk = φ−1(kh) = (ekh − 1)/(ekh + 1). We also set
ρ = exp(ϕ), so that ρ(x) = (1 +x)/(1−x). Corresponding to a positive
integer N , one usually selects h = c/N 1/2, and one can then perform
Sinc approximation on (−1, 1) via the formula

(4.1) f(x) ≈

N∑

k=−N

f(tk)ωk(x).

The basis functions ωk are defined in terms of the Sinc function S(k, h),
which is given by

(4.2) S(k, h)(u) =
sin

(
π
h (u− kh)

)
π
h (u− kh)

.

Set

(4.3)

h =
c

N1/2
,

γj = S(j, h) ◦ ϕ, j = −N, . . . , N,

ωj = γj , j = −N + 1, . . . , N − 1,

ω−N =
1

1 + ρ
−

N∑

j=−N+1

1

1 + ejh
γj ,

ωN =
ρ

1 + ρ
−

N−1∑

j=−N

ejh

1 + ejh
γj ,

εN = N1/2e−(παdN)1/2

.

Suppose, for example, that f is analytic and bounded in the eye-shaped
regionD = {z ∈ lC : | arg(ϕ(z))| < d}, where d is a positive constant, and
corresponding to numbers α ∈ (0, 1) and C > 0, we have, for x ∈ (−1, 1),
the inequality,

|f(x) − f(−1| if x ≤ 0

|f(x) − f(1)| if x > 0

}
≤ C (1 − x2)α.
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Then, by selecting h = (πd/(αN))1/2, we obtain a uniform bound
on the error in the above Sinc approximation of f is of the order of
N1/2 exp(−(πdαN)1/2).

4.2 Analytic continuation Given g defined and continuous on a
closed, finite line segment Γ` = [a1, a2] in the complex plane, we can
define ϕ`(z) = log((z − a1)/(a2 − z)), and in the notation of the above
subsection, we set Lg(z) = (g(a1) + ρ(z)g(a2))/(1 + ρ(z), which reduces
to the linear interpolant,

(4.4) Lg(x) =
(a2 − z) g(a1) + (z − a1) g(a2)

a2 − a1
.

The line segment Γ` may be parametrized in terms of a real variable t
by the equation

(4.5) z = z(t) =
a1 + a2

2
+
a2 − a1

2
t.

We mention that this linear expression has an obvious extension to com-
plex t.

Next, we introduce the following harmonic basis, which is defined in
the upper complex plane, {=ϕ(z) > 0}:

(4.6)

σk(z) = =

{
eiπ[ϕ(z)−kh]/h − 1

π[ϕ(z) − kh]/h

}
, k ∈ Z,

s1(z) =

[
1 −

=ϕ(z)

π

]
<

{
1

1 + ρ(z)

}
−

<ϕ(z)

π
=

{
1

1 + ρ(z)

}
,

s2(z) =

[
1 −

=ϕ(z)

π

]
<

{
ρ(z)

1 + ρ(z)

}
−

<ϕ(z)

π
=

{
ρ(z)

1 + ρ(z)

}
,

θk(z) = σk(z), −N < k < N,

θ−N (z) = s1(z) −
N∑

n=−N+1

1

1 + enh
σn(z),

θN (z) = s2(z) −

N−1∑

n=−N

enh

1 + enh
σn(z).

As already implied above, the functions θj are harmonic in the region
D+ ≡ {=(z/(a2 − a1)) > 0}. Suppose now, that we parametrize both
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z = z(t) and ζ = ζ(τ) by the above equation, where z(t) ∈ Γ`, and
where τ = t+ i r with r > 0. Then ζ(τ) ∈ D+, and it follows moreover,
that

(4.7) lim
r→0

θj(ζ(t + ir)) = ωj(t),

where ωj is defined as in (4.3) above. We may note in particular, that
if t = tk, then the right hand side of (4.7) reduces to δj,k, the Kronecker
delta.

Suppose, now that we are given a function u on Γ = ∂B, with
B = (−1, 1) × (−1, 1). We can define a sequence of 2N + 1 functions{
θ`

j

}
for each of the four arcs Γ`, defined as in (3.4), thus emabling us

to analytically continue u into the interior of B by means of the approx-
imation

(4.8) u(z) ≈ uN (z) =

4∑

`=1

N∑

k=−N

c`k θ
`
k(z),

which is harmonic inB. We can then define vectors g` =
(
g`
−N , . . . , g

`
N

)T

where, with Γ` parametrized by (3.4), we take g`
j = g(z`(tj)), with tj

the Sinc point, (ejh − 1)/(ejh + 1). Then, by similarly defining u`, we
use collocation based on the evaluation of the right hand side of (3.44)
at the Sinc points of Γj , to arrive at the following system of equations

for the vectors c` =
(
c`
−N , . . . , c

`
N

)T
:

(4.9)




I K2 K3 K4

K4 I K2 K3

K3 K4 I K2

K2 K3 K4 I







c1

c2

c3

c4


 =




g1

g2

g3

g4


 .

Here, the matrices K` are defined as follows: If we substitute z = z1(tj)
into (4.8) above, we get

c1j +

N∑

k=−N

[
θ2k(z1(tj)) c

2
k + θ3k(z1(tj)) c

3
k + θ4k(z1(tj)) c

4
k

]
= g1(z1(tj)).

The set of these equations for j = −N, . . . , N may be written in the
matrix form

Ic1 +K2c2 +K3c3 +K4c4 = g1,
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with K` =
[
θ`

k(z1(τj)
]
, ` = 2, 3, 4. Next, similarly taking a point z`(tj)

on Γ`, we find that no new matrices of the above type Kq arise, due to
the symmetry, and because of our definition of an oriented Γ in (3.4).

We remark that this procedure produces a solution that is uniformly
accurate in B, even though the function u may have discontinuities at
the corner points of ∂B .

Once we have solved (4.9) for the constants c`j , we can use (4.8) to
compute u at the Sinc points (tj , tk) in the interior of B. We can proceed
similarly for v, and then for φ, to get U as defined in (3.1) at the Sinc
points in B.

5 Rates of convergence of approximations We briefly discuss
here the convergence and rate of convergence of the procedures in the
previous sections of this paper.

1) Evaluation of the Particular Solution. We discuss here the
evaluation of the integral (1.2) via use of Sinc convolution.

As discussed in [18, §4.6], Sinc convolution is actually a Cartesian
product operation, which can be carried out one dimension at a time.
The convergence of these processes was already discussed in [18, §4.6].
Exponential convergence, i.e., with error of the order of exp(−cN 1/2) is
guaranteed, in essence, if: With ϕ(z) = log((1 + z)/(1 − z)), and α an
number between 0 and 1, f(·, y)/(ϕ′(·))2 is analytic on (−1, 1) and be-
longs to Lipα[−1, 1] for each fixed x ∈ [−1, 1]; and dually, f(x, ·)/(ϕ′(·))2

is analytic on (−1, 1) and belongs to Lipα[−1, 1] for each fixed y ∈
[−1, 1].

2) Solution of the Homogeneous Boundary Value Problem.
The boundary value problem stated as in (3.3) is one discussed at length
in [8]. Sinc methods for solution of such problems are discussed in [18,
§6.7], and an extension of this procedure is given in [1]. Exponential
convergence with error of the order of exp(−cN 1/2) is guaranteed if the
functions gj and hj/ϕ′ are analytic on (−1, 1) and of class Lipα[−1, 1],
for j = 1, 2, 3, 4, and if the condition number of the matrix B in (3.16)
of the order of N c for some finite c. To this end, we expect that the
condition number of the matrix B will be bounded for almost all choices
of the parameter a in our method of solution. Although we have not
been able to prove this, our a posteriori calculations show that this is
indeed the case.

3) Analytic Continuation. Under our above assumed properties
on the functions f , g and h, it follows that the functions uj , vj , and φj
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are analytic and of class Lipα[−1, 1]. The computation of v in terms of
u via use of (3.10) was carried out via use of Sinc quadrature. Hence the
maximum error in the computation of v via use of (3.10) is of the order
of exp(−cN1/2). Our a posteriori calculations show that the matrix
in (4.9) which was obtained via use of (4.6) and (4.8) has a condition
number bounded by 2. In essence, then, we are performing Sinc inter-
polation to get the constants c`j , i.e., we have an error of the order of

exp(−cN1/2) since we have assumed that the functions uj , vj and φj

are analytic and of class Lipα[−1, 1]. Since the functions θ`
k in (4.8) are

harmonic in B, it thus follows, that the the harmonic extension of the
functions u, v and φ to the interior of B also has an error of the order
of exp(−cN1/2), by the maximum principle for harmonic functions.

6 Numerical examples We now test the above procedures on
some specific problems.

6.1 A particular solution in B to the non-homogeneous equa-
tion

(6.1) ∇4U = f in B = (−1, 1) × (−1, 1).

where, with r =
√
x2 + y2,

(6.2) f(r) =
256

81

r4 − 6r2 + 18

(2 − r2)8/3
.

Such an f is obtained, for example, if we take

(6.3) U = (2 − r2)4/3.

A plot of the solution to th integral (1.2), i.e.,

(6.4) U(x, y) =

∫ 1

−1

∫ 1

−1

G(x− ξ, y − η) (2 − ξ2 − η2)4/3 dξ dη ,

is given in Figure 1. This integral was evaluated via use of repeated 21-
point Sinc quadrature over each of the four rectangles, (−1, zj)×(−1, zk),
(−1, zj)× (zk, 1), (zj , 1)× (−1, zk), and (zj , 1)× (zk, 1), thus generating
a 212-point solution at the Sinc points of B = (−1, 1)× (−1, 1). On the
other hand, Figure 2 illustrate the evaluation of this same integral via
use of Sinc convolution, taking 21 points in each variable. This latter
approach is of course much more efficient.
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FIGURE 1: “Exact” Evaluation of the Integral (6.4).

6.2 Boundary values of harmonic functions As discussed above,
every solution to the equation

(6.5) ∇4V = 0 in B = (−1, 1)× (−1, 1).

can be expressed in the form

(6.6) V = <[(z − c)E + F ]

with c = a+ ib where E = u+ iv, F = φ+ iψ, where u, v, φ and ψ are
harmonic functions in B, and where a and b are real-valued constants.
Specifically, we take b = a and

(6.7) E = (1 + i− z)1/2 and F = z4.

We can deduce that

(6.8)

u = ((R + 1 − x)/2)1/2,

v = ((R − 1 + x)/2)1/2,

φ = x4 + y4 − 6x2 y2,

ψ = 6
(
x3 y + x y3

)
,
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FIGURE 2: “Sinc Convolution” Evaluation of the Integral (6.4).

where R = ((1 − x)2 + (1 − y)2)1/2. It then follows that

ux = vy = −u/(2R), uy = −vx = v/(2R),

φx = ψy = 4x3 − 12xy2, φy = −psix = 4y3 − 12x2y.

Notice that each of the functions u and v have a singularity at the point
(1, 1). Thus, we initially determine the boundary values of g = V |∂B

and h = (Vn) |∂B , based on the equations (3.3), we eliminate v (and also
ψ) based on (3.5) and (3.10), and we then solve the pair of equations

(6.9)

V = (x− a)u+ (y − a)Su+ φ = g,

∂V

∂n
= ytu+ (x − a)(S u)t − xtSv − (y − a)ut + (Sφ)t = h,

for u and φ on ∂B, (with the subscript t denoting differentiation along
the oriented boundary of B) via solution of the system (3.14). We then
again use (3.10) to get v at 21 Sinc points of each arc of ∂B. Finally,
we recompute gappr = V on ∂B based on our thus computed u, v and
φ, and we plot both gappr and the exact values, gex at the Sinc points
of the four boundary arcs, in Figures 3, 4, 5 and 6.
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FIGURE 3: “Exact” ‘o’ and Approximate ‘–’ Values of g on Γ1.
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FIGURE 4: “Exact” ‘o’ and Approximate ‘–’ Values of g on Γ2.
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FIGURE 5: “Exact” ‘o’ and Approximate ‘–’ Values of g on Γ3.
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FIGURE 6: “Exact” ‘o’ and Approximate ‘–’ Values of g on Γ4.
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6.3 Analytic continuation to B of u on ∂B Finally, we use the
procedure of Section 4 to analytically continue a function u given on ∂B
to the Sinc points in the interior of B. We illustrate respectively, surface
plots of uex in Figure 7, which is the exact harmonic function, as well as
uappr in Figure 8, which is the approximate solution computed in this
fashion, and the error uappr − uex in Figure 9.

We remark, that by the maximum principle for harmonic functions,
the moduli of the errors of our computed u in B are bounded by the
errors on the boundary of B. Of course in performing our computations,
we also get round-off errors.
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FIGURE 7: Exact Harmonic u in B.
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FIGURE 8: Computed Harmonic u in B.
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FIGURE 9: uexact − uapprox in B.
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